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Mining for Structure

Massive increase in both computational power and the amount of
data available from web, video cameras, laboratory measurements.
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* Develop statistical models that can discover underlying structure, cause, or
statistical correlation from data in unsupervised or semi-supervised way.
* Multiple application domains.
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Restricted Boltzmann Machines

hidden variables

Bipartite  Stochastic binary visible variables v € {0, 1}”
Structure  5re connected to stochastic binary hidden
variables h € {0,1}*.
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Image visible variables

The energy of the joint configuration:

E(V,h; 9) = — ZWijvz’hj — szvz — Zajhj
1] 7

J

6 = {W,a,b} model parameters.

Probability of the joint configuration is given by the Boltzmann distribution:

1 1 ok T
Py(v,h) = Z(0) exp(—E(v,h;Q)) — %HGWW ihj Heb, lHe ik
J

i N~

Z(Q) _ Z exp ( . E(V, h; 9)) partition function potential functions
h,v

Markov random fields, Boltzmann machines, log-linear models.



Restricted Boltzmann Machines

hidden variables

Bipartite . _ _
structure  Restricted: No interaction between

hidden variables

/

Inferring the distribution over the
hidden variables is easy:

P(alv) = [[ P(hilv) P(h; =1}v) = :
X J

Image visible variables

1 + exp(— Zz Wij’Uz' — CLj)

Factorizes: Easy to compute
Similarly:

P(vih) = [] P(oib) P(w: = 1]h) = 1

1+ exp(— Zj Wz’jhj — bz)

Markov random fields, Boltzmann machines, log-linear models.



Model Learning

1
Py(v) = Z00) Z exp [VTWh +a'h+b'v
h

hidden variables

h \. C )
N\
\\/,/’A\\' Given a set of i.i.d. training examples
W \ K
/@%Q"A‘Q D = {v) v® vV, wewanttolearn
/‘g” ’/“q model parameters § = {W, a, b}.

\

Image visible variables

Maximize (penalized) log-likelihood objective:

N
1 A
L(9) = N E log Py (v ))—NHWH%

n=1
Derivative of the log-likelihood: Regularization
L) 1 <~ 0 G, 2\
= — 1 M TWh4a h+b v™] |- log Z(0)—==W;;
W N;5’Wij og(gh:exp v Wh+a'h+b' v™] I og Z(0) NVVL7
2
= Epuualvihy] = Bry[vih] = Wi

Difficult to compute: exponentially many

Piata(v,h;0) = P(h[v;0) Piata(V) configurations

1
Piata(V) = + > S(v—v™)



Model Learning

1
Py(v) = Z00) Z exp [VTWh +a'h+b'v
h

hidden variables

Given a set of i.i.d. training examples
D = {v) v® vV, wewanttolearn
model parameters § = {W, a, b}.

Maximize (penalized) log-likelihood objective:

N
1 A
L(9) = N E log Py (v ))—NHWH%

n=1

visible variables

Image

Derivative of the log-likelihood:

OL(0) 2
S, = EPaaa[Viltj] = Br,[vihy] — = Wi
i
Approximate maximum likelihood learning:
Contrastive Divergence (Hinton 2000) Pseudo Likelihood (Besag 1977)
MCMC-MLE estimator (Geyer 1991) Composite Likelihoods (Lindsay, 1988; Varin 2008)
Tempered MCMC Adaptive MCMC

(Salakhutdinov, NIPS 2009) (Salakhutdinov, ICML 2010)



RBMs for Images

Gaussian-Bernoulli RBM: 1
Pg(V,h) = Z(@)

exp(—E(v, h; 0))

Define energy functions for
various data modalities:

i —b;)? i
E(v,h;0) = Z L 202 ) - ZWijhj% — Zajhj
1 ij v

J

1 (il?—bZ—O'ZZWZh)Q
P(v; = z|h) = NG exp <— 952 L Gaussian
1 .
P(h; =1]v) = — ‘ Bernoulli



RBMs for Images

Gaussian-Bernoulli RBM: 1
Pg(V,h) = Z(@)

exp(—E(v, h; 0))

Interpretation: Mixture of exponential
number of Gaussians

Image visible variables P9 (V) — Z P9 (V|h)P9(h)7

h

where

Py(h) = / Py(v,h)dv is an implicit prior, and

1 (.I—bz—O'zZWZh)Q
P(v; = z|h) = Ty, P (— 50 e Gaussian



RBMs for Images and Text

Images: Gaussian-Bernoulli RBM

4 million unlabelled images

WS

WIKIPEDIA
The Free Encyclopedia

REUTERS P

AP Associated Press

Reuters dataset:
804,414 unlabeled )
newswire stories

Bag-of-Words

russian
russia
MOoSCcow
yeltsin
soviet

Learned features (out of 10,000)

Learned features: "topics”

clinton
house
president
bill
congress

computer
system
product
software
develop

trade
country
import
world
economy

stock
wall
street
point
dow



Collaborative Filtering

1
Py(v,h) = Z(0) exp (ZWzﬁvfh] + bevf + Zajhj)
J

ijk ik

Bernoulli hidden: user preferences

Learned features: ‘genre”

Fahrenheit 9/11 Independence Day
Bowling for Columbine The Day After Tomorrow
_ o _ The People vs. Larry Flynt Con Air
Multinomial visible: user ratings Canadian Bacon Men in Black Il
] La Dolce Vita Men in Black
Netflix dataset:
480,189 users |:> Friday the 13th Scary Movie
. The Texas Chainsaw Massacre Naked Gun
17'770 mo.\/l.es ) Children of the Corn Hot Shots!
Over 100 million ratings Child's Play American Pie
The Return of Michael Myers Police Academy

State-of-the-art performance
on the Netflix dataset.

