
Shafarenko ﻿Cybersecurity (2024) 7:34
https://doi.org/10.1186/s42400-024-00225-9

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Cybersecurity

Winternitz stack protocols for embedded
systems and IoT
Alex Shafarenko1*    

Abstract 

This paper proposes and evaluates a new bipartite post-quantum digital signature protocol based on Winternitz
chains and an oracle. Mutually mistrustful Alice and Bob are able to agree and sign a series of documents in a way
that makes it impossible (within the assumed security model) to repudiate their signatures. The number of signatures
supported by a single public key is still limited, though by a large number. However, the security of the signature
scheme is not diminished by repeated application, so when the capacity of a public key is exhausted the last transac-
tion can be used to agree a new key. Some ramifications are discussed, security parameters evaluated and an applica-
tion area delineated for the proposed concept.

Keywords  Signature protocol, Hash-based signature, Post-quantum

Introduction
Our focus is on supporting multivendor embedded
devices that require guaranteed nonrepudiation. Such
devices often occur in automotive, aerospace and other
safety-critical applications, as well as in all kinds of
medical technology. Authentication and integrity-con-
trol techniques that utilise symmetric ciphers are based
on sharing a confidential key. The same key is used for
signing messages and validating them, so the sender can
always repudiate the message by claiming that it was
formed by the other party that shares the key. Public-
key cryptography does not quite solve this problem. First
of all, it is vulnerable to quantum attacks and cannot be
relied on in a future-proof technology. Secondly, and per-
haps more importantly from a practical point of view,
signature calculation and verification require a volume
of computations that can be too large for an embedded
device operating on a tight power budget.

We attempt to address both issues by proposing a hash-
based signature. Such signatures exploit the one-way

nature of a cryptographic hash to create an effective pub-
lic-key/private-key pair. Large random integers are used
as the private key, and their hashes are published to form
the public key. When a new message requires a signature,
the signer reveals certain integers of the private key. Their
choice uniquely identifies the message, and since the only
principal who can show the pre-image of a hash is the
one who created that hash in the first place, a collection
of pre-images reliably linked to a message can serve as a
signature.

There exist quite a few hash-based signature schemes
that are well developed and understood, see “Related
work” section for related work. We draw our inspiration
from Winternitz’s idea to apply a hash to a random seed
repeatedly to create a chain, and Reyzin and Reyzin’s idea
of random index sets (multisets in our approach) gener-
ated by a hash and used to index an array of key-pairs.
However, our proposal differs from the related work by
the fact that we build a signature stack using an array of
long Winternitz chains (we call this a Winternitz fab-
ric), and we push fixed cardinality multi-set frames on it
rather than variable-cardinality subsets, see “Winternitz
stack protocol” section. This way we achieve security that
does not diminish under repeated application, so ours is
not a few-time signature scheme, but in fact a constant

*Correspondence:
Alex Shafarenko
a.shafarenko@herts.ac.uk
1 University of Hertfordshire, Hatfield AL10 9AB, UK

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-024-00225-9&domain=pdf
http://orcid.org/0000-0001-8796-6542

Page 2 of 17Shafarenko ﻿Cybersecurity (2024) 7:34

security scheme, even though the capacity to sign is lim-
ited by the length of the fabric. Having said that, for a
very modest storage capacity (single gigabytes), a million
signatures can be accommodated without recalculation.
Storage capacity can be traded in for hash recalculations
and under realistic assumptions the storage requirements
can be reduced to megabytes without significantly alter-
ing the amount of work required for signing, see “Prac-
ticalities” section. We show that 256-bit security (128-bit
post-quantum) is easily achieved by our scheme. The
computational burden on the parties after the protocol
launch amounts to a few tens of hash calculations by the
verifier (same as the original HORS by Reyzin and Rey-
zin 2002) and only one or two by the signer—a negligi-
ble amount compared to the computations involved in a
public-key signature scheme such as ECDSA.

The most unusual feature of our solution is its ability
to support a mutual signature of two parties using a sin-
gle public key by repurposing the confirmation pre-image
for signing the verifier’s approval, see “MAWS protocol”
section. We propose an extreme version of this mutual
protocol, which we call reverse Winternitz stack (RWS),
where Alice signs nothing but messages received from
Bob, see “Reverse Winternitz stack (RWS) protocol” sec-
tion. As a result Alice could become Bob’s public notary
without either of them requiring trust. Indeed if a third
party trusts Alice (authenticated by her public key) not to
collude with Bob and not to deny him service by break-
ing the protocol, Bob can safely sign his messages by
running RWS with her for the third party’s use. If Alice
tries to impersonate Bob to sign a message, Bob will be
able to prove the signature false, but if the message is
in fact genuinely signed by Bob, then Alice is also safe,
since Bob will not be able to repudiate his signature. Alice
and Bob have instant assurances by the protocol, but any
proof for a third party requires dumping Bob’s stack. The
stack contains digests of all documents that Bob’s ever
signed with Alice since the establishment of the current
public key, as well as additional protocol data the size
of that key (hundreds of KB). This gives rise to a small
communication requirement in the order of 1Mbyte. In
most scenarios involving a guarantee of nonrepudiation,
a third-party proof is only required after a major event
(car breakdown, aircraft malfunction, etc.) to adjudicate
on the cause of the event in a multivendor environment.

Another remarkable feature of RWS is its communica-
tion asymmetry. Bob receives of the order of 1 Kb of data
from Alice, but his transmission requirements are lim-
ited to only 64 bytes per signature, same as it would be
for the 256-bit ECDSA. In an IoT situation, where mes-
sages are communicated over long distances via a low bit-
rate radio, transmission requires much power to radiate

a strong enough signal to reach a network hub, while
reception involves only digital signal processing. Also
the maximum radiated power and the transmitter duty
cycle of an IoT radio is limited by law to enable public
use without harmful interference. By contrast, IoT net-
work hubs are allowed a more powerful transmitter (up
to a factor of 10), higher duty cycle (again a factor of 10)
and an elevated full-size antenna to be able to transmit
much greater volumes of data. The RWS protocol nicely
matches this asymmetry.

The main contributions of the paper are as follows:

•	 The idea of Winternitz stack and an analysis of its
security properties

•	 Three signature protocols based on a Winternitz
stack with nondecreasing security of a large but lim-
ited number of signatures

•	 Analysis of the protocol resource footprints

The next two sections present the basic principles, nota-
tions and some security properties of the Winternitz
stack. “Winternitz stack protocol”, “MAWS protocol”
and “Reverse Winternitz stack (RWS) protocol” sections
describe the signature protocols. “Application of RWS to
Internet of Things” section discusses possible applica-
tions, “Related work” section presents related work and
finally there are some conclusions.

Principles of Winternitz stack signature
We begin with the standard definition of Winternitz
chain:

Definition 1  For a cryptographic hash-function H(x)
and some arbitrary r0 of the same bit-length as the image
of H, the sequence

is called a length-N Winternitz chain.

Let us bring several chains together.

Definition 2  (Winternitz fabric) An indexed family
of length-N Winternitz chains r[k]i  , where k is the index,
0 ≤ k < w , w is a power of 2, and 0 ≤ i < N  , is called
a Winternitz (w, N)-fabric, or just fabric for short. The
constant w is called the width and N, the length of the
fabric. The indexed family (E[k]) , where Ek = r

[k]
N where

0 ≤ k < w is called the edge of the fabric. When referring
to the edge as a whole we will omit the index: E, or E(F)
for the edge of a fabric F.

ri+1 = H(ri), for 0 ≤ i < N

Page 3 of 17Shafarenko ﻿Cybersecurity (2024) 7:34 	

See Fig. 1 for an illustration. The width of a fabric is
constrained to a power of 2, but the length of the chain
is arbitrary. For practical purposes chain lengths of the
order of one million or less should satisfy most demands
for a digital signature. Notice that due to the hardness of
the second preimage problem, at most one (w, N)-fabric
can be produced given an arbitrary width-w edge E for
any practical N.

Consider a length-d sequence of binary strings Dj ,
0 ≤ j < d , which we will call documents. Let a function

be a random oracle, where B is a set of arbitrary-length
binary strings and Mκ ,w is a set of all cardinality-κ mul-
tisets of integers taken from the range �0,w − 1� . Assume
the oracle is such that the presence of those integers in
the multiset is uncorrelated. A multiset M ∈ Mκ ,w of
this kind can be defined using its characteristic func-
tion χM : �0,w − 1� → �0, κ − 1� , such that for any
x ∈ �0,w − 1� x occurs in M χM(x) times. For conveni-
ence, define ω : B × �0,w − 1� → �0, κ − 1� to be a func-
tion such that M = �[κ ,w](b) iff ω(b, k) = χM(k) for any
b ∈ B and 0 ≤ k < w . Clearly, for any b ∈ B,

Cardinality κ is a security parameter. We assume it
is fixed and will discuss the choice of it later on. In the
sequel we will not show the dependency of any variables
of interest on κ explicitly and will not use explicit upper
indices of � if the omission does not lead to ambiguity.

