LEARNING REPRESENTATIONS OF SEQUENCES

WITH APPLICATIONS TO MOTION CAPTURE AND VIDEO ANALYSIS

GRAHAM TAYLOR

SCHOOL OF ENGINEERING UNIVERSITY OF GUELPH

Papers and software available at: http://www.uoguelph.ca/~gwtaylor

OVERVIEW: THIS TALK

OVERVIEW: THIS TALK

- Learning representations of temporal data:
- existing methods and challenges faced
- recent methods inspired by "deep learning"

OVERVIEW: THIS TALK

- Learning representations of temporal data:
- existing methods and challenges faced
- recent methods inspired by "deep learning"

- Applications: in particular, modeling human pose and activity
- highly structured data: e.g. motion capture
- weakly structured data: e.g. video

OUTLINE

Learning representations from sequences

Existing methods, challenges

Composable, distributed-state models for sequences

Conditional Restricted Boltzmann Machines and their variants

Using learned representations to analyze video

A brief and (incomplete survey of deep learning for activity recognition

TIME SERIES DATA

- Time is an integral part of many human behaviours (motion, reasoning)
- In building statistical models, time is sometimes ignored, often problematic
- Models that do incorporate dynamics fail to account for the fact that data is
 often high-dimensional, nonlinear, and contains long-range dependencies

18 May 2012 / 4 Learning Representations of Sequences / G Taylor

Graphic: David McCandless, informationisbeautiful.net

TIME SERIES DATA

- Time is an integral part of many human behaviours (motion, reasoning)
- In building statistical models, time is sometimes ignored, often problematic
- Models that **do** incorporate dynamics fail to account for the fact that data is often high-dimensional, nonlinear, and contains long-range dependencies

Today we will discuss a number of models that have been developed to address these challenges

18 May 2012 / 4 Learning Representations of Sequences / G Taylor

Graphic: David McCandless, informationisbeautiful.net

VECTOR AUTOREGRESSIVE MODELS

$$\mathbf{v}_t = \mathbf{b} + \sum_{m=1}^{M} A_m \mathbf{v}_{t-m} + \mathbf{e}_t$$

- Have dominated statistical time-series analysis for approx. 50 years
- Can be fit easily by least-squares regression
- Can fail even for simple nonlinearities present in the system
- but many data sets can be modeled well by a linear system
- Well understood; many extensions exist

MARKOV ("N-GRAM") MODELS

- Fully observable
- Sequential observations may have nonlinear dependence
- Derived by assuming sequences have Markov property:

$$p(\mathbf{v}_t | {\{\mathbf{v}_1^{t-1}\}}) = p(\mathbf{v}_t | {\{\mathbf{v}_{t-N}^{t-1}\}})$$

• This leads to joint:

$$p(\{\mathbf{v}_1^T\}) = p(\{\mathbf{v}_1^N\}) \prod_{t=1}^{T} p(\mathbf{v}_t | \{\mathbf{v}_{t-N}^{t-1}\})$$

 $\bullet \ \text{Number of parameters exponential in} \ N!^{t=N+1}$

HIDDEN MARKOV MODELS (HMM)

HIDDEN MARKOV MODELS (HMM)

HIDDEN MARKOV MODELS (HMM)

- Successful in speech & language modeling, biology
- Defined by 3 sets of parameters:
- Initial state parameters, π
- Transition matrix, A
- Emission distribution, $p(\mathbf{v}_t|h_t)$
- Factored joint distribution: $p(\{h_t\}, \{\mathbf{v}_t\}) = p(h_1)p(\mathbf{v}_1|h_1)\prod_{t=2}^{t} p(h_t|h_{t-1})p(\mathbf{v}_t|h_t)$

HMM INFERENCE AND LEARNING

- Typically three tasks we want to perform in an HMM:
- Likelihood estimation
- Inference
- Learning
- All are exact and tractable due to the simple structure of the model
- Forward-backward algorithm for inference (belief propagation)
- Baum-Welch algorithm for learning (EM)
- Viterbi algorithm for state estimation (max-product)

• Many high-dimensional data sets contain rich componential structure

- Many high-dimensional data sets contain rich componential structure
- Hidden Markov Models cannot model such data efficiently: a single, discrete
 K-state multinomial must represent the history of the time series

- Many high-dimensional data sets contain rich componential structure
- Hidden Markov Models cannot model such data efficiently: a single, discrete
 K-state multinomial must represent the history of the time series
- ullet To model K bits of information, they need 2^K hidden states