Relates to Probabilistic Matrix Factorization
(Salakhutdinov & Mnih ICML 2007)



Multiple Application Domains

Natural Images

Text/Documents

Collaborative Filtering / Matrix Factorization

Video (Langford et al. ICML 2009, Lee et al.)

Motion Capture (Taylor et.al. NIPS 2007)

Speech Perception (Dahl et. al. NIPS 2010, Lee et.al. NIPS 2010)

Same learning algorithm --
multiple input domains.

Limitations on the types of structure that can be
represented by a single layer of low-level features!
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Deep Belief Network

XN
A
<

70

[ SW

o"\!

Low-level features:
Edges
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Built from unlabeled inputs.

Input: Pixels



Deep Belief Network

Unsupervised feature learning.

Internal representations capture
higher-order statistical structure

Higher-level features:
Combination of edges

Low-level features:
Edges

N\
'(I}/‘Q' N/
(/

Built from unlabeled inputs.
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Input: Pixels

(Hinton et.al. Neural Computation 2006)



Deep Belief Network

The joint probability
distribution factorizes:

Deep Belief Network

P(v,h' h* h?)
> RBM
= P(v|h")P(h'|h?)P(h? h)
\. J J
Y Y
Sigmoid Sigmoid Belief RBM
Belief Network
Network
P(h* h*) = ! exp [h2T W3h?]

Z(W3)

1
hilh?)  P(hj =1]h?) =
) 14 exp (= X, W3

1
P(vih') = || P(v:|h! P(v; =1|h') =
(vih?) H (vi[h™) 1—|—exp(—2ngjhjl)




DBNSs for Classification
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| 500 | RBM Softmax Output
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Pretraining Unrolling Fine—tuning

 After layer-by-layer unsupervised pretraining, discriminative fine-tuning
by backpropagation achieves an error rate of 1.2% on MNIST. SVM’s get
1.4% and randomly initialized backprop gets 1.6%.

* Clearly unsupervised learning helps generalization. It ensures that most of
the information in the weights comes from modeling the input data.



Deep Autoencoders

Decoder

Pretraining Unrolling Fine-tuning



Deep Generative Model

Model P(document) Reuters dataset: 804,414
newswire stories: unsupervised

\ European Community

Interbank Markets Monetary/Economic
* 3 A caan.
0000 s, G
Q @ " . R Do’y
Q _ :' . :..,.- :::‘.:. . ,.P.‘“’ 4 N
“\ﬁ Eizﬂm.c g f'?é' }f. ;F "&}(ﬁ Legal/Judicial

Indicators

wer nge o Disasters and
sl fd00D e Accidents

o .a.""o
e o

Bag of words A w5/ - 2. Government
ceounts/ = % o Borrowings
Earnings

(Hinton & Salakhutdinov, Science 2006)



Information Retrieval

European Community
Interbank Markets Monetary/Economic

4

Y-+ 57 Disasters and
e it s Accidents
23823500 %ogs S %

Leading
Economic
Indicators

[}
“e

g A Government
Accounts/ * iy Borrowings
Earnings ¥ )

2-D LSA space

* The Reuters Corpus Volume Il contains 804,414 newswire stories

(randomly split into 402,207 training and 402,207 test).

» “Bag-of-words”: each article is represented as a vector containing the counts of
the most frequently used 2000 words in the training set.



Semantic Hashing

European Community 0 002 Qo
H 0Q ©]
Monetary/Economic SR o c%®%%®7 %9

Address Space Disasters and

Accidents

\

o s Semantically
‘/\ Similar
s Documents

Semantic v
Hashing Government
Function Borrowing
X
£
X
Document

Accounts/Earnings

* Learn to map documents into semantic 20-D binary codes.

* Retrieve similar documents stored at the nearby addresses with no
search at all.



Searching Large Image Database
using Binary Codes

* Map images into binary codes for fast retrieval.
Input image 30-RBM

* Small Codes, Torralba, Fergus, Weiss, CVPR 2008

* Spectral Hashing, Y. Weiss, A. Torralba, R. Fergus, NIPS 2008
* Kulis and Darrell, NIPS 2009, Gong and Lazebnik, CVPR 20111
* Norouzi and Fleet, ICML 2011,
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DBNs vs. DBMs

Deep Belief Network Deep Boltzmann Machine

DBNs are hybrid models:
* Inference in DBNs is problematic due to explaining away.
* Only greedy pretrainig, no joint optimization over all layers.
* Approximate inference is feed-forward: no bottom-up and top-down.

Introduce a new class of models called Deep Boltzmann Machines.



Mathematical Formulation

P*(v) 1 Trrrl11 1T /21,2 2T 11,313
P, = = —— W-h h- W-<h h“ W-h
(V) Z(0) Z(0) hl%;hg exp [V — +

Deep Boltzmann Machine 0 = {W' W= W=} model parameters

 Dependencies between hidden variables.

* All connections are undirected.

e Bottom-up and Top-down:

W2

) P(h3 = 1|h', h?) = a<ZW,§jh2 + Zwﬁljh}n)
w! k/7 N ™~

Top-down Bottom-up

Input Unlike many existing feed-forward models: ConvNet (LeCun),
HMAX (Poggio et.al.), Deep Belief Nets (Hinton et.al.)