Definition 3  For an integer d > 0 , a depth-d signature
stack over a Wintenitz (w, N)-fabric (r[k]i) is a pair of indexed

�[κ ,w] : B → Mκ ,w

(1)
w−1∑

k=0

ω(b, k) = κ .

families (D, T), where D = (Dj)j∈�0,d−1� is a sequence

of documents, and T = (r
[k]
N−σ(k))k∈�0,w−1� is the top of

the stack, with the function σ : �0,w − 1� → �0,N − 1�
defined thus:

provided that σ(k) ≤ N for all k in its domain. (The dou-
ble vertical bar denotes bit-string concatenation.)

A depth-0 signature stack is the pair (∅, (r[k]N)k∈�0,w−1�).

Corollary 1  For any depth-d signature stack (D, T) over
a Wintenitz (w, N)-fabric,

Proof  Sum in k both sides of the equation for σ in
Definition 3, make the summation in k innermost in the
right-hand side and use Eq. 1. � �

Fabric capacity
Typically what is signed is not the actual content but its
cryptographic digest, so Dj are usually hash-images of the
actual documents to be signed. Also, to prevent a replay
attack, the original content typically contains a random
nonce. Under such assumptions the family (Dj) is a col-
lection of random values which makes the oracle output
not only random but also, with a probability very close
to 1, free from repetitions. Let us evaluate the capacity
of the fabric to carry a signature stack of a large depth d.

First visualise the fabric as w vertical rods that balls can
be slid unto, see Fig. 2. Each document Dj causes balls to
be slid on some of the rods according to ω , the total num-
ber of balls being κ . Their distribution over the rods is
random and uncorrelated. In particular, it is possible but
not very probable that some balls for a given document
will be slid on the same rod. The distribution σ(k) is the
result of repeating “the sliding of balls” d times using a
total of dκ balls. Choose one rod at random and observe
that the probability for a ball to end up taking that rod is
1/w. The number of balls on the rod after dκ balls have
been randomly distributed between the rods is governed
by the binomial distribution, which gives us the obvious
expectation E = dκ/w and the standard deviation

(2)σ(k) =
d−1

m=0

ω �mj=0 Dj , k ,

w−1∑

k=0

σ(k) = dκ .

...

...

...
Fig. 1  Winternitz fabric. The shaded nodes represent the fabric edge.
A vertical line followed down connects a value with its hash image

Page 4 of 17Shafarenko ﻿Cybersecurity (2024) 7:34

for large d. By Central Limit Theorem of statistics the dis-
tribution becomes close to Gaussian at large d. The rule
of thumb is that fluctuations of a Gaussian random value
very rarely exceed 6� and so we calculate, for large N that
we are interested in,

The exact point at which the fabric will prove too small to
support the signature stack over it depends on the docu-
ments (Dj) , but since each document only slides κ balls
on the rods, and since we will always use wide fabrics
( κ ≪ w ), the process can be stopped very close to that
point. For estimates we should neglect

√
N compared to

N and use

Oracle entropy
Next let us explore security properties of a signature
stack. The lynchpin of security here is the fact that a
random oracle �(D) makes the problem of a second
preimage unfeasibly hard, provided that its codomain is
a large set. An attacker trying to find some D′ that has
the same image as D, �(D′) = �(D) will have to make a
number of attempts commensurate with |Mκ ,w| , which
could be astronomically large. We find from elementary

� =
√

dκ

w

(

1− 1

w

)

≈
√

dκ

w
,

dmaxκ

w
� N − 6

√
N .

(3)dmax ∼ wN

κ
.

combinatorics that for a fabric of width w, a random ora-
cle with the security parameter κ will yield one out of a
possible

multisets of cardinality κ with equal probability. For prac-
tical reasons, which we will explain later, we are inter-
ested in a small κ of the order ten, while we are willing to
consider fabrics of a width of a few thousand. Expanding
the above for κ ≪ w and keeping the first nonvanishing
term in 1/w we obtain

Note that this is an estimate from below as all higher-
order terms are positive. We are interested in the entropy
of the oracle, which equals the binary logarithm of G. To
get some idea how large it can be for κ2 � w we neglect
the term in brackets and use Stirling’s formula for the
factorial, which is accurate to within 1% even for κ as
small as 10:

Consider a fabric of width w = 4096 and an oracle with
κ = 31 and find that log2G exceeds 259. Notice that it
is marginally better than the security of SHA-256 with
respect to a second preimage attack.

HORS oracle
A true random oracle is not feasible, but it can be approx-
imated very well using the trick invented by Reyzin and
Reyzin as they proposed their HORS scheme (Reyzin
and Reyzin 2002). Specifically we take a standard hash of
the argument D and pare it down to κ log2 w bits.1 In our
numerical example this would be 31× 12 = 372 bits. A
hash of this length is easy to compute by application of
SHA-512, taking the first 372 bits of the result. All that
remains is to partition the bit string into 12-bit chunks,
interpret them as unsigned binary integers, and to col-
lect them into a multiset, which will represent the value
of �(D) . We call this implementation a HORS oracle and
formally define it next.

Definition 4  For any w = 2q with some posi-
tive integers q and κ , a HORS oracle is a function
η[κ ,w] : B → Mκ ,w defined as follows:

G =
(
w + κ − 1

κ

)

(4)

G = (w + κ − 1)× · · · × w

κ! ∼ wκ

κ!

(

1+ κ(κ − 1)

2w

)

.

log2G ≈ κ log2(we/κ)−
1

2
log2(2πκ).

Fig. 2  An example of a depth-5 signature stack over a Winternitz
(8, N)-fabric using a random oracle with κ = 3 . Empty boxes
represent unused members of the fabric. The top of the stack T
is highlighted in grey and the fabric edge in yellow. The document
family is not shown

1  Remember that the width of a fabric is required to be a power of 2 by the
above definition.

Page 5 of 17Shafarenko ﻿Cybersecurity (2024) 7:34 	

where �κ ,w : B[κq] → Mκ ,w is the multiset of κ dig-
its of the κq-bit integer argument written in the base-w
positional number system and Ĥ : B → B[u] is a cryp-
tographic hash function producing a u-bit hash value,
u ≥ κq.

Strictly speaking, a HORS oracle would not be a ran-
dom oracle even if we disregarded the difference between
a cryptographic hash H(x) and a genuine random func-
tion. The random oracle makes a random selection of
a multiset from the codomain Mκ ,w ; any X ∈ Mκ ,w is
selected with the same probability. The HORS oracle
(again, ignoring the non-random nature of the hash) does
not select a multiset; it selects κ random numbers from
the interval �0,w − 1� , which may or may not be pairwise
distinct. If they are, then the multiset is a set of cardinal-
ity κ and its statistical weight in the codomain of Ĥ is κ! .
If the collection of numbers has a single pairwise colli-
sion, its statistical weight is only half as much. Multiple
collisions degrade the statistical weight even further.
Consequently, even if the image of Ĥ(x) is evenly spread
over the codomain, the entropy of the HORS oracle may
be quite different from the estimate given by Eq. 4. How
much different?

It should be noted that the number of proper multisets
(i.e. multisets that are not sets) is small compared to the
number of sets in the oracle’s codomain:

where we kept the first nonvanishing term in the expan-
sion in the birthday2 parameter γ = κ2/w . The factor
R = wκ/κ! corresponds to the number of distinct sets
(ignoring the collisions) swept by the indices as they
independently cover their value interval �0,w − 1� . The
most frequent proper multiset has one binary collision.
There are

of those, again keeping to the first nonvanishing term
in γ . Comparing this with the expression for G+ above,
we find that the contribution of multiple collisions is
higher order in γ . Indeed the next term corresponds
to two binary collisions since there are a factor of κ/w
fewer multisets with one tertiary collision. The statistical
weight of the former is

η[κ ,w](x) = �κ ,w(Ĥ(x) mod wκ),

G+ =
(
w + κ − 1

κ

)

−
(
w
κ

)

∼ wκ

κ!
κ(κ − 1)

w
∼ Rγ ,

G1 = w

(
w − 1
κ − 2

)

∼ γ

(
w
k

)

∼ γR

and can safely be neglected for small enough γ (in our
example γ ≈ 1/4 ) along with the rest of the higher-order
terms. By contrast, the number of multisets that are sets
can be approximated to the first order in γ as

We can now construct an approximate probability distri-
bution function (PDF) for multisets by assuming that a
multiset is either a set or it has one binary collision:

where z is the normalising constant that satisfies the
following:

which gives us z = R . Finally, summing over all sets and
proper multisets and keeping to the main order in γ we
arrive at the entropy value

where the last step is achieved by taking the binary loga-
rithm of Eq. 4 and keeping to the first order in γ . Infor-
mally, proper multisets expand the alphabet of the HORS
oracle output compared to just sets, thus increasing its
entropy, however they make the PDF uneven and this
reduces the entropy by almost the same amount. As a
result, a HORS oracle with a moderately small γ has
almost exactly the same entropy as the random oracle �
provided that the hash function Ĥ is close to ideal.

