Goniometrie
Goniometrie (z řeckého gónia = úhel a metró = měřím) je oblast matematiky, která se zabývá goniometrickými funkcemi jako sinus, kosinus, tangens a kotangens. Její součástí je také trigonometrie, která se věnuje praktickému užití těchto funkcí při řešení různých úloh o trojúhelnících.
Historie goniometrie
Základy goniometrie položili již Egypťané a Babyloňané. Po Alexandrově výpravě do Asie převzali tyto znalosti spolu s dělením úhlu na 360° Řekové. Hlavním bodem zájmu Babylonských a Řeckých vědců byl podoobor dnešní goniometrie, trigonometrie, zvláště pak trigonometrie sférická (trigonometrie útvarů na kulové ploše). Jejím průkopníkem se stal Aristarchos ze Samu, který studoval vzdálenosti Slunce a Měsíce od Země.
Dále v budování goniometrie pokračovali vědci z Indie a Arábie, kteří věnovali úsilí spíše kalkulativním problémům a aritmetickým algoritmům. Indové zavedli funkce, které se později ustálily pod jmény sinus a kosinus (kosinus znamenal sinus doplňku do 90°).
Dnes používané termíny pro tangens (tečna), kotangens (doplněk do tečny), sekans (sečna) a kosekans se poprvé objevily až během 16. a 17. století v Evropě. V tomto období se utřiďovaly všechny doposud známé poznatky a goniometrické funkce se začaly používat pro popis periodických dějů.
Užití goniometrie
V současnosti poznatky z goniometrie uplatňuje velké množství oborů, zejména pak astronomie, geodézie a satelitní navigační systémy k určování vzájemných pozic dvou bodů (tato technika se nazývá triangulace). Dále goniometrii využívá hudební teorie, akustika, optika, elektronika, biologie, statistika, lékařská diagnostika (ultrazvuk a tomografie), chemie, kryptologie, seismologie, oceánografie, meteorologie, fonetika, architektura, ekonomie, krystalografie, počítačová grafika a mnoho fyzikálních věd.
Goniometrické funkce
- Hlavní článek: Goniometrická funkce
Hodnoty goniometrických funkcí v pravoúhlém trojúhelníku
- Sinus je poměr délky odvěsny protilehlé tomuto úhlu a délky přepony.
- Kosinus je poměr délky odvěsny přilehlé tomuto úhlu a délky přepony.
- Tangens je poměr délek odvěsny protilehlé tomuto úhlu a délky odvěsny k němu přilehlé.
- Kotangens je poměr délek odvěsny přilehlé tomuto úhlu a délky odvěsny k němu protilehlé.
- Sekans je poměr délky přepony a délky odvěsny přilehlé tomuto úhlu.
- Kosekans je poměr délky přepony a délky odvěsny protilehlé tomuto úhlu.
Související články
Externí odkazy
- Učebnice goniometrie a trigonometrie
- Trigonometry (anglicky) - v angličtine se goniometrie a trigonometrie souhrně označuje jako trigonometry