Mathematical Formulation

P*(v) 1 [T 11.1 1T /21,2 2T 11,313
= —— exp |[v. W h"+h" W*h*+h® W-h
Z(6) ~ Z(0) Z

PQ(V) =

Neural Network

Deep Boltzmann Machine Deep Belief Network

Input Unlike many existing feed-forward models: ConvNet (LeCun),
HMAX (Poggio), Deep Belief Nets (Hinton)



Mathematical Formulation

p* 1
Vo1 S e [valhl +h!' W2h? 4 hQTW3h3]

Fp(v) = zO)  Z(0) h!,h? h3

Neural Network

Deep Boltzmann Machine Deep Belief Network

9JUaJajUul -

HMAX (Poggio), Deep Belief Nets (Hinton)



Mathematical Formulation

P*(v) 1 [T 1.1 1T /21,2 2T 11,313
= = —— exp |[v. W h"+h" W*h*+h® W-h
Z(6) ~ Z(0) Z

PQ(V)

Deep Boltzmann Machine O = {I/Vl7 W27 W3} model parameters
 Dependencies between hidden variables.

Maximum likelihood learning:

0log Py(v)

oW1 [Vth] — Ep, [Vhl—r]

— Ep

data

Problem: Both expectations are
intractable!

Learning rule for undirected graphical models:
MRFs, CRFs, Factor graphs.



Previous Work

Many approaches for learning Boltzmann machines have been
proposed over the last 20 years:

* Hinton and Sejnowski (1983),

* Peterson and Anderson (1987) . .
* Galland (1991) Real-world applications — thousands

* Kappen and Rodriguez (1998) of hidden and observed variables

* Lawrence, Bishop, and Jordan (1998) ith milli f t
« Tanaka (1998) witn miliions or paramerters.

* Welling and Hinton (2002)
* Zhu and Liu (2002)

* Welling and Teh (2003)

* Yasuda and Tanaka (2009)

Many of the previous approaches were not successful for learning
general Boltzmann machines with hidden variables.

Algorithms based on Contrastive Divergence, Score Matching, Pseudo-
Likelihood, Composite Likelihood, MCMC-MLE, Piecewise Learning, cannot
handle multiple layers of hidden variables.



New Learning Algorithm

Posterior Inference Simulate from the Model

Unconditional

Approximate Approximate the m
conditional joint distribution

Pdata(h|v) Pmodel(ha V)

(Salakhutdinov, 2008; NIPS 2009)



New Learning Algorithm

Posterior Inference Simulate from the Model

Approximate Approximate the
conditional joint distribution

Pdata(h|v) Pmodel(ha V)

T
EPdata [Vh—r] Epmodel [Vh
Data-dependent Data-independe
(N J

Mgccch /

\
R\ % v




New Learning Algorithm

Posterior Inference Simulate from the Model

Markov Chain
{IVIean-FieId} _Monte Carlo

- L B
EPdata [Vh—r] Epmodel Vh_l_‘
Da

Data-dep
A\S Data-inde




Sampling from DBMs

Sampling from two-hidden layer DBM: by running Markov chain:

h2|h1

Q00 | OOO OOO
7 \P (h'|v, h/,

r::::.?;z'y b OO OO OO
005 ooc OOO

Sample

1+ exp(—>_, VV1 v; — Y. W2 .h?)

gt mgtty
1

1+exp(—>_,, Waih,)

m T mjg'm

1
14 exp(=>_,, Wi, hi)

P(h}, = 1|v, h?)

P(h; =1/h') =

P(v; = 1|ht) =



Stochastic Approximation

Time t=1 t=2 t=3

h2

Update 65

) — @ )

Update 64
) — G

X1 T91 (X1 %Xo) Xo v ng (X2 %Xl) X3 v T93 (X3 %Xg)
Update 6, and x; sequentially, where x = {v,h', h?}
* Generate x; ~ Ty, (Xt <—Xt_1) by simulating from a Markov chain

that leaves Py, invariant (e.g. Gibbs or M-H sampler)

* Update 0; by replacing intractable Epet [VhT] with a point
estimate [Vth;r]

In practice we simulate several Markov chains in parallel.

Robbins and Monro, Ann. Math. Stats, 1957
L. Younes, Probability Theory 1989, Tieleman, ICML 2008.



Stochastic Approximation

Update rule decomposes:

M
1 m m T
bevs = O+ (Br 0T <, 0] ) (B, b= D v )

m=1
\ J L _J

Y Y
True gradient Noise term €¢

Almost sure convergence guarantees as learning rate a; — 0

Problem: High-dimensional data: [ n13rkov Chain
the energy landscape is highly

, Monte Carlo
multimodal .

Key insight: The transition operator can be
any valid transition operator — Tempered
Transitions, Parallel/Simulated Tempering.

Connections to the theory of stochastic approximation and adaptive MCMC.



Variational Inference

Approximate intractable distribution Py(h|v) with simpler, tractable
distribution @, (h|v):
Pyp(h, v)

log Py(v logZPg (h,v) logZQu h|v) 0, (b[v)
7

Posteri ference
Py(h,v)
> (h|v)lo
[Tes ZQ“' gQu(l)
Mean-Field |
ZQM h|v) 1\0ng (h, v)j log Z (6 +ZQM h|v) logQ oY)

E . TW1h1+h1TW2h2+h2TW3h3 )
Y

Variational Lower Bound

= log Py(v) — KL(QM(h|V)HP9(h|V))
Minimize KL between approximating and true
distributions with respect to variational parameters L.