Proof of stack security by reduction
The previous section assumed the framework of the ran-
dom oracle model (ROM) (Bellare and Rogaway 1993) as
it identified the hash function Ĥ(x) with a random oracle
for the purposes of computing the entropy of η[κ ,w] . That
is the best we can do given that the statistics of a practical
cryptographic hash are unknown but generally believed
to be close to ROM. However, in analysing the security
of the Windernitz stack, on which all subsequent proto-
cols rely, we prefer to remain within the Standard Model
since the irreducible assumptions about the relevant hash
functions (and we intend to use two generally different
hashes) are weaker than the ROM would impose.

(
w
2

)(
w − 2
κ − 4

)

∼ 1

2
γ 2R,

G0 =
(
w
κ

)

= R
(

1− γ

2

)

.

f (s) =
{
1/z if s is a set,
1/(2z) otherwise,

G0
1

z
+ G1

1

2z
= 1,

H = −G0
1

R
log2

1

R
− G1

1

2R
log2

1

2R

= log2 R+ γ

2
∼ log2G − log2 e − 1

2
γ ,

2  So named as it defines the probability of collision in the birthday paradox.

Page 6 of 17Shafarenko ﻿Cybersecurity (2024) 7:34

This section presents the key security property
(Lemma 1) and its reduction to the those assumptions,
which follow below.

Assumption 1  The hash function Ĥ used to construct
HORS oracle is one-way (preimage and second preimage
resistant Rogaway and Shrimpton 2004).

Assumption 2  The hash function H used to construct
the Winternitz fabric is preimage-resistant.

The key property that provides security to the Win-
ternitz stack is that the HORS oracle is preimage and
second-preimage resistant, which makes it hard to fit a
random digest to the top of the stack to forge the signa-
tures of the rest, or even to substitute a new digest for
an old without changing the rest of the stack content.

By contrast, in constructing a Winternitz fabric over
which the stack is placed, only simple preimage resist-
ance is required of the chain hash-function. Indeed, an
attacker may find a second preimage and claim that it
is the next node of the chain in an attempt to split it.
However, to succeed the attacker would then have to
find the preimage of that second image to continue the
chain; this would fail if H is preimage resistant. The fab-
ric is never used up since the shape of the stack top is
unpredictable and it may run out of fabric for the next
document, so some fabric is left unused using a con-
servative estimate, and then the principals switch to a
new fabric. Consequently the adjudicator is in a posi-
tion to ask the fabric owner to prove the top of the
stack is genuine by exposing the next node of the chain
about which the suspicion of chain-split has arisen.

Let us now redefine ω(b, k) (which we defined ear-
lier based on the ideal oracle �[κ ,w] ) in terms of our
practical HORS oracle η[κ ,w] ; this will not lead to a
confusion since the sequel has no reference to � . Spe-
cifically, ω(b, k) from now on will be a function such
that M = η[κ ,w](b) iff for all 0 ≤ k < w , k occurs in M
ω(b, k) times, for any multiset M and string b ∈ B.

Proposition 1  For any depth-d signature stack (D, T)
over a fabric, it is computationally hard to find a family
D′ �= D such that (D′,T) is a depth-d signature stack over
the same fabric.

Proof  Essentially one would have to solve the following
set of simultaneous equations for (D′

j):

d−1∑

m=0

ω

(

�mj=0 D
′
j , k

)

=
d−1∑

m=0

ω

(

�mj=0 Dj , k
)

= σk , 0 ≤ k < w.

The left-hand side is the sum of d terms. If any docu-
ment Dl is changed it would be computationally dif-
ficult to avoid change in all terms of the sum for which
l ≤ m < d − 1 , since according to Assumption 1, the
hash function in η , namely Ĥ(x) , is second-preim-
age resistant. Clearly the least work is required when
l = d − 1 , i.e. only the last document is changed. Still,
one second preimage would need to be found. Alterna-
tively, one could build a stack with a depth d − 1 using
any digests and then find the digest corresponding to the
last multiset to be added to result in the same stack edge
as defined by σk . That is also computationally hard due to
Assumption 1 (preimage resistance). � �

The values σ for a stack can be derived from its T by
computing β(Tk ,Ek) where β(x, y) for x = y is the least
positive integer i such that

If x = y , we define β(x, y) = 0 . It should be noted that β
is a partial function B × B N , since the value of i that
satisfies its definition may not exist. If i does exist, it is
less than the fabric length, which makes the definition
constructive.

Since Tk = r
[k]
N−σ(k) , β(Tk ,Ek) = σ(k) . From Corollary

1 for a valid stack (D, T) we have:

We will use (D, σ) and (D, T) interchangeably where it
does not create a confusion.

Definition 5  (Substack) For a depth-d stack S = (D, σ)
over a (w, N)-fabric, a depth-d′ stack S′ = (D′, σ ′) over
the same fabric is a substack of S if for all 0 ≤ k < w ,
σ ′(k) ≤ σ(k).

Proposition 2  Consider a depth-d′ substack
S′ = (D′, σ ′) of a depth-d stack S = (D, σ) . If d′ = d , then
σ ′ = σ.

Proof  Proof by contradiction. Assume σ ′ �= σ , and since
for all 0 ≤ k < w , σ ′(k) ≤ σ(k) , then (∃k0)σ ′(k0) < σ(k0) .
But then

By Corollary 1 we have

H(H(. . .H
︸ ︷︷ ︸

i times

(x) . . .)) = y.

(5)
w−1∑

k=0

β(Tk ,Ek) = dκ .

d′−1∑

k=0

σ ′(k) <
d−1∑

k=0

σ(k).

Page 7 of 17Shafarenko ﻿Cybersecurity (2024) 7:34 	

which is a contradiction since d′ = d . � �

Notice that Proposition 2 does not generalise down. If
d′ < d , especially when d′ ≪ d , almost any documents
(Dj) will place the top of the substack lower on the fabric
than the larger stack’s top. Indeed to make the substack
tall with a small d′ would require a document whose dis-
tribution ω over the fabric is restricted to very few values
of k which is very improbable for a good approximation
of a random oracle. Consequently there exists plenty of
substacks of a given stack with a smaller depth.

Lemma 1  (Stack security) If T is known to be the top
of a depth-d stack (D, T) over a private fabric F with a
public edge E = E(F) , the pair (E, T) is sufficient to find
d and identify D. It is computationally hard for an adver-
sary with no knowledge of the rest of F to produce an alter-
native D′ �= D , such that (D′,T ′) with any T ′ is a valid
depth-d stack over a fabric with the same edge E(F).

Proof  To find d from T, use Eq. 5. Next, observe that
knowledge of (D, T) is always sufficient to reconstruct all
members of the fabric that the stack and any of its sub-
stacks occupy down to the edge E. Although given just
that knowledge it is possible to construct a valid sub-
stack (D′ �= D,T ′) for some arbitrary documents (D′

j) ,
but according to Proposition 2 the substack would have
to be of a depth less than d, which contradicts the prem-
ise of the Lemma. If T ′ = T  , changing even a single Dj
to D′

j �= Dj without changing T is computationally hard
according to Proposition 1. Finally, if (D′,T ′) is not a sub-
stack of (D, T), to produce T ′ one would require fabric
elements that cannot be derived from T, and the premise
states that the fabric is private. These unknown private
elements cannot be obtained from the fabric elements at
the top of the stack due to Assumption 2. � �

Ancillary operations
Stack push
Signature stacks over a fabric are inherently sequential.
It is possible to extend a stack to accommodate an extra
document provided that the fabric is accessible.

Definition 6  Stack push p is a partial function
p : D × Sd Sd+1 , where D is, as before, a set of all finite
binary strings and Sd is an indexed family of sets of all
depth-d stacks over some fixed (w, N)-fabric (r[i]k):

κd′ < κd,

p(δ, ((Dj)0≤j<d , (r
[k]
N−σ(k))0≤k<w)) � ((D′

j)0≤j<d+1, (T
′
k)0≤k<w),

where

and

provided that all such r exist in the fabric. Otherwise the
result is undefined.

Observe that3 at least for some k, σ ′(k) > σ(k) . This
means that the stack push always depends on unused
members of the fabric and requires access to it.

Operations on indexed families
We require two ancillary operations on indexed families:
addition and subtraction.