- Many high-dimensional data sets contain rich componential structure
- Hidden Markov Models cannot model such data efficiently: a single, discrete
 K-state multinomial must represent the history of the time series
- ullet To model K bits of information, they need 2^K hidden states

- Many high-dimensional data sets contain rich componential structure
- Hidden Markov Models cannot model such data efficiently: a single, discrete
 K-state multinomial must represent the history of the time series
- ullet To model K bits of information, they need 2^K hidden states

- Many high-dimensional data sets contain rich componential structure
- Hidden Markov Models cannot model such data efficiently: a single, discrete
 K-state multinomial must represent the history of the time series
- ullet To model K bits of information, they need 2^K hidden states
- We seek models with distributed hidden state:

- Many high-dimensional data sets contain rich componential structure
- Hidden Markov Models cannot model such data efficiently: a single, discrete
 K-state multinomial must represent the history of the time series
- ullet To model K bits of information, they need 2^K hidden states
- We seek models with distributed hidden state:
- capacity linear in the number of components

- Many high-dimensional data sets contain rich componential structure
- Hidden Markov Models cannot model such data efficiently: a single, discrete K-state multinomial must represent the history of the time series
- ullet To model K bits of information, they need 2^K hidden states
- We seek models with distributed hidden state:
- capacity linear in the number of components

LINEAR DYNAMICAL SYSTEMS

LINEAR DYNAMICAL SYSTEMS

LINEAR DYNAMICAL SYSTEMS

Characterized by linear-Gaussian dynamics and observations:

$$p(\mathbf{h}_t|\mathbf{h}_t - 1) = \mathcal{N}(\mathbf{h}_t; A\mathbf{h}_{t-1}, Q)$$
 $p(\mathbf{v}_t|\mathbf{h}_t) = \mathcal{N}(\mathbf{v}_t; C\mathbf{h}_t, R)$

- Inference is performed using Kalman smoothing (belief propagation)
- Learning can be done by EM
- Dynamics, observations may also depend on an observed input (control)

LATENT REPRESENTATIONS FOR REAL-WORLD DATA

Data for many real-world problems (e.g. motion capture, finance) is highdimensional, containing complex non-linear relationships between components

Hidden Markov Models

Pro: complex, nonlinear emission model

Con: single K-state multinomial represents entire history

Linear Dynamical Systems

Pro: state can convey much more information

Con: emission model constrained to be linear

LEARNING DISTRIBUTED REPRESENTATIONS

- Simple networks are capable of discovering useful and interesting internal representations of static data
- Perhaps the parallel nature of computation in connectionist models may be at odds with the serial nature of temporal events
- Simple idea: spatial representation of time
- Need a buffer; not biologically plausible
- Cannot process inputs of differing length
- Cannot distinguish between absolute and relative position
- This motivates an **implicit** representation of time in connectionist models where time is represented by its effect on processing

RECURRENT NEURAL NETWORKS

RECURRENT NEURAL NETWORKS

Neural network replicated in time

RECURRENT NEURAL NETWORKS

- Neural network replicated in time
- At each step, receives input vector, updates its internal representation via nonlinear activation functions, and makes a prediction:

$$\mathbf{v}_{t} = W^{hv}\mathbf{v}_{t-1} + W^{hh}\mathbf{h}_{t-1} + \mathbf{b}_{h}$$

$$h_{j,t} = e(v_{j,t})$$

$$\mathbf{s}_{t} = W^{yh}\mathbf{h}_{t} + \mathbf{b}_{y}$$

$$\hat{y}_{k,t} = g(y_{k,t})$$

 Possibly high-dimensional, distributed, internal representation and nonlinear dynamics allow model, in theory, model complex time series

- Possibly high-dimensional, distributed, internal representation and nonlinear dynamics allow model, in theory, model complex time series
- Exact gradients can be computed exactly via Backpropagation Through Time

- Possibly high-dimensional, distributed, internal representation and nonlinear dynamics allow model, in theory, model complex time series
- Exact gradients can be computed exactly via Backpropagation Through Time
- It is an interesting and powerful model. What's the catch?
- Training RNNs via gradient descent fails on simple problems
- Attributed to "vanishing" or "exploding" gradients
- Much work in the 1990's focused on identifying and addressing these issues: none of these methods were widely adopted