Q(z)

P(x)dx

KL(QIIP) = [ Q(a)log

(Salakhutdinov & Larochelle, Al & Statistics 2010)



Variational Inference

Approximate intractable distribution P,(h|v) with simpler, tractable
distribution @, (h|v):

xdac

KL(QIIP) = [ Qla)loz 55

log Py(v) 2 lgg Py(v) — KL(Qu(h|v)] \Pe(h\V)z

Posteri ference oo
/ﬁ Variational Lower Bound
k4 — . e
: Mean-Field: Choose a fully factorized distribution:
Mean-Field F
Qu(hv) =[] a(hslv) with g(h; =1]v) =
j=1

E Variational Inference: Maximize the lower bound w.r.t.
Variational parameters f¢.

( 1
Nonlinear fixed- (ZW i Z ik )

point equations: M;(g) _ (ZwaS” + ZW mum)>

oSt




Variational Inference

Approximate intractable distribution P,(h|v) with simpler, tractable

distribution @, (h|v): Q(x)

KL(Q||P) = /Q(CU) log P(a:)dx

log Py(v) 2 lgg Py(v) — KL(Qu(h|v)] \Pe(h\V)z

Y

Posterior Inference L.
Variational Lower Bound Unconditional Simulation

'y
Mean-Field

1.V wer Markov Chain
b;,u[ Fast Inference ] Monte Carlo
z_pf . N T
w{ Learning can scale to

_ millions of examples |

Almost sure convergence guarantees to an asymptotically
stable point.




Good Generative Model?

Handwritten Characters



Good Generative Model?

Handwritten Characters
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Good Generative Model?

Handwritten Characters

Simulated Real Data



Good Generative Model?

Handwritten Characters

Real Data Simulated



Good Generative Model?

Handwritten Characters

i,
<
1w
)
1
=2
E%!
O
P
-

oC SUID ! prtdm
T OGN LAY AN @
FouNlE Pl A L‘diﬁﬁ
:IC]HT "c:;'"h - F
m £ T o 3y F b

[

g

F&H T AHA =« FC
ﬂgﬁﬂ'f o
°c ¥4 § =w g P v
T 4 Tt € we
owi € PN HwBh £

EI*
11 dr
&5 €




Good Generative Model?

MNIST Handwritten Digit Dataset




Deep Boltzmann Machine

Sanskrit Model P(image)

Qg P aSU w
e gAIHNT I

I AFYH FFTIA
T gmyge A

25,000 characters from 50
alphabets around the world.

* 3,000 hidden variables

e 784 observed variables
(28 by 28 images)

* Over 2 million parameters

Bernoulli Markov Random Field



Deep Boltzmann Machine

Conditional
Simulation

P(image | partial image) g o411 Markov Random Field



Handwriting Recognition

MNIST Dataset Optical Character Recognition
60,000 examples of 10 digits 42,152 examples of 26 English letters

Learning Algorithm Error Learning Algorithm Error
Logistic regression 12.0% Logistic regression 22.14%
K-NN 3.09% K-NN 18.92%
Neural Net (platt 2005) 1.53% Neural Net 14.62%
SVM (Decoste et.al. 2002) 1.40% SVM (Larochelle et.al. 2009) 9.70%
Deep Autoencoder 1.40% Deep Autoencoder 10.05%
(Bengio et. al. 2007) (Bengio et. al. 2007)

Deep Belief Net 1.20% Deep Belief Net 9.68%
(Hinton et. al. 2006) (Larochelle et. al. 2009)

DBM 0.95% DBM 8.40%

Permutation-invariant version.



Deep Boltzmann Machine

Gaussian-Bernoulli Markov
Random Field

Deep Boltzmann Machine

> 12,000 Latent
Variables

Model P(image)

24,000 Training Images
Stereo pair & &



Generative Model of 3-D Objects

\ = £
%® ||
e\ |8
X [ o
<7k
AN &

24,000 examples, 5 object categories, 5 different objects within each
category, 6 lightning conditions, 9 elevations, 18 azimuths.



3-D Object Recognition

Learning Algorithm Error
Logistic regression 22.5%
K-NN (Lecun 2004) 18.92%
SVM (Bengio & LeCun 2007) 11.6%
Deep Belief Net (Nair & 9.0%
Hinton 2009)

DBM 7.2%

Permutation-invariant version.

Pattern Completion
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Learning Part-based Hierarchy

! learned from 4 object categories

Object parts.

Combination of edges.

Trained from multiple classes
(cars, faces, motorbikes, airplanes).

Lee et.al., ICML 2009



Robust Boltzmann Machines

* Build more complex models that can deal with occlusions or structured

noise. Gaussian RBM, modeling  Binary RBM modeling
clean faces occlusions
Al Al

s 5 N\ \
1 (vi — b;) T T
E:§Z ——— —v'Wh-s'Ug

1 ~ 1 (0 — by)?
+§§:%&@u—v0”+§§: —

/ /

Binary pixel-wise Gaussian noise
Mask

g layer || h layer

paJiaju]

Observed

Relates to Le Roux, Heess, Shotton, and Winn,
Neural Computation, 2011

Eslami, Heess, Winn, CVPR 2012 Tang et. al., CVPR 2012



paJiajul

Robust Boltzmann Machines

Internal States of
RoBM during
learning.