Definition 7  Let A and B be two indexed families
A = (Ai)i∈C and B = (Bi)i∈C with indices from the same
finite C ⊂ Z

+ . We define the difference A− B as the
indexed family A− B = (Ai)i∈C∗ , where

Definition 8  Let A and B be indexed families
A = (Ai)i∈C and B = (Bi)i∈C∗ , where C ⊂ Z

+ is some
finite set and C∗ ⊆ C . We define the sum A+ B as the
indexed family (Qi)i∈C , where

Proposition 3  For any two finite indexed families
A = (Ai)i∈C and (Bi)i∈C , where C is a finite index set,

Proof  (by cases) For a given index value i, if Ai = Bi
then, by Definition 7, (A− B)i = Ai and i belongs to the
index set of A− B . But if it does, then by Definition 8

Otherwise Bi = Ai and, by Definition 7, the index value i
does not belong to the index set of A− B . Then by Defi-
nition 8

D′
j = Dj for 0 ≤ j < d,

D′
d = δ,

σ ′(k) = σ(k)+ ω

(

�dj=0 D
′
j , k

)

for 0 ≤ k < w,

T ′ =
(

r
[k]
N−σ ′(k)

)

k∈�0,w−1�
for 0 ≤ k < w,

C∗ = {i ∈ C | Ai �= Bi}.

Qi =
{
Bi if i ∈ C∗

Ai otherwise
.

B+ (A− B) = A.

(B+ (A− B))i = (A− B)i = Ai.

3  Ignoring the infinitesimal probability of a good approximation of a ran-
dom oracle producing all-zeros (more than 300 zeros in our numerical
example)

Page 8 of 17Shafarenko ﻿Cybersecurity (2024) 7:34

� �

If two parties share a family of bit-strings B and at
some point one needs to send to the other a similar
family A which has many common members with B, it
would be sufficient to communicate A− B , which has a
much smaller index set, and then the receiving party will
restore A by computing B+ (A− B).

Definition 9  Given an indexed family X = (Xi)i∈I ,
where I is a finite index set I ⊂ Z

+ , and some element x,
the extension of X with x is the family X ′ = X ⊲ x such
that X ′ = (X ′

i)i∈I ′,

and

Validator

Definition 10  Consider a stack S = (D,T) , D = (Dj)j∈�0,d−1�
and T = (Tk)k∈�0,w−1� , over a width-w fabric of suf-
ficient length, a document δ , and an indexed family of
binary strings (τk)k∈Ŵ , with some Ŵ ⊂ �0,w − 1� such that
|Ŵ| ≤ κ . We define the validator predicate ǫ(δ, τ , S) to be
true iff for all k ∈ �0, d − 1� , β(T ′

k ,Tk) exists and

where the indexed family T ′ = T + τ and the partial
function β is the one defined in “Proof of stack security
by reduction” section.

Proposition 4  Given some S = (D,T) , δ and τ as per
Definition 10, if ǫ(δ, τ , S) then (D ⊲ δ,T + τ) is a valid
depth-(d + 1) stack over the same fabric.

Proof  follows from Definition 3� �

Winternitz stack protocol
The structures presented so far can be used to create a
bipartite protocol where neither party can repudiate a
transaction. Under public-key cryptography, the signer
is unable to repudiate a properly signed document since
the verifier holds the signer’s authenticated public key
and can prove to an adjudicator that whoever signed the
document had to have knowledge of the signer’s private

(B+ (A− B))i = Bi = Ai.

I ′ = I ∪ {max
I

i + 1}

X ′
i =

{
Xi if i ∈ I
x otherwise

.

ω(�dj=0 D
′
j � δ, k) = β(T ′

k ,Tk),

key. The parties are assumed to be mutually adversarial to
exclude collusion.4

Channel model We wish to minimise assumptions
about the communication channel between the parties,
bearing in mind that beneficial channel properties may
depend on trust and/or shared confidential information.
We require weak integrity, i.e. that a message sent by one
party to the other and which fails the other party’s vali-
dation test will be received intact after a finite maximum
number of re-transmissions that does not depend on the
message. No authentication of communicating parties is
required; however countermeasures must be put in place
to prevent an adversary from injecting messages in the
channel at a rate that overwhelms the bona fide recipi-
ent. Because both parties are interested in progress, they
can share a weak secret based on which all messages
are extended with a MAC. However, even if no secret is
shared, all protocols we present in the sequel require little
computation at the receiving end for message validation
(at most κ + 1 hash evaluations per message), so in prac-
tice each protocol contains its own DoS countermeasure,
which may or may not be combined with other defences
depending on the threat model. We mark received values
with an asterisk ∗ to emphasise that they are not neces-
sarily the same as those sent. Consider the following

Protocol 1  (Bipartite Winternitz Stack (BWS) protocol)

Parties: Alice(signer) and Bob(verifier)

Protocol parameter: fabric width w ∈ N , w is a power of
2. Initially:

I1	� In private: Alice chooses N, produces a random
(w, N)-fabric F and saves it in local secure storage

I2	� Alice publishes the fabric edge E = E(F) and
authenticates it out of band. E is now Alice’s public
key

I3	� Alice invites Bob to participate in up to L transac-
tions, L � wN/κ , see Eq. 3. The invitation and the
value of L need not be authenticated

I4	� In private: Bob creates a random length-L Win-
ternitz chain q[k] and authenticates Q = q[L−1]
out of band. Q is now Bob’s public key, good for L
transactions. Also Bob produces the initial stack
S0 = (∅,E) and saves it in local storage.

I5	� Alice prepares document δ = L � Q and computes
a depth-1 stack over F: S1 = p(Q, (∅,E)) = (D1,T1) ,

4  Note that no bipartite protocol can prevent collusion since the parties can
destroy any documents and signatures by mutual consent and run the pro-
tocol from the beginning.

Page 9 of 17Shafarenko ﻿Cybersecurity (2024) 7:34 	

stores it, then communicates τ = T1 − E to Bob.
I6	� Bob receives τ ∗ , prepares the same δ and checks

ǫ(D1, τ
∗, S0) . If true, τ ∗ = τ and Bob sends q[L−2]

back to Alice and saves5 S1 = (∅ ⊲ D1,E + τ) in
local storage. If false, Bob requests retransmission
of τ and repeats this step.

(Any non-receipt of a protocol message so far can be
overcome by Automatic Repeat Query (ARQ) safely. If
ARQ fails, this constitutes denial of service by the non-
responding party or a protocol violation by the sender.
Either way, the protocol fails.)

Repeat for j = 2..L− 1 :

R1	� When Alice wishes to sign the next document δj ,
she computes

 stores Sj and sends to Bob δj and τj = Tj − Tj−1.

R2	� Bob receives ( δ∗,τ ∗ ). Bob checks if he received
and validated δ∗ from the previous round j − 1 ,
and if so, (re-)sends q[L−j−2] to Alice6 and
remains in step R2 of the current round. Oth-
erwise, δ∗ = δ∗j is fresh for the current round.
Bob computes ǫ(δ∗j , τ

∗
j , Sj−1) . If true, δ∗j = δj and

Bob stores7 Sj = (Dj−1 ⊲ δj ,Tj−1 + τj) , where
(Dj−1,Tj−1) = Sj−1 , and sends q[L−j−1] to Alice as
the acknowledgement. The round is finished. If
false, Bob sends a NAK and ignores δ∗j and T ∗

j as if
they had not been received.8

R3	� When Alice receives q∗ , which could be a valid
preimage or a NAK, she checks the truth value of
H(q∗) = q[L−j] . If true, she stores9 q[L−j−1] = q∗ ;
the round is finished. If false, she sends ( δj , τj )
again and remains in step R3.

It is easy to see that the protocol is robust. Alice could
only be one step behind Bob if she has not received Bob’s
acknowledgement in round j, since Bob goes straight to
round j + 1 after he sends it. But then Alice will re-send
her message, for which the acknowledgement is missing,

Sj = p(δj , Sj−1) = (Dj ,Tj),

and Bob will be able to see that the message is from the
previous round and will re-send his acknowledgement.
According to the channel model stated earlier after a finite
number of retransmissions Alice will receive the correct
acknowledgement and the parties will synchronise. We
assume that if a round has exceeded the maximum num-
ber of retransmissions, the protocol fails due to DoS.

Also note that step R1 has the highest communication
cost as κ hashes have to be communicated to Bob besides
the document δ . The document is typically hash-sized,
since the actual document text can be communicated out
of band, with only its digest being signed by the protocol.
It would not be efficient to send (δj , τj) again when, for
example, only one element of τj is received with errors.
However, there is an easy solution to this: send elements
of τj one-by-one with immediate validation by Bob, who
will hash them and compare the result with the stored
stack top. This would limit retransmission to individual
elements of τj . When κ of them have been received and
confirmed, send δj.

Security of the BWS protocol
The security of the protocol rests on the following
observations:

•	 Since the fabric is private to Alice, Lemma 1 applies,
i.e. the combination of E and T uniquely defines D,
making it impossible for Bob to forge Alice’s signa-
ture for the current round. Hence Alice cannot repu-
diate a valid stack (D, T) over a fabric with the edge E,
when it is claimed by Bob.

