Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7 |
Abstract:
We establish some patterns related to the sequence f1, f2, ... . Our investigations depend on the following result: if f0 satisfies a linear recurrence equation of order k, then each function fm will also satisfy a linear recurrence equation of the same order.
In several results, we derive a recurrence equation for fm(n) in terms of m and n. For each result, we give a combinatorial meaning for fm(n) in terms of the number of restricted words over a finite alphabet.
We also find new combinatorial interpretations of the Fibonacci polynomials, as well as the Chebyshev polynomials of the second kind.
(Concerned with sequences
A000045
A000073
A000078
A000079
A000129
A000244
A001045
A001076
A001090
A001109
A001353
A001401
A001591
A001592
A001906
A003480
A003948
A003949
A003950
A003951
A003952
A003953
A003954
A004187
A004189
A004190
A004191
A004254
A005668
A006130
A006131
A006190
A007655
A008616
A008676
A008677
A015440
A015441
A015442
A015443
A015445
A015446
A015447
A015451
A015453
A015454
A015455
A015456
A015457
A018913
A020699
A025192
A025795
A025839
A028859
A029144
A029280
A041025
A041041
A049660
A052918
A053404
A054413
A075843
A077412
A077421
A078362
A078364
A078366
A078368
A079262
A086347
A092499
A093138
A097778
A099842
A104144
A109707
A119826
A122189
A122265
A122391
A125145
A126473
A126501
A126528
A145839
A145840
A145841
A155020
A161434
A168082
A168083
A168084
A170732
A170733
A170734
A180033
A180037
A180167
A209239
A220469
A220493
A249169.)
Received November 9 2014; revised version received January 30 2015; February 5 2015; February 25 2015. Published in Journal of Integer Sequences, May 17 2015.