SRPEREE
subjects

Initial 1 3 5 7 9 11
Ground Partially Nearest
truth occluded RoBM Wiener Neighbor

TS

Comparing to Other
Denoising Algorithms



Spoken Query Detection

630 speaker TIMIT corpus: 3,696 training and 944 test utterances.

10 query keywords were randomly selected and 10 examples of
each keyword were extracted from the training set.

Goal: For each keyword, rank all 944 utterances based on the
utterance’s probability of containing that keyword.

Performance measure: The average equal error rate (EER).

Learning Algorithm AVG EER l
GMM Unsupervised 16.4%
DBM Unsupervised 14.7%
DBM (1% labels) 13.3%
DBM (30% labels) 10.5%
DBM (100% labels) 9.7%

Avg. EER

10.51

D

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Training Ratio

(Yaodong Zhang et.al. ICASSP 2012)



Learning Hierarchical Representations

Deep Boltzmann Machines:

Learning Hierarchical Structure - | roream
in Features: edges, combination il
of edges. “

* Performs well in many application domains
* Combines bottom and top-down

* Fast Inference: fraction of a second

* Learning scales to millions of examples

Many examples, few categories

Next: Few examples, many categories — Transfer Learning



Talk Roadmap

* Unsupervised Feature Learning
— Restricted Boltzmann Machines
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horse cow car van truck



One-shot Learning

éﬁw

How can we learn a novel concept — a high dimensional
statistical object — from few examples.

“segway’”’
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Learning from Few Examples
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Traditional Supervised Learning

Motorcycle

Test:
What is this?




Learning to Transfer

Background Knowledge

= - -
e N |-

/I\/Iillions of unlabeled images\ Learn to Transter
| = Knowledge

Learn novel concept
from one example

Test: T
What is this? w




Learning to Transfer

Background Knowledge

/I\/Iillions of unlabeled images Learn to Transter
- - Knowledge

2

Key problem in computer vision,
speech perception, natural language
. processing, and many other domains.

Some Tabeled images

Learn novel concept
from one example

T e L Test: éz
T 0T S I What is this? @
Elephant Tractor




One-Shot Learning

LeOvel 03
Level 2 {T & }

{1k, 7%, ok} Hierarchical Bayesian
Models

Hierarchical Prior.

Probability of observed Prior probability of

data given parameters weight vector W
Posterior probability of ™~ 1/
parameters given the \ D P
training data D. p(W|D) _ p( |W> (W>
P(D)

* Fei-Fei, Fergus, and Perona, TPAMI 2006

* E. Bart, I. Porteous, P. Perona, and M. Welling, CVPR 2007
* Miller, Matsakis, and Viola, CVPR 2000

* Sivic, Russell, Zisserman, Freeman, and Efros, CVPR 2008



Hierarchical-Deep Models

HD Models: Compose hierarchical Bayesian Deep Nets
models with deep networks, two influential Part-based Hiera rchy
approaches from unsupervised learning
Deep Networks: S| Gy | re
* learn multiple layers of nonlinearities. ) | ) H:
* trained in unsupervised fashion -- “ @ @

unsupervised feature learning — no need to
rely on human-crafted input representations.
* labeled data is used to slightly adjust the Hierarchical Bayes

model for a specific task. Category-based Hierarchy

breathes

Marr and Nishihara (1978)

Hierarchical Bayes:

. . . . animal ;
* explicitly represent category hierarchies for C””r'y can swi

sharing abstract knowledge. bikd
* explicitly identify only a small number of
parameters that are relevant to the new canary eagle shd&rk  salmon

concept being learned. Collins & Quillian (1969)



Motivation

Learning to transfer knowledge:

Hierarchical

r
» Super-category: “A segway looks

like a funny kind of vehicle”.

<

* Higher-level features, or parts, shared

~ Wwith other classes:
» wheel, handle, post

<

* Lower-level features:
\_ » edges, composition of edges
Deep

Edges

AR =



Hierarchical Generative Model

Hierarchical Latent Dirichlet
Allocation Model

0
el hellie
horse | | cow car van | | truck
&
h* (OOOJ]
%3 DBM Model
h' Q00000

Lower-level generic features:
* edges, combination of edges

(Salakhutdinov, Tenenbaum, Torralba, 2011)



Hierarchical Generative Model

Hierarchical Latent Dirichlet
Allocation Model

“vehicle” Hierarchical Organization of Categories:

* express priors on the features that are
typical of different kinds of concepts

9 * modular data-parameter relations
= K
‘e_ =
Q|||@_lomer
()| || (hiy Higher-level class-sensitive features:
horse e capture distinctive perceptual

structure of a specific concept

Lower-level generic features:
* edges, combination of edges

(Salakhutdinov, Tenenbaum, Torralba, 2011)



Intuition

h® ~ LDA prior

Words < activations of DBM’s top-level units.
Topics < distributions over top-level units, or
higher-level parts.

DBM generic features:  LDA high-level features:
Words

D Pr(topic | doc)

o ¢

$3C,

I Pr(word | topic)

Images

Each topic is made up of words. Each document is made up of topics.

o +1\ Iﬂﬂ
g V| H"




Hierarchical Deep Model

~
o 7
(U ot ”
animal “yehicle”
0 p 0
D@ (0 D) GO

()
\
b
RN\
&)
\\

~ 1 Topics

9200 p€
BoNe)
D@
26
1o,

ow car van truck

L
h? Q000
*+3
h!OCOO000
L B 4
vV IOOO000J0

horse

(@)




Hierarchical Deep Model

~ Tree hierarchy of
classes is learned

I” [{} H 14
vehicle
) o i
7 ~ NCRP (Nested Chinese Restaurant Process)
) D@ GO >0 o prior: a nonparametric prior over tree

structures.