•	 However, Bob could claim to have received only
some SjB , which is a substack Sj corresponding to a
smaller depth jB < j . For sufficiently small jB Bob
would be able to forge Alice’s signature using fab-
ric elements from Sj and thus repudiate the genuine
one. However, this scenario is still impossible, since,
according to step R3, Alice holds the acknowledge-
ment a = q[L−j−1] at the end of round j and can prove
that β(a, q[L−1]) = j . So Bob’s stack cannot have less
depth than j, which is the same value as Alice’s. Con-
sequently Bob cannot repudiate.

•	 Alice could try to repudiate differently. Since the fab-
ric is available to her in its entirety, she could build a
different stack (D′

j ,T
′
j) of the same depth, not a sub-

stack of (D, T), with generally different documents
D′
j . Alice could then claim that Bob has received and

changed it. However, according to Lemma 1, Bob
could only have done it if he had access to Alice’s pri-
vate fabric (and collusion is outside the threat model
of any bipartite signature protocol). Consequently,
any dispute between Alice and Bob regarding any

5  Only the latest stack needs to be kept in storage as all the previous ones
are its substacks.
6  Here, as before, we assume that any document that Alice signs contains a
nonce making it impossible for two documents to be the same.
7  See footnote 5.
8  The NAK (No AcKnowledgement) message can be implemented as no-
reply, if Alice has a time-out mechanism at her end.
9  Overwriting the previous value of q.

Page 10 of 17Shafarenko ﻿Cybersecurity (2024) 7:34

stack content should be resolved in favour of Bob
automatically, provided that Bob’s stack is valid.

Adjudication
BWS supports post-transaction adjudication by an algo-
rithmic third party Judy, who need not authenticate Alice
and Bob as long as she has the public values E and q[L−1]
authenticated out of band. Keeping to the non-collusion
scenario, Judy performs the following steps.

1.	 Judy requests from Alice the last q = q[L−j−1] she
received from Bob, to determine the last j in the pro-
cess of its validation using the public q[L−1] . Alice will
not benefit from reducing j to some jA < j since this
would enable Bob to potentially forge her signature.
However, Alice might chance it to falsely invalidate a
few most recent rounds.

2.	 Judy requests Bob to provide the last q he sent, which
should be the same q[L−j−1] . If in the process of val-
idation the value of j turns out to be some jB < jA ,
then Bob is lying and jA is accepted as the value of d,
since Alice has no access to Bob’s chain and since the
only source of valid q for her is Bob. If jB > jA , Judy
accepts jB as the correct value of d.

3.	 Judy requests a depth-d stack over a fabric with the
edge E from Bob. Judy then validates the stack and
confirms all signatures in it.

Practicalities
Now let us discuss how practical an implementation of
the BWS protocol can be. The issue boils down to analy-
sis of three major cost parameters: storage, computation/
power and communication.

Storage
The issue of how much storage is required for the fabric

is entangled with the issue of how much communication
each round involves. Both are dependent on Eq. 4 and the
chosen security parameter Y = log2G , which is plotted
against the oracle parameter κ in Fig. 3. The curves are
drawn up to a point at which κ log2 w ≃ 512 . A further
increase in κ would necessitate a longer hash value than
the output of SHA-512 for oracle emulation, which may
be a problem. Also one has to remember that Eq. 4 is only
an approximation accurate for the region κ ≪ w . For all
the curves in Fig. 3 κ is at least one order of magnitude
less than w, so the plots should be accurate enough.

If we limit the discussion to the case when the security
parameter is at least 256, we can see that it is impossi-
ble to reach that level with the fabric narrower than 512
if the standard hash SHA-512 is to be used. The width
512 is sufficient for a lesser, 192-bit, security but in the

quantum case it would be reduced to one half, 89 bits,
which may not be sufficient. The wider the fabric, the less
the critical value of κ . According to Eq. 3, the required
storage capacity to store the whole fabric is

where � is the length of the hash used for the chains of
the fabric (which is a parameter independent of the con-
siderations of the oracle length). If the standard SHA-256
hash is used for the chains, � = 32 bytes. For example,
for a fabric sufficient for ∼1 M signatures with security
Y = 256 it would appear that storage around 1 G bytes
would be required ( κ = 31 , w = 4096), which is a large
but completely feasible amount.

However, speed of access could be traded off for the
storage requirement to reduce it by orders of magni-
tude using hash recalculation. Indeed, instead of storing
every member of the fabric r[k]i  , choose a large positive
φ and substitute φk1 + k2 , where k2 ∈ �0,φ − 1� , for k.
Only store elements r[k1,k2]i when k2 = 0 . When in the
round part of the protocol and a value of some r[k1,k2]i is
required for k2 = 0 , apply the hash function to r[k1,0]i k2
times to obtain it.

It is worth mentioning that the modern GPU-
equipped PC’s hashrate (to say nothing about a clus-
ter’s) is measured in billions per second, which makes
it possible to compute any required fabric element r[k]i
from the initial random r[0]i in a matter of milliseconds

�wN ≃ �κdmax,

Fig. 3  Security parameter Y versus oracle size κ for various fabric
widths. The dashed line marks the target security: 256 bits (or 128
bits Post Quantum). The target is reached at the following levels of w:
1024: 44, 2048: 36, 4096: 31, 8192: 27 

Page 11 of 17Shafarenko ﻿Cybersecurity (2024) 7:34 	

for any realistic fabric length, making it feasible to set
φ = N  ; only tens of kilobytes of the initial randoms
would then be stored. However, the protocols pre-
sented in this paper, due to their very low computation
cost, may be an attractive option for embedded systems
and the IoT as well. A typical cost of a hash calcula-
tion on a microcontroller is 10 µ s, down to 1 µ s with
hardware acceleration. Expanding a single node of the
Winternitz chain r[0]i to the next φ nodes for φ ∼ 1000
would be a matter of single milliseconds. It would only
be required once in 1000 reads from the fabric, which
would amortise the computational cost nicely, while
reducing the storage requirements from gigabytes to
the more affordable megabytes.

Note that the cost of recalculation is on average one
hash calculation per fabric element, since elements are
recalculated in bunches of φ every φ steps up the chain
and stored in a temporary buffer. There is a difference
between the average computation requirements, which
affect energy consumption and the application execution
time on the one hand, and the peak computation load,
which affects latency, power requirements and cooling on
the other, so the trade-off between storage and recalcula-
tion in any particular case might be more subtle.

All the above concerns Alice and Alice only. Bob has
no access to the fabric. He only needs to store the docu-
ments and the top of the stack, which is the same size as
Alice’s public key E. The latter needn’t be stored after the
first document has been received, since on the one hand,
E is not needed for the round part of the protocol, which
deals exclusively with the top of the stack, and on the
other, it can be reconstructed at any round j by popping
documents off the stack in an obvious way (calculating
the ω values of the documents starting from the last and
working backwards). The need to produce E may arise if
Judy is involved. However, storing E incurs only a small
cost anyway, less than a 50% increase in the required
storage capacity, and it is a diminishing fraction as more
documents are received to be stored.

Communication The main consideration that drives
the choice of the fabric width w is the length of the fabric
edge. Since the edge is used as the public key identifying
the signer, the latter is interested in having it as short as
possible, thus increasing the required κ for a given secu-
rity parameter. However, in step R1 of Protocol 1 Alice
sends κ hashes (the difference between Tj and Tj−1) in
addition to the document (which is typically represented
by the digest of the document file and is one hash in
length). Consequently, there is a trade-off between the
public key length and the signature length. Figure 3 indi-
cates that the variation of κ at our target level of security
is rather limited, while the size of the public key doubles
up every time we widen the fabric. On the other hand,

the public key is only communicated once, in step I2,
while step R1 of Protocol 1 is invoked as many times as
there are documents to be signed before the fabric is
used up. This points to the largest affordable w as the best
solution. An increase in w also helps to reduce the fabric
length N given the maximum depth dmax , which makes it
possible to store fewer fabric elements for a given maxi-
mum recalculation cost. From this point of view, regimes
close to κ = 31 , w = 4096 seem optimal: 1 K bytes to
send in step R1 as a document digest and its signature,
and 128 K bytes to send in step I2 as a public key, both
easily within the capabilities of a low-bit-rate communi-
cation facilities available to an IoT device.

Computations This is where the proposed protocol
excels. Alice’s costs for step R1 are trivial: one SHA-
512 hash calculation as per Definition 6 and a few table
lookups to fetch the fabric elements, if they are 100%
stored. If they are recalculated, add κ SHA-256 calcula-
tions as recalculation cost. One might think that the cost
of the SHA-512 will increase as j increases, since the new
document is concatenated with all the previous ones thus
making the hash argument ever longer, but this does not
affect the cost. The mechanics of the hash algorithm are
such that documents are processed block-by-block and
the current state of the computation is used to produce
the result. In round j + 1 the hash computation will sim-
ply proceed from the point that it reached in round j and
will do the same fixed amount of work as that in round
j. Another instance of hash calculation (SHA-256) is
required at step R3 to validate Bob’s acknowledgement.

