Přeskočit na obsah

Besselova funkce

Z Wikipedie, otevřené encyklopedie

Besselovy funkce jsou řešení Besselovy rovnice

pro libovolné reálné číslo , které je označováno jako řád Besselovy funkce. Funkce jsou pojmenovány na počest německého matematika a fyzika Friedricha Wilhelma Bessela, který je poprvé popsal.

Cylindrické funkce

[editovat | editovat zdroj]

Cylindrickou funkcí se nazývá libovolné řešení Besselovy rovnice

Besselova funkce

[editovat | editovat zdroj]

Není-li celé číslo, pak lze obecné řešení Besselovy rovnice zapsat jako

,

kde a jsou lineárně nezávislé Besselovy funkce a jsou libovolné konstanty.

Besselovy funkce bývají také nazývány Besselovými funkcemi prvního druhu.

Besselova funkce řádu je definována vztahem

,

kde je gama funkce.

Je-li celé číslo, pak platí

,

výše uvedená řešení tedy nejsou v tomto případě nezávislá.

Pro lze Besselovu funkci vyjádřit v integrálním tvaru

Platí následující rekurentní vztahy

Neumannova funkce

[editovat | editovat zdroj]

Je-li celé číslo, pak a nejsou lineárně nezávislé. V takovém případě má obecný integrál tvar

,

kde je tzv. Neumannova funkce (někdy též Weberova funkce), které jsou také řešením Besselovy rovnice.

Pro Neumannovy funkce se používá označení Besselovy funkce druhého druhu.

Neumannovy funkce jsou pro celočíselná definovány vztahem

Pro různé od celého čísla je pak Neumannova funkce definována vztahem

Je-li celé číslo, pak platí

Mezi Besselovými a Neumannovými funkcemi platí vztah

Platí následující rekurentní vztahy

Hankelova funkce

[editovat | editovat zdroj]

Důležitými cylindrickými funkcemi jsou tzv. Hankelovy funkce a , které jsou definovány jako

Hankelova funkce bývá také označována jako Besselova funkce třetího druhu.

Sférické cylindrické funkce

[editovat | editovat zdroj]

Sférickou cylindrickou funkcí nazveme každé řešení rovnice

pro celá nezáporná .

Za dvě nezávislá řešení lze zvolit sférickou Besselovu funkci

a sférickou Neumannovu funkci

,

kde jsou Besselovy funkce a jsou Neumannovy funkce.

Mezi sférickými Besselovými a sférickými Neumannovými funkcemi platí vztah

Jinou dvojicí nezávislých řešení jsou sférické Hankelovy funkce

Sférické cylindrické funkce lze vyjádřit následujícími vztahy

Lze ukázat, že platí

Modifikovaná Besselova funkce

[editovat | editovat zdroj]

Modifikované Besselovy funkce jsou řešením modifikované Besselovy rovnice

Modifikovaná Besselova funkce prvního druhu

[editovat | editovat zdroj]

Není-li celé číslo, pak má řešení modifikované Besselovy rovnice tvar

,

kde je modifikovaná Besselova funkce prvního druhu, která je definována vztahem

Modifikovanou Besselovu funkci lze vyjádřit pomocí Besselovy funkce jako

Modifikovaná Besselova funkce druhého druhu

[editovat | editovat zdroj]

Pro celá platí

Pro celá tedy nejsou a lineárně nezávislé funkce a obecné řešení modifikované Besselovy rovnice je nutné vyjádřit ve tvaru

,

kde je modifikovaná Besselova funkce druhého druhu (označovaná též jako MacDonaldova funkce).

Pro necelé je definováno

Pro celá pak platí

Fresnelův ohyb světla na hraně

[editovat | editovat zdroj]

Důležitým příkladem použití Besselových funkcí je Fresnelův ohyb světla na hraně.

Ohyb světla na přímé hraně.
V případě osvětlení monochromatickým světlem dochází při ohybu na hraně ke vzniku ohybových proužků, které jsou rovnoběžné s přímou hranou.
V horní části je zobrazen pozorovaný jev, a ve spodní části je rozdělení intenzity světla.

Související články

[editovat | editovat zdroj]

Externí odkazy

[editovat | editovat zdroj]

Literatura

[editovat | editovat zdroj]