- Possibly high-dimensional, distributed, internal representation and nonlinear dynamics allow model, in theory, model complex time series
- Exact gradients can be computed exactly via Backpropagation Through Time
- It is an interesting and powerful model. What's the catch?
- Training RNNs via gradient descent fails on simple problems
- Attributed to "vanishing" or "exploding" gradients
- Much work in the 1990's focused on identifying and addressing these issues: none of these methods were widely adopted

- Possibly high-dimensional, distributed, internal representation and nonlinear dynamics allow model, in theory, model complex time series
- Exact gradients can be computed exactly via Backpropagation Through Time
- It is an interesting and powerful model. What's the catch?
- Training RNNs via gradient descent fails on simple problems
- Attributed to "vanishing" or "exploding" gradients
- Much work in the 1990's focused on identifying and addressing these issues: none of these methods were widely adopted
- Best-known attempts to resolve the problem of RNN training:
- Long Short-term Memory (LSTM) (Hochreiter and Schmidhuber 1997)
- Echo-State Network (ESN) (Jaeger and Haas 2004)

FAILURE OF GRADIENT DESCENT

Two hypotheses for why gradient descent fails for NN:

FAILURE OF GRADIENT DESCENT

Two hypotheses for why gradient descent fails for NN:

• increased frequency and severity of bad local minima

FAILURE OF GRADIENT DESCENT

Two hypotheses for why gradient descent fails for NN:

- increased frequency and severity of bad local minima
- pathological curvature, like the type seen in the Rosenbrock function:

18 May 2012 / 15 Learning Representations of Sequences / G Taylor

(Figures from James Martens)

SECOND ORDER METHODS

Model the objective function by the local approximation:

$$f(\theta + p) \approx q_{\theta}(p) \equiv f(\theta) + \Delta f(\theta)^{T} p + \frac{1}{2} p^{T} B p$$

where p is the search direction and B is a matrix which quantifies curvature

- \bullet In Newton's method, B is the Hessian matrix, H
- By taking the curvature information into account, Newton's method "rescales" the gradient so it is a much more sensible direction to follow
- Not feasible for high-dimensional problems!

Based on exploiting two simple ideas (and some additional "tricks"):

Based on exploiting two simple ideas (and some additional "tricks"):

- ullet For an n-dimensional vector d, the Hessian-vector product Hd can easily be computed using finite differences at the cost of a single extra gradient evaluation
- In practice, the R-operator (Perlmutter 1994) is used instead of finite differences

Based on exploiting two simple ideas (and some additional "tricks"):

- For an n-dimensional vector d, the Hessian-vector product Hd can easily be computed using finite differences at the cost of a single extra gradient evaluation
- In practice, the R-operator (Perlmutter 1994) is used instead of finite differences
- There is a very effective algorithm for optimizing quadratic objectives which requires only Hessian-vector products: linear conjugate-gradient (CG)

Based on exploiting two simple ideas (and some additional "tricks"):

- For an n-dimensional vector d, the Hessian-vector product Hd can easily be computed using finite differences at the cost of a single extra gradient evaluation
- In practice, the R-operator (Perlmutter 1994) is used instead of finite differences
- There is a very effective algorithm for optimizing quadratic objectives which requires only Hessian-vector products: linear conjugate-gradient (CG)

This method was shown to effectively train RNNs in the pathological long-term dependency problems they were previously not able to solve (Martens and Sutskever 2011)

- Many sequences are high-dimensional and have complex structure
- RNNs simply predict the expected value at the next time step
- Cannot capture multi-modality of time series

- Many sequences are high-dimensional and have complex structure
- RNNs simply predict the expected value at the next time step
- Cannot capture multi-modality of time series
- Generative models (like Restricted Boltzmann Machines) can express the negative log-likelihood of a given configuration of the output, and can capture complex distributions

- Many sequences are high-dimensional and have complex structure
- RNNs simply predict the expected value at the next time step
- Cannot capture multi-modality of time series
- Generative models (like Restricted Boltzmann Machines) can express the negative log-likelihood of a given configuration of the output, and can capture complex distributions
- By using binary latent (hidden) state, we gain the best of both worlds:
- the nonlinear dynamics and observation model of the HMM without the simple state
- the representationally powerful state of the LDS without the linear-Gaussian restriction on dynamics and observations

DISTRIBUTED BINARY HIDDEN STATE

- Using distributed binary representations for hidden state in directed models of time series makes inference difficult. But we can:
- Use a Restricted Boltzmann Machine (RBM) for the interactions between hidden and visible variables. A factorial posterior makes inference and sampling easy.
- Treat the visible variables in the previous time slice as additional **fixed** inputs

Hidden variables (factors) at time t

Visible variables (observations) at time t

One typically uses binary logistic units for both visibles and hiddens

$$p(h_j = 1|\mathbf{v}) = \sigma(b_j + \sum_i v_i W_{ij})$$

$$p(v_i = 1|\mathbf{h}) = \sigma(b_i + \sum_j h_j W_{ij})$$

MODELING OBSERVATIONS WITH AN RBM

- So the distributed binary latent (hidden) state of an RBM lets us:
- Model complex, nonlinear dynamics
- Easily and exactly infer the latent binary state given the observations
- But RBMs treat data as static (i.i.d.)