Bob has a similar amount of work to do. At step R2,
Bob must validate Alice’s message, which will cost κ
SHA-256 computations in any case, as it is not depend-
ent on Alice’s storage strategy; this is only a sub-milli-
second time though, even for an IoT platform. There
are also some table storage and retrieval operations
to store the current top of the stack and retrieve the
acknowledgement. If the acknowledgement chain is not
100% stored and requires recalculation, add the cost
of another SHA-256, but that is all Bob is spending on
computations.

MAWS protocol
Even though the BWS protocol is a two-party transac-
tion, the verifier party (Bob) can only verify that the
document has been signed by the signing party (Alice).
If Bob disagrees with the document itself, the only option
he has is to refuse to acknowledge it, in which case Alice
can only repeat the step either indefinitely or until the
protocol detects denial of service. The only way to con-
tinue would be to reinitialise the protocol with a new fab-
ric at a significant cost.

Page 12 of 17Shafarenko ﻿Cybersecurity (2024) 7:34

In this section we will present a solution which gives
Bob the power to (in)validate the document at the same
time as signing for its receipt. Such a solution is availa-
ble immediately with the BWS protocol if two stacks are
used, one for either party, with Alice and Bob swapping
roles for the second stack. This way Alice signs a docu-
ment using her stack as the signer, and Bob acknowledges
as the verifier, then Bob signs his acceptance of the doc-
ument using his stack as the signer, and Alice acknowl-
edges the receipt of the acceptance as the verifier.

However, it turns out that a single stack is sufficient to
sign both the document and its acceptance. Under the
bipartite protocol that we are about to present both par-
ties are signers and both are verifiers, but one party has a
significantly larger storage and communication (or, more
precisely, transmission) requirements than the other.

Before we define the protocol, let us simplify the rules
somewhat. Instead of stating it explicitly, we will now
assume that each message is validated by the receiver and
if the validation fails, a NAK is sent back to the sender, but
no change of state occurs at the receiver as if the message
were never sent. Also we assume that either the channel is
authenticated, in which case the NAK is an authenticated
message, or the channel only has weak integrity, and then
the NAK is in fact a time-out of a duration exceeding the
time required for the maximum number of retransmis-
sions. In both cases the receiving party will be able to iden-
tify a NAK with certainty, but in the latter case the reaction
to the NAK should be the same as the one to an invalid
message, since those can always be injected in the channel
by a DoS attacker over large enough period of time. Since
we only require weak integrity, the protocols in the sequel
will not differentiate between NAKs and invalid messages.

The protocol is fully asynchronous, i.e. each send
requires a valid acknowledgement to be received. In the
absence of an acknowledgement, the sending party re-
sends its message up to the retransmission limit, then
the protocol fails. The protocol does not require the
channel between Alice and Bob to have absolute integ-
rity; as before, we mark received values with an asterisk
∗ to emphasise that they are not necessarily the same as
those sent.

Protocol 2  (Mutual Asymmetric Winternitz Stack
(MAWS) Protocol)

Parties: Alice and Bob

Protocol parameter: fabric width w ∈ N , w is a power of 2.

Initially: as in Protocol 1

Repeat for j = 2, 4..L− 1 [only even numbers]:

R1	� A new transactions document δj requires signing.
Alice computes

 stores it in local memory overwriting Sj−1 and computes
τj = Tj − Tj−1.

R2	� Alice sends (δj , τj) to Bob and goes to step R5 to
await acknowledgement.

R3	� Bob receives (δ∗j , τ
∗
j) and validates it by

ǫ(δ∗j , τ
∗
j , Sj−1) . If valid, Bob concludes that

 and stores

 where (Dj−1,Tj−1) = Sj−1 , in local memory overwriting
Sj−1 . If Bob approves δj , he forms his signature

 otherwise he sets δ′j to zero.

R4	� Bob sends the pair (q[L−j−1], δ′j) as the acknowl-
edgement to Alice and goes to step R7 to await an
acknowledgement.

R5	� Alice retracts to step R2 unless she receives
(q[L−j−1]∗, δ′∗j) validated by H(q∗) = q[L−j] . If con-
tinuing, Alice stores q[L−j−1] = q[L−j−1]∗ , computes

 and stores it in local memory overwriting Sj , while com-
puting τj+1 = Tj+1 − Tj.

R6	� Alice sends the pair (δ′∗j , τj+1) to Bob and waits for
acknowledgement at step R9

R7	� Bob retracts to step R4 unless he receives
(δ′∗∗j , τ ∗j+1) , validated by ǫ(δ′∗∗j , τj+1, Sj) . If valid, Bob
concludes that

 and stores

 where (Dj ,Tj) = Sj , overwriting Sj,

R8	� Bob sends q[L−j−2] as an acknowledgement to
Alice. If δ′∗j = δ′j , the transactions is completed, and
Alice knows it. Otherwise, Bob’s signature δ′j was

Sj = p(δj , Sj−1) = (Dj ,Tj),

δj = δ∗j and τj = τ ∗j ,

Sj = (Dj−1 ⊲ δj ,Tj−1 + τj),

δ′j = H
(

δj � q[L−j−2]
)

,

Sj+1 = p(δ′∗j , Sj) = (Dj+1,Tj+1),

δ′∗∗ = δ′∗j and τ ∗j+1 = τj+1.

Sj+1 = (Dj ⊲ δ′∗j ,Tj + τj+1),

Page 13 of 17Shafarenko ﻿Cybersecurity (2024) 7:34 	

either zero or miscommunicated, and again, Alice
knows it. The transaction is null and void; a (com-
plete) repeat-round is necessary if both parties still
wish to sign.

R9	� Alice retracts to step R6 unless she receives
q[L−j−2]∗ and validates it by H(q[L−j−2]∗) = q[L−j−1] .
If valid, she stores q[L−j−2] = q[L−j−2]∗ and checks
that

 If the equation holds, then the transaction is completed
and Bob knows it. Otherwise Bob either rejected the
transaction or his approval was miscommunicated, Bob
knows which. Either way, the transaction is null and void;
a (complete) repeat-round is necessary if both parties still
wish to sign.

The protocol is generally robust as the sending of
a message is paired with its validation and possible
retransmission, except step R4, where Bob’s signature is
communicated but it cannot be validated before step R7
when Alice has already sent κ hashes and Bob’s signa-
ture back. If the signature was corrupted in communi-
cation at step R7, this would waste the protocol round,
in terms of both communication and fabric/chain
material.

Security of the MAWS protocol The non-repudiation
properties of MAWS hinge on the fact that Bob’s sig-
nature is based on the pre-image of the latest member
of Bob’s Winternitz chain disclosed to Alice, namely
q[N−j−2] . Alice is unable to forge Bob’s signature with-
out knowledge of q[N−j−2] , and when that value is dis-
closed to her in step R8, Bob’s signature or refusal to
sign has been signed by Alice already, in steps R5 and
R6.

So it looks as though without hosting a Winternitz fab-
ric, Bob can sign Alice’s documents using nothing more
than a single Winternitz chain. The post-transaction
adjudication for MAWS is the same as that for BWS,
see “Adjudication” section, except Judy also checks all δ′
messages and marks the documents as approved or not
approved accordingly.

Reverse Winternitz stack (RWS) protocol
Now let us tighten the communication model. Since
the DoS defences would benefit from filtering incom-
ing messages before the protocol calculations based on
them are launched anyway, let us assume that Alice and
Bob share a weak secret and use a symmetric Message

δ′∗j = H
(

δ � q[L−j−2]
)

.

Authentication Code (MAC, e.g. HMAC, based on the
same hash function as the chains) to authenticate mes-
sages from Alice to Bob and back. Message authentica-
tion cannot be used to replace signatures since MACs
are symmetric and can be repudiated. However, even a
short MAC stops message insertion and message alter-
ing attacks very effectively. For example, a 32-bit MAC
has less than one in a billion chance to be guessed in an
attempt to insert or alter a message. On the other hand,
for a known-plaintext attack to succeed in obtaining even
a short AES128 key, the number of intercepted messages
required is many orders of magnitude more than the
length of any realistic Winternitz fabric.

Let us therefore adopt a more restrictive channel model
whereby a message sent is extremely likely to be received
correctly or not at all. Under such conditions MAWS
becomes robust and any validation failure can safely be
attributed to protocol violation by the sending party.

Given that, we are now able to propose a protocol
where Alice has no independent signing function. All
Alice does is certify Bob’s signatures, effectively turning
into a kind of secure signature server. Alice is unable to
forge Bob’s signature, nor Bob repudiate it. Assuming
non-collusion, the mutually mistrustful Alice and Bob are
still able to prove to Judy that Bob signed the documents
he claims to have signed and to stop him repudiating his
signature. The security of the following protocol trivially
follows from the security of MAWS.