~ 1 Topics

()
\
b
RN\
&)
\\

SO
5
@r

ow car van truck

>
(@)
=
(7]
()
(@]

L
h? Q000
*+3
h!OCOO000
L B 4
vV IOOO000J0




Hierarchical Deep Model

~ Tree hierarchy of
classes is learned

a3 (3
“animal” “vehicle”
2 ) 2
7 ~ NCRP (Nested Chinese Restaurant Process)
) D@ 0 m "0 prior: a nonparametric prior over tree

structures.

0 h3|z ~ HDP (Hierarchical Dirichlet Process) prior:

.
@ - ol e e K a nonparametric prior allowing categories to
il Y e f AP N Topics share higher-level features, or parts.
E|| ||| (|| || )] ||
horse| | cow car van | |truck
&
h?C000
*+ 3
h! Q00000
*+3

vV IOOO000J0




a3
“animal”

)

D (0

e

Cr O Gx

horse| | cow

Hierarchical Deep Model

L 4

h!OCOO000

Unlike standard statistical models,

in addition to inferring parameters,

sharin

Topics

\ %we also infer the hierarchy for
5 ,
()

~ Tree hierarchy of
classes is learned
7T(3
“vehicle”
Q2 72
a (D) (D) (1)
| Corr e
—f: ::: ﬂ :// @
car van truck

~

g those parameters. f

v|h® ~ DBM Conditional Deep Boltzmann

Machine.

Enforce (approximate) global consistency
through many local constraints.



CIFAR Object Recognition

7)) H
Tree hierarchy of
(070 GO

classes is learned 50,000 images of 100 classes

“" H 14
animaley™ @ Gj “vehicle”

Gh Gh
i G %) \ﬁ§
Higher-level class

sensitive features

horse| | cow car van

OG0~

Lower-level
generic features

Inference: Markov chain
Monte Carlo — Later!

32 x 32 pixels x 3 RGB



Learning to Learn

The model learns how to share the knowledge across many visual

categories. Learned super-

class hierarchy

“global”

“aquatic
animal”

turtle shark

“fruit”

B._| DG

orange sunflower girl  baby man Basic level

dolphin apple

K m class
e #o8—

Learned higher-level
class-sensitive features

ray

Learned low-level
generic features



Learning to Learn

The model learns how to share the knowledge across many visual

O

crocodile spider

. snake
lizar el _“ castle | road
§ squirre bridge
angaroo skyscraper
bus ouse
leopard . ‘ truck train
fox tiger tank
lion  wolf ‘ tractor streetcar
otter| skunk ‘
shrew .
orcupine .
‘ P P pine ‘
dolphin
P ray \ shark O_‘?Ik maple tree
whale willow tree
belarh camel ‘ turtle ‘ bottle can \ lamp
elephant
. cattle () bowl cup
chimpanzee beaver
apple
mouse| raccoon peer \ pepper man boy \ man
hamster apbit POSSUM orange

sunflower girl  woman




Sharing Features

Reconst- Learning to
Real  ructions Shape Color Learn

| OUema | ||
? OUWe W™ |

-

4

apple orange Stmf

\

Apple

Sunflower ROC curve
5 3 1lex’s

) Sy 1
uo 0
] =" T -
(g0}
[ 0.8r
o
© g g = !LJ--.HHH o7
GLJ %o.ef
3 ol Sos
o = e, g 0.4 :
G - ‘ Che Pixel-
(o 0.3
- space
(Vo) 0.2 .
c distance
=
o
o)
()

% 010203 04 050607 08 09 1
false alarm rate

T el

Learning to Learn: Learning a hierarchy for sharing parameters —
rapid learning of a novel concept.



Object Recognition

Area under ROC curve for same/different
(1 new class vs. 99 distractor classes)

') LDA DBM HDP-DBM HDP-DBM
0.95 - GIST (class conditional) (no super-classes)
0.9
0.85 — 1
+
1 3 5 1050 | | ’
# examples [Averaged over 40 test classes]

Our model outperforms standard computer vision
features (e.g. GIST).



Handwritten Character Recognition

mu.nw‘l.mu.u(l..mq.muull_

EFEETEETEEE Y

T g w> 5O 95 ge !

= = V= V= =

Learned lower-
level features

L 4
000000

Edge
S

B 4
OOO0O0OY

25,000

characters




Handwritten Character Recognition

Area under ROC curve for same/different
(1 new class vs. 1000 distractor classes)

1 HDP-DBM HDP-DBM
LDA DBM (no super-classes)
0.95 | (class conditional) h
0.9 Pixels 1
. h
0.85 | | N +
|
0.8 | + JrJr
0.75 +
0.7 i i
0.65 L \ | o ) “
1 3 510

# examples [Averaged over 40 test classes]



Simulating New Characters

Real data within super class

Global
uper Super
class 1 - class 2
New class

Simulated new characters




Simulating New Characters

Real data within super class

Global
uper Super
class 1 - class 2
New class

Simulated new characters




Simulating New Characters

Real data within super class

Global

uper Super
class 1 - class 2
New class

~ N nrF -

v N N o

v N ngr T

TN P

Simulated new characters D Y N s ol

- /£ N o7

S S N F oo




Simulating New Characters

Real data within super clas
Clobal =2k BEpERER K
LY B NEB &R
\\\\ Super )
- class 2