Hidden variables (factors) at time t

Visible variables (joint angles) at time t

MODELING OBSERVATIONS WITH AN RBM

- So the distributed binary latent (hidden) state of an RBM lets us:
- Model complex, nonlinear dynamics
- Easily and exactly infer the latent binary state given the observations
- But RBMs treat data as static (i.i.d.)

Hidden variables (factors) at time t

MODELING OBSERVATIONS WITH AN RBM

- So the distributed binary latent (hidden) state of an RBM lets us:
- Model complex, nonlinear dynamics
- Easily and exactly infer the latent binary state given the observations

CONDITIONAL RESTRICTED BOLTZMANN MACHINES (Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)

(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)

Start with a Restricted Boltzmann Machine (RBM)

(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)

- Start with a Restricted Boltzmann Machine (RBM)
- Add two types of directed connections

(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)

- Start with a Restricted Boltzmann Machine (RBM)
- Add two types of directed connections
- Autoregressive connections model short-term, linear structure

Recent history

(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)

- Start with a Restricted Boltzmann Machine (RBM)
- Add two types of directed connections

- Autoregressive connections model short-term, linear structure

- History can also influence dynamics through hidden layer

Recent history

(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)

- Start with a Restricted Boltzmann Machine (RBM)
- Add two types of directed connections

- Autoregressive connections model short-term, linear structure

- History can also influence dynamics through hidden layer

Conditioning does not change inference nor learning

Recent history

CONTRASTIVE DIVERGENCE LEARNING

- When updating visible and hidden units, we implement directed connections by treating data from previous time steps as a dynamically changing bias
- Inference and learning do not change

• Learn a CRBM

- Learn a CRBM
- Now, treat the sequence of hidden units as "fully observed" data and train a second CRBM

- Learn a CRBM
- Now, treat the sequence of hidden units as "fully observed" data and train a second CRBM
- The composition of CRBMs is a conditional deep belief net

- Learn a CRBM
- Now, treat the sequence of hidden units as "fully observed" data and train a second CRBM
- The composition of CRBMs is a conditional deep belief net
- It can be fine-tuned generatively or discriminatively

- Model is trained on ~8000 frames of 60fps data (49 dimensions)
- 10 styles of walking: cat, chicken, dinosaur, drunk, gangly, graceful, normal, old-man, sexy and strong
- 600 binary hidden units per layer
- < 1 hour training on a modern workstation

MOTION SYNTHESIS WITH A 2-LAYER CDBN

 $\begin{array}{c|c} & & & \\ & & & \\ \mathbf{h}_{t}^{0} & \\ & & \\$

- Model is trained on ~8000 frames of 60fps data (49 dimensions)
- 10 styles of walking: cat, chicken, dinosaur, drunk, gangly, graceful, normal, old-man, sexy and strong
- 600 binary hidden units per layer
- < 1 hour training on a modern workstation

MODELING CONTEXT

- A single model was trained on 10 "styled" walks from CMU subject 137
- The model can generate each style based on initialization
- We cannot prevent nor control transitioning
- How to blend styles?
- Style or person labels can be provided as part of the input to the top layer

MODELING CONTEXT

- A single model was trained on 10 "styled" walks from CMU subject 137
- The model can generate each style based on initialization
- We cannot prevent nor control transitioning
- How to blend styles?
- Style or person labels can be provided as part of the input to the top layer

MULTIPLICATIVE INTERACTIONS

- Let latent variables act like gates, that dynamically change the connections between other variables
- This amounts to letting variables multiply connections between other variables: three-way multiplicative interactions
- Recently used in the context of learning correspondence between images (Memisevic & Hinton 2007, 2010) but long history before that

GATED RESTRICTED BOLTZMANN MACHINES (GRBM)

Two views: Memisevic & Hinton (2007)

INFERRING OPTICAL FLOW: IMAGE "ANALOGIES"