Protocol 3  (Reverse Winternitz Stack (RWS) Protocol)

Parties: Alice(signature server) and Bob(signer)

Protocol parameter: fabric width w ∈ N , w is a power of 2.

Initially: as in Protocol 1

Repeat for j = 2..L− 1 :

R1	� Bob computes the signature

 where δj is the document he wishes to sign (or its digest,
whichever is shorter), and sends it to Alice via an authen-
ticated channel.

R2	� Alice eventually receives sj from Bob and computes

sj = H
(

δj � q[L−j−2]
)

,

Page 14 of 17Shafarenko ﻿Cybersecurity (2024) 7:34

 stores Sj and sends to Bob τj = Tj − Tj−1.

R3	� Bob eventually receives τj and validates it by
ǫ(sj , τj , Sj − 1) . If invalid, the protocol fails. Other-
wise, Bob stores

 where (Dj−1,Tj−1) = Sj−1 , overwriting Sj−1 . Bob also
stores δj under the index j and sends qL−j−2 to Alice as
the acknowledgement.

R4	� Alice eventually receives q[L−j−2] , checks that
H(q[L−j−2]) = q[L−j−1] and if so, stores q[L−j−2]
overwriting q[L−j−1] and completes the round.
Otherwise the protocol fails.

The protocol only fails if a party wilfully sends the
wrong message. Failure to receive a response should be
construed as a communication failure, not a security
event, as the protocol stalls awaiting retransmission.

As before, a repudiation attempt from Bob on a given
document δ will be countered by the retrieval of the lat-
est known q from Alice and a stack of the corresponding
depth from Bob. The verifier will then examine all sj to
find the one for which sj = H

(
δ � q[L−j−2]) , which proves

the signature.
The last of the signed documents introduces an uncer-

tainty as to whether or not Alice has completed step R4
on it or not, but it is not a major problem. The verifier
may simply delay verification until Alice is quiescent.

Application of RWS to Internet of Things
The variety of IoT devices is very broad. It stretches
from systems that have computation and commu-
nication capabilities approaching those of ordinary
computers, to microcontroller-based smart sensors
on a tight energy budget with low-bit-rate long-range
(LoRa) radio communications. It is the latter category
that presents unique challenges in network security,
especially when nonrepudiation is required in a multi-
vendor safety-critical system.

It is little appreciated in literature that IoT commu-
nication requirements are quite asymmetric. The suc-
cess of sending data over the radio depends very much
on the transmit power, which has to come out of the
overall power budget of the device. IoT platforms tend
to transmit little and do it infrequently. There are also
legal constraints on the duty cycle and radiated power
when operating in the frequency bands available to
LoRa transmissions. However, receiving data is possible

Sj = p(sj , Sj−1) = (Dj ,Tj),

Sj = (Dj−1 ⊲ sj ,Tj−1 + τj),

at a higher data rate spending much less power. In fact
the power is used mostly for digital signal processing
of the received signals, not the reception process as
such; it can be reduced further by doing the processing
less fast. In an IoT swarm, the edge server is typically
equipped with a more powerful transmitter operating
at a higher bit-rate. The IoT device can receive such a
signal with less battery drain.

Ordinary non-repudiation protocols, e.g. those that
involve cryptographically signing a transaction by both
parties, exhibit symmetric computation and commu-
nication requirements. For example a 256-bit ECDSA
produces a 512-bit or 64 byte signature, which is not
quantum secure. Moreover, even using advanced
microprocessors (rather than cheap microcontrollers),
such as ARM Cortex-M4, the signature computation
time is measured in hundreds of milliseconds (Fujii
and Aranha 2019) compared to hundreds of microsec-
onds for ∼ 30 hashes that Bob computes in each round
of RWS ( w = 4096 ). The volume of data transmitted
by Bob in one round of RWS is the same as it is under
ECDSA, namely 32 bytes for the signature s and 32
bytes for the acknowledgment q. The volume of data to
receive for Bob is much higher, close to 1 Kbyte. Finally,
Bob retains the audit trail of all his signatures with the
assurance that all of them (possibly with the exception
of the very last one) have been registered by Alice and
hence usable in transactions.

The audit trail forces Alice to be honest, especially
when there is a system penalty if a proof against Alice
is submitted by Bob. If Alice knows that, and if there
exists some Proof of Stake for Alice (not necessar-
ily digital), she can be used as Bob’s proxy, making it
unnecessary for a third party to communicate with Bob
for signature validation frequently, especially if delayed
validation is compatible with the security model. e.g. in
the airplane black box type of application.

Related work
The idea of a hash-based signature scheme is classic, due
to Lamport (1979). The basic approach is to associate a
pair of nonces with each digit (one for the value 0 and the
other for the value 1) of a message digest and use their
hashes as the public key. The signer reveals the nonce
associated with the value of the corresponding digit to
form the message signature, which is only effective for
one message. The scheme involves communication of
very large signatures. This was improved upon by Mer-
kle (1982) and Winternitz. The former paper proposes
to only sign the digits whose value is 1 and to include a
checksum to counter bit omission. The latter proposal
(Winternitz One-Time Signature, WOTS) is to segment
the digest into chunks and use each chunk as an iteration

Page 15 of 17Shafarenko ﻿Cybersecurity (2024) 7:34 	

counter in repeatedly hashing the corresponding nonce,
again with a checksum guarding against reduction of
iteration counters. WOTS was first published as an idea
outline in Merkle’s conference paper (Merkle 1988), ref-
erence 6 of which is to Winternitz’s private communica-
tion. Neither Merkel nor Winternitz proposed anything
to mitigate the one-time nature of Lamport’s signature
protocol, and the improvements are only in the signa-
ture size, which is much shorter than Lamport’s, but is
still very long compared to public-key cryptography with
similar security parameters. This line of research has
been continued further; more recent work includes a
WOTS+ (Hülsing 2017) scheme, which extends WOTS,
and XMSS (Hülsing et al. 2018), which extends the origi-
nal Merkle proposal.

Another line of research was sprung by the seminal
paper on HORS (Reyzin and Reyzin 2002), a “Hash to
Obtain Random Subset” proposal, which turned out to
be very fruitful. The idea here is to hash the digest and
partition the hash image into equal length binary inte-
gers, the values of which are gathered into an index set.
The indices select the pre-images to be revealed to form
the message signature. An attacker would have to find a
different message whose digest produces a subset of the
index set under the hash function to obtain a counterfeit
signature. The authors of Reyzin and Reyzin (2002) dem-
onstrate that this is computationally hard. The hardness
remains significant even when the set of pre-images used
has expanded after signing a few messages. This approach
and its successors are often referred to as few-time signa-
ture schemes. There is an elaboration of HORS by Hüls-
ing in Bernstein etal. (2015), where the ideas of WOTS+
and an improved version of HORS, HORST, are com-
bined. For the security parameter value 256, which we
use as the typical case, the message signature claimed in
Bernstein et al. (2015) is 41 thousand bytes, see Table 1 in
that paper. This does not compare favourably with about
one thousand bytes in the MAWS signature in the typical
case, and even less with 64 bytes in RWS (all cases, ignor-
ing input volume). However, the upside of their approach
is a short public key, circa 1 K bytes, whereas our method
would require a public key measured in hundreds of kilo-
bytes (128 K in the typical case). Nevertheless, the public
key can be stored in an embedded system or obtained by
its hash via an unprotected public network, so we do not
see the size of the public key as an important parameter.

HORS-like signatures can be shortened further: a
recent paper, Lee and Park (2021) claims a reduction by
more than a third, but the ballpark cost of communicat-
ing a signature of this size is still more than an order of
magnitude more expensive than any message of our pro-
tocols. Finally, we are aware that the known few-time
signatures have striven to rid themselves of the protocol

state as this is seen as undesirable in the general secu-
rity setting, see (Bernstein etal. 2015). Our protocols are
clearly not stateless; however, for the application domain
they are intended for it can be an advantage, since not
only the transactions but also their ordering is assured by
the signature stack; neither can be repudiated. At the end
of the spectrum opposite to IoT, where there is continu-
ous communication of large-volume data, the few-time
hash-based signature approach has just seen an improve-
ment (Li etal. 2023).

Protocol versus signature scheme
Since literature on digital signatures is dominated by
papers focusing on signature schemes, such as the ones
quoted above, the reader may expect the present work to
be of the same nature, which it is not. We provide some
comments below to draw an appropriate dividing line.