New class

uper
class 1

2
S
<
%
e
<
e

F

Simulated new characters

FFIPPFRFRA
L‘L"JFD‘-]UFD 53] [ﬁpj



Simulating New Characters

Real data within super class

q

Global <

S

(o

— — "
uper Super N
class 1 - class 2 &
b

=

q

L

New class

Simulated new characters




Simulating New Characters

Real data within super class
T ol aUoy YVosFgov sl
Fyo¢Zao oy YOS TVY QM
~ . F Y S ZE T Oy TOr v XM
\ Super oy vyuwg dvIm
- class 2 oS To T X m
T oy YU Vo vEs m

Global

uper
class 1

TCong T Y ov g m

New class

Simulated new characters




Simulating New Characters

Real data within super class

Global

Classl Class2 New class

o O OO OO O OO OO

& ™ T % E = T¢

T eI

= O O&S W =

T msTITrmrT

Simulated new characters



Learning from very few examples

3 examples of ™ T

a hew class

Conditional samples
in the same class

Inferred super-class




Learning from very few examples
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Learning from very few examples




Learning from very few examples




Learning from very few examples
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Learning from very few examples

EE




Learning from very few examples

M mim
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Learning from very few examples




Hierarchical-Deep

So far we have considered directed + undirected models.

Deep Lambertian Networks

\

g layer h layer
> Deep
{ n UI IW Undirected

ol \ EFE =

‘/7 K - > a )
< i Topics " -

| I N

z > Directed
h? Q000 Vi
+3

h' Q00000
@&

Combines the elegant properties of the
v Q00000 Lambertian model with the Gaussian RBMs
, (and Deep Belief Nets, Deep Boltzmann
Low-level features:

replace GIST, SIFT Machines).

Tang et. al., ICML 2012



Deep Lambertian Networks

Model Specifics

Deep Lambertian Net Image Surface  Light

albedo Normals  source
g layer h layer _ \ l /
. I Iw > PN = [ (vl D)
\ E l. . - a ?D 1E€pixels
v Q.
| | 'T acRY, NeRY [eR’
m A P(a) ~ GRBM/(a),
Observed P(N) ~ GRBM(N),

P) ~ N(uA)

Inference: Gibbs sampler.
Learning: Stochastic Approximation



Deep Lambertian Networks

Yale B Extended Database

One Test Image Two Test Images Face Relighting

a) One test image.



Deep Lambertian Networks

Recognition as function of the number of training images for 10 test
subjects.

Yale B Face Recognition

T T T T T T T

i NN
DBN
0.6 —6— Correlation [
—— SVD
—— D|_N
05 o Q\e___\ .
04r .

Test Error

61

One-Shot

1 | 1 | | 1

. 0 0
Recognition %, 1 > 3 4 5 6 7 8

Number of training images




Recursive Neural Networks

Recursive structure learning

Parsing Natural Scene Images

3 ..w.' _ i
Grass-f ~ "’ —Peo Ie Buildir ~
\
& !
= wm lal T
XTIy
;/ m
/ ‘—4— : l\ Semantic
(EEEfEED\ (UKD (GESgEED\ (WESEED\ Representations
‘(M)] ‘(m_amn)‘ ‘@_e_e_e_uj_v (}_Q_am_o_s_r} Features
A (B a |7/ segments
Parsing Natural Language Sentences
S
Ewm vp A small crowd
NP VP ~— NP quietly enters
assasio. m B the historic
A small qunetly NP i Shurch
crowd enters Det, Adj. " _N. Semantic
: " - **\ Representations
[ (€ Indices
the historic/ | church| Words

yyseore £ S s = Wscorep
; p p = f(Wleiseo] +b)
(oooojoo\ goo\o\oco)
o] Cy

Local recursive networks are
making predictions whether
to merge the two inputs as
well as predicting the label.

Use Max-Margin Estimation.

Socher et. al., ICML 2011



Recursive Neural Networks

Recursive structure learning

Method and Semantic Pixel Accuracy in %

Pixel CRF, Gould et al.(2009) 74.3
Log. Regr. on Superpixel Features 75.9
Region-based energy, Gould et al.(2009)  76.4
Local Labeling,TL(2010) 76.9
Superpixel MRF,TL(2010) 77.5
Simultaneous MRF,TL(2010) 77.5
RNN (our method) 78.1

Wsy Mtee [Mroad Worass Wvater [Wbidg  [Mmntn Mg obj. Socher et al ICML 2011



Learning from Few Examples
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Learning from Few Examples
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Generative Model of Classifier
Parameters

Many state-of-the-art object detection systems use sophisticated models,
based on multiple parts with separate appearance and shape components.

Yy = 6T o (X) Detect objects by testing sub-windows and
scoring corresponding test patches with a linear
function.

Define hierarchical prior over parameters
of discriminative model and learn the
hierarchy.