- Toy images (Memisevic & Hinton 2006)
- No structure in these images, only how they change
- Can infer optical flow from a pair of images and apply it to a random image

18 May 2012 / 28 Learning Representations of Sequences / G Taylor Ontont Interest Asminout Mobilitions

BACK TO MOTION STYLE

- Introduce a set of latent "context" variables whose value is known at training time
- In our example, these represent "motion style" but could also represent height, weight, gender, etc.
- The contextual variables gate every existing pairwise connection in our model

LEARNING AND INFERENCE

- Learning and inference remain almost the same as in the standard CRBM
- We can think of the context or style variables as "blending in" a whole "sub-network"
- This allows us to share parameters across styles but selectively adapt dynamics

18 May 2012 / 30 Learning Representations of Sequences / G Taylor

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

18 May 2012 / 31 Learning Representations of Sequences / G Taylor

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

Input layer Ou (e.g. data at time t-1:t-N) (e.g.

Output layer (e.g. data at time t)

18 May 2012 / 31 Learning Representations of Sequences / G Taylor

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

Learning Representations of Sequences / G Taylor

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

Input layer Output (e.g. data at time t-1:t-N) (e.g. data

Output layer (e.g. data at time t)

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

18 May 2012 / 31 Learning Representations of Sequences / G Taylor

OVERPARAMETERIZATION

- Note: weight Matrix $W^{\mathbf{v},\mathbf{h}}$ has been replaced by a tensor $W^{\mathbf{v},\mathbf{h},\mathbf{z}}$! (Likewise for other weights)
- The number of parameters is $O(N^3)$ per group of weights
- More, if we want sparse, overcomplete hiddens
- However, there is a simple yet powerful solution!

(e.g. data at time t-1:t-N)

Output layer (e.g. data at time t)

Hidden layer

Style features \mathbf{h}_t j

$W_{ijl}^{\mathbf{vh}}$

Output layer (e.g. data at time t)

FACTORING

$$W_{ijl}^{\mathbf{vh}} = \sum_{f} W_{if}^{\mathbf{v}} W_{jf}^{\mathbf{h}} W_{lf}^{\mathbf{z}}$$

18 May 2012 / 33 Learning Representations of Sequences / G Taylor

(Figure adapted from Roland Memisevic)

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

18 May 2012 / 34 Learning Representations of Sequences / G Taylor

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

(e.g. data at time t)

18 May 2012 / 34 Learning Representations

Learning Representations of Sequences / G Taylor

(e.g. data at time t-1:t-N)

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

Learning Representations of Sequences / G Taylor

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

18 May 2012 / 34 Learning Representations of Sequences / G Taylor

Input layer Output layer (e.g. data at time t-1:t-N) (e.g. data at time t)

PARAMETER SHARING

18 May 2012 / 35 Learning Representations of Sequences / G Taylor

MOTION SYNTHESIS: FACTORED 3RD-ORDER CRBM

 \mathbf{y}_t $\mathbf{v}_{< t}$ \mathbf{v}_t \mathbf{v}_t \mathbf{v}_t

- Same 10-styles dataset
- 600 binary hidden units
- 3×200 deterministic factors
- 100 real-valued style features
- < 1 hour training on a modern workstation
- Synthesis is real-time

18 May 2012 / 36 Learning Representations of Sequences / G Taylor

MOTION SYNTHESIS: FACTORED 3RD-ORDER CRBM

- Same 10-styles dataset
- 600 binary hidden units
- 3×200 deterministic factors
- 100 real-valued style features
- < 1 hour training on a modern workstation
- Synthesis is real-time

18 May 2012 / 36 Learning Representations of Sequences / G Taylor

ACTIVITY RECOGNITION

3D convolutional neural networks

Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu (2010)

Convolutional gated restricted Boltzmann machines

Graham Taylor, Rob Fergus, Yann LeCun, and Chris Bregler (2010)

Space-time deep belief networks

Bo Chen, Jo-Anne Ting, Ben Marlin, and Nando de Freitas (2010)

Stacked convolutional independent subspace analysis

Quoc Le, Will Zou, Serena Yeung, and Andrew Ng (2011)

18 May 2012 / 37

Learning Representations of Sequences / G Taylor

3D CONVNETS FOR ACTIVITY RECOGNITION

Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu (ICML 2010)

- One approach: treat video frames as still images (LeCun et al. 2005)
- Alternatively, perform 3D convolution so that discriminative features across space and time are captured