The research community has established certain qual-
ity criteria for digital signatures. The central notion for
this is the one of signature scheme, which goes back to
Goldwasser et al. (1988), where it was first formulated. A
signature scheme is a triplet of probabilistic polynomial-
time algorithms (G, S, V): a generator G, a signer S and
a verifier V, which are used to create a pair (sk, pk) of a
secret key and a public key, produce a signature s for a
message M using the secret key sk, and to verify, using
the public key pk, that the message signature s is valid
for the message M, respectively. The scheme is correct iff
V(pk, M, S(sk, M)) is true with probability 1 for any mes-
sage M and any pair (pk, sk) produced by G. Implicit in
this definition is the context-free nature of the scheme.
Given the pk anyone should be able to validate any mes-
sage M based on its s without knowledge of any previous
messages that were sent or received by the principals.
The proof of a signature is thus self-contained.

By contrast a signature protocol separates assurances
given to the principals engaging in it and any self-con-
tained proofs a principal is able to submit to an adjudi-
cator. This separation is very fruitful, especially in our
chosen case of limited resources, because adjudication
is only required in abnormal situations (e.g. catastrophic
break-down, where parties disagree on the origin of the
message that caused it). Under normal operating con-
ditions security proofs are only required between the
principals, and those may rely on the state of the proto-
col in addition to the signature of the message and any
keys. If the protocol guarantees that every principal has
a consistent view of the state and if that can be success-
fully adjudicated on the basis of each party’s data in case
of disagreement (such as the above-mentioned break-
down), then the shared protocol state enables the parties
to drastically reduce communication without reducing

Page 16 of 17Shafarenko ﻿Cybersecurity (2024) 7:34

overall security. In our case it is the Winternitz stack,
whose security properties have been rigorously studied
in “Proof of stack security by reduction” section, that
embodies the protocol state. Under a Winternitz stack
protocol all previous messages influence the signature of
the current one.

A Winternitz stack protocol can be treated as a digi-
tal signature scheme (G, S, V) only at the point of adju-
dication. Limiting ourselves to the last protocol, RWS,
we could consider as S the mapping of all messages pro-
cessed so far on the content of Alice’s stack and Bob’s
response chain, which collectively represent the totality
of all signatures. Then we could use as V the validation
algorithm described in “Adjudication” section. However,
strictly speaking this would not be a conventional signa-
ture scheme, since it does not apply to individual mes-
sages in isolation.

Finally, digital signature schemes are often required
to resist adaptive attacks, a criterion which is known
as Existential UnForgeability against an adaptive Cho-
sen Message Attack (EUFCMA, or, more commonly,
EUCMA, Jackson etal. 2019). The criterion is examined
by assuming that the attacker can choose and submit
messages for the signature oracle S polynomially often,
with the messages produced one-by-one, taking into
account the oracle’s previous responses (adaptation).
Since our constructed “signature scheme” does not apply
to individual messages but rather to the totality of all
messages received so far, adaptation would require re-
running the protocol from the start, which is something
no external attacker can do.

Limiting ourselves to RWS, the only possible adaptive
actor is Bob, who himself is a party to the protocol. Bob
is able to select message for signing and he must know
all previous responses from Alice to sign another mes-
sage, so the EUCMA question is valid even though the
EUCMA setting is not. Adaptation would indeed be a
concern for a protocol related to a few-time signature
scheme, such as HORS (Reyzin and Reyzin 2002), where
the mutual information between the message digest and
the private key is less than the information contained in
the digest. In the scheme presented in Reyzin and Rey-
zin (2002) a set is extracted by splitting the digest into
fixed-size chunks. Theoretically, an attacker can choose
the message to have a digest with many identical chunk-
values thus reducing the size of the set, and with it the
number of hash pre-images involved in the signature
construction, which directly affects the signature secu-
rity. In the present work the digest is turned into a mul-
tiset of a fixed number of elements. Consequently the
choice of a message for an attack only influences which
chains of a given fabric are used to reveal pre-images,
not how many pre-images are revealed. The EUCMA

property is thus assured by construction, requiring no
further examination.

Conclusions
The Winternitz stack over a fabric has been proposed as
a basis of post-quantum digital signature protocols. The
security properties of the stack have been studied and
a few protocols derived from them. The most interest-
ing protocol, RWS, has a short signature size, 64 bytes,
yet it is exclusively hash-based and ensures nonrepu-
diation. The security level of the protocol depends solely
on Alice’s available communication resources and Bob’s
storage constraints, but not on the parties’ computational
resources. For a reasonable amount of storage and com-
pute power the protocol achieves 256-bit classical secu-
rity or 128-bit quantum one, which does not diminish as
more messages are signed without refreshing the public
key. Under realistic assumptions at least 1 mln signatures
can be made under the same public key, more if storage/
recomputation is not a problem.

The protocol RWS places communication require-
ments on Alice and Bob asymmetrically, with Alice
mostly transmitting and Bob receiving, which helps with
the constraints of the low bit-rate communication char-
acteristic of the IoT (in particular sensor networks). Alice
can then act as a notary and Bob as her client without
requiring any trust between them. The protocol provides
sufficient assurances to Alice that Bob’s signature is genu-
ine, but if this needs to be proven to a third-party adju-
dicator post hoc, Alice and Bob must each supply their
validation data. Given a no-collusion threat model, which
is mandatory for all bipartite protocols, Bob cannot repu-
diate. Furthermore Bob cannot sign a document without
making Alice aware of it. All of the above aspects closely
match a typical IoT scenario.

Acknowledgements
Discussions with Bruce Christianson and his feedback are gratefully
acknowledged.

Author Contributions
The single author contributed 100%.

Funding
No funding acknowledged at this time.

Availability of data and materials
None produced, none available.

Declarations

Competing interests
The authors declare no competing interests.

Received: 28 February 2023 Accepted: 26 February 2024

Page 17 of 17Shafarenko ﻿Cybersecurity (2024) 7:34 	

References
Bellare M, Rogaway P (1993) Random oracles are practical: a paradigm for

designing efficient protocols. In: Proceedings of the 1st ACM conference
on computer and communications security, CCS ’93. Association for
Computing Machinery, New York, pp 62–73

Bernstein DJ, Hopwood D, Hülsing A, Lange T, Niederhagen R, Papachristo-
doulou L, Schneider M, Schwabe P, Wilcox-O’Hearn Z (2015) SPHINCS:
practical stateless hash-based signatures. In: Oswald E, Fischlin N (eds)
Advances in cryptology—EUROCRYPT 2015. Springer, Berlin, pp 368–397

Fujii H, Aranha DF (2019) Curve25519 for the Cortex-M4 and beyond. In: Pro-
gress in cryptology—LATINCRYPT 2017. Springer, Berlin, pp 109–127

Goldwasser S, Micali S, Rivest RL (1988) A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J Comput 17(2):281–308

Hülsing A (2017) WOTS+—shorter signatures for hash-based signature
schemes. Cryptology ePrint Archive, Report 2017/965

Hülsing A, Butin D, Gazdag S-L, Rijneveld J, Mohaisen A (2018) XMSS: eXtended
Merkle signature scheme. RFC 8391:1–74

Jackson D, Cremers C, Cohn-Gordon K, Sasse R (2019) Seems legit: automated
analysis of subtle attacks on protocols that use signatures. In: Proceed-
ings of the 2019 ACM SIGSAC conference on computer and communica-
tions security, CCS ’19. Association for Computing Machinery, New York,
pp 2165–2180

Lamport L (1979) Constructing digital signatures from a one-way function, vol
238. Technical Report CSL-98. Technical report, SRI International

Lee J, Park Y (2021) HORSIC+ : an efficient post-quantum few-time signature
scheme. Appl Sci 11(16):7350

Li L, Lu X, Wang K (2023) eBiBa: a post-quantum hash-based signature with
small signature size in the continuous communication of large-scale
data. Comput J. bxad068

Merkle RC (1982) Secrecy, authentication and public-key cryptosystems. UMI
Research Press

Merkle RC (1988) A digital signature based on a conventional encryption
function. In: Pomerance C (ed) Advances in cryptology—CRYPTO ’87.
Springer, Berlin, pp 369–378

Reyzin L, Reyzin N (2002) Better than BiBa: short one-time signatures with fast
signing and verifying. In: Batten L, Seberry J (eds) Information security
and privacy. Springer, Berlin, pp 144–153

Rogaway P, Shrimpton T (2004) Cryptographic hash-function basics: defini-
tions, implications, and separations for preimage resistance, second-
preimage resistance, and collision resistance. In: Roy R, Meier W (eds) Fast
software encryption. Springer, Berlin, pp 371–388

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	Winternitz stack protocols for embedded systems and IoT
	Abstract
	Introduction
	Principles of Winternitz stack signature
	Fabric capacity
	Oracle entropy
	HORS oracle

	Proof of stack security by reduction

	Ancillary operations
	Stack push
	Operations on indexed families
	Validator

	Winternitz stack protocol
	Security of the BWS protocol
	Adjudication
	Practicalities

	MAWS protocol
	Reverse Winternitz stack (RWS) protocol
	Application of RWS to Internet of Things
	Related work
	Protocol versus signature scheme

	Conclusions
	Acknowledgements
	References