Image Specific: concatenation of the
HOG feature pyramid at multiple scales.
Felzenszwalb, McAllester & Ramanan, 2008



Generative Model of Classifier
Parameters

y Hierarchical
}\-xx-/*

. _ _ ;;7;-’, Global Bayes
By learning hierarchical structure, bk
we can improve the current Level1 2R

state-of-the-art. 9(11)

----------

Sun Dataset: 32,855 examples of (2) (2) (2) (2)

. P 0; 9,0 6,0 6;
200 categories Lidebne
Horse Cow Car Van Truck

Hierarchical Model 185ex 27ex 12ex

s
By




Talk Roadmap

* Unsupervised Feature Learning
— Restricted Boltzmann Machines

— Deep Belief Networks

AN
"‘."\\. — Deep Boltzmann Machines
\\{,\{{IA\}'////“ * Transfer Learning with Deep
RSPV Models
A‘fﬂ»’%{%“o . |
RB ‘ ."0\ O  Multimodal Learning




Multi-Modal Input

Learning systems that combine multiple input domains

Images | Text & Language

i‘m ™
” ) ;,,\\,)f“?
\ S {“

¢
2 Gl

ic o

SNpSET

SR P Associated Press
WIKIPEDIA

The Free Encyclopedia

Laser scans

REUTERS D

We series

data

One of Key Challenges:

Develop learning systems that come
Inference

closer to displaying human like intelligence



Multi-Modal Input

Learning systems that combine multiple input domains

9 e 0000000000000

L 4 L g
(ele]ele) 0000
t 4 *+3
== 00000 [©OO00
E_, LR 3
- OO000 OO0
Image Text

More robust perception.

Ngiam et.al., ICML 2011 used deep autoencoders (video + speech)

* Guillaumin, Verbeek, and Schmid, CVPR 2011
* Huiskes, Thomee, and Lew, Multimedia Information Retrieval, 2010
* Xing, Yan, and Hauptmann, UAI 2005.



Training Data

camera, jahdakine,
lightpainting,
reflection
doublepaneglass
wowiekazowie

pentax, k10d,
kangarooisland
southaustralia, sa
australia
australiansealion 300mm

sandbanks, lake,
lakeontario, sunset,
walking, beach, purple,
sky, water, clouds,
overtheexcellence

top20butterflies

mickikrimmel,
mickipedia, headshot
<no text>

Samples from the MIR Flickr Dataset - Creative Commons License



Multi-Modal Input

Improve Classification

pentax, k10d, kangarooisland

southaustralia, sa australia ﬁ SEA / NOT SEA

australiansealion 300mm

beach, sea, surf,
strand, shore,

B  .ove seascape,

sand, ocean, waves

Retrieve data from one modality when queried using data from
another modality

beach, sea, surf,
strand, shore,
wave, seascape,
sand, ocean, waves




Multi-Modal Deep Belief Net

OO0000O0O00O0OO0O00
o +3
OO@OO 0000
&
OO000Q0] 1OOOOO
Gaussian RBM L o

OO0000 OO000O0] Replicated Softmax

Dense
Image Text Sparse counts



Multi-Modal Deep Belief Net

* Flickr Data - 1 Million images along with text tags, 25K annotated

Given Tags Generated Tags Inp ut Text 2 nearest neighbours to generated image features
pentax, k10d, beach, sea,
kangharmlsle:‘nd, sa;f. strand, nature, hill
sout austrg ia, shore, wave, scenery. green
sa, australia, seascape, loud
. . clouds
australiansealion, sand, ocean,
300mm waves
night, notte,
traffic, light,
<no text> lights, parking, flower, nature,
darkness, green, flowers,
lowlight, petal, petals, bud
nacht, glow
portrait, girl,
mickikrimmel, woman, lady,
mickipedia, blonde, pretty, blue, red, art,
headshot gorgeous, artwork, painted,
Expression, paint, artistic
model
surreal, gallery
bleu
camera blue, art,
. L artwork,
jahdakine, S
lightpainting, artlstlc..surreal, bw, blackandw hite,
relection, expression, noiretblanc,

doublepaneglass,

wowiekazowie

original, artist,

gallery,
patterns

biancoenero
blancoynegro




Recognition Results

* Multimodal Inputs (images + text), 38 classes.

Learning Algorithm Mean Average Precision
Image-text SVM 0.475
Image-text LDA 0.492
Multimodal DBN 0.566

* Unimodal Inputs (images only).

Learning Algorithm Mean Average Precision
Image-SVM 0.375
Image-LDA 0.315
Image DBN 0.413




Pattern Completion

Given a test image, we generate associated text — achieve far better

classification results.

landscape, scenery,
hills,landscapes,
scenic, land,
canyon, roadtrip,
place, tourism

woods,
breathtaking,
hills, scenery,
alone, mist,
fields, bush,
branches

car, engine,
auto, supercar,
ferrari, fast,

gt, jason,
parking,
automobile

sky, clouds,
blue, horizon,
céu, sunset,
hills, twilight,
bluesky,
breathtaking

portrait, black,
white, girl,
expression, lady,
look, blonde,
eyes, gorgeous

sky, clouds
landscape, hills,
scenery, horizon,
fields, landscapes,
scenic, sun

sunset, twilight,
strand, wave,
breathtaking,
horizon, shore,
seascape, surf,
scenery

structure, facade,
place, landmark,
industry,
skyscraper,
tripod, royal,
parking, 1910s

beach, sea,
surf, strand,
shore, wave,
seascape, sand,
ocean, waves

night, city
urban, cityscape
traffic, notte,
skyline, lights,
streets,
skyscraper

sky, blue,
clouds, horizon,
céu,

twilight, azul,
bleu, wave,
sunset

red, rouge,
rosso, rot,
catchycolors,
gift, shiny,
rojo, vivid,
soft



Thank you

Code for learning RBMs, DBNs, and DBMs is available at:
http://www.mit.edu/~rsalakhu/