18 May 2012 / 38 Learning Representations of Sequences / G Taylor

Multiple convolutions applied to contiguous frames to extract multiple features

Images from Ji et al. 2010

3D CNN ARCHITECTURE

Hardwired to extract:

1)grayscale

2)grad-x

3)grad-y

4)flow-x

5)flow-y

2 different 3D filters applied to each of 5 blocks independently Subsample spatially

3 different 3D filters applied to each of 5 channels in 2 blocks

Two fullyconnected layers

Action units

18 May 2012 / 39 Learning Representations of Sequences / G Taylor

3D CONVNET: DISCUSSION

- Good performance on TRECVID surveillance data (CellToEar, ObjectPut, Pointing)
- Good performance on KTH actions (box, handwave, handclap, jog, run, walk)
- Still a fair amount of engineering: person detection (TRECVID), foreground extraction (KTH), hard-coded first layer

Image from Ji et al. 2010

18 May 2012 / 40 Learning Representations of Sequences / G Taylor

LEARNING FEATURES FOR VIDEO UNDERSTANDING

- Most work on unsupervised feature extraction has concentrated on static images
- We propose a model that extracts motionsensitive features from pairs of images
- Existing attempts (e.g. Memisevic & Hinton 2007, Cadieu & Olshausen 2009) ignore the pictorial structure of the input
- Thus limited to modeling small image patches

Transformation feature maps

Image pair

18 May 2012 / 41 Learning Representations of Sequences / G Taylor

GATED RESTRICTED BOLTZMANN MACHINES (GRBM)

Two views: Memisevic & Hinton (2007)

18 May 2012 / 42 Learning Representations of Sequences / G Taylor

CONVOLUTIONAL GRBM

Graham Taylor, Rob Fergus, Yann LeCun, and Chris Bregler (ECCV 2010)

• Like the GRBM, captures third-order interactions

Shares weights at all locations in an image

• As in a standard RBM, exact inference is efficient

 Inference and reconstruction are performed through convolution operations

18 May 2012 / 43 Learning Representations of Sequences / G Taylor

(Taylor et al. ECCV 2010)

Input

Output

18 May 2012 / 44 Learning Representations of Sequences / G Taylor

(Taylor et al. ECCV 2010)

Feature maps

18 May 2012 / 44 Learning Representations of Sequences / G Taylor

(Taylor et al. ECCV 2010)

Input

Output

18 May 2012 / 44 Learning Representations of Sequences / G Taylor

18 May 2012 / 44 Learning Representations of Sequences / G Taylor

18 May 2012 / 44 Learning Representations of Sequences / G Taylor

HUMAN ACTIVITY: KTH ACTIONS DATASET

Time -

- We learn 32 feature maps
- 6 are shown here
- KTH contains 25 subjects performing 6 actions under 4 conditions
- Only preprocessing is local contrast normalization
- Motion sensitive features (1,3)
- Edge features (4)
- Segmentation operator (6)

Hand clapping (above); Walking (below)

18 May 2012 / 45 Learning Representations of Sequences / G Taylor

ACTIVITY RECOGNITION: KTH

Prior Art	Acc (%)	Convolutional architectures	Acc. (%)
HOG3D+KM+SVM	85.3	convGRBM+3D-convnet+logistic reg.	88.9
HOG/HOF+KM+SVM	86.1	convGRBM+3D convnet+MLP	90.0
HOG+KM+SVM	79.0	3D convnet+3D convnet+logistic reg.	79.4
HOF+KM+SVM	88.0	3D convnet+3D convnet+MLP	79.5

- Compared to methods that do not use explicit interest point detection
- State of the art: 92.1% (Laptev et al. 2008) 93.9% (Le et al. 2011)
- Other reported result on 3D convnets uses a different evaluation scheme

18 May 2012 / 46 Learning Representations of Sequences / G Taylor

ACTIVITY RECOGNITION: HOLLYWOOD 2

- 12 classes of human action extracted from 69 movies (20 hours)
- Much more realistic and challenging than KTH (changing scenes, zoom, etc.)
- Performance is evaluated by mean average precision over classes

Method	Average Prec.			
Prior Art (Wang et al. survey 2009):				
HOG3D+KM+SVM	45.3			
HOG/HOF+KM+SVM	47.4			
HOG+KM+SVM	39.4			
HOF+KM+SVM	45.5			
Our method:				
GRBM+SC+SVM	46.8			

18 May 2012 / 47 Learning Representations of Sequences / G Taylor

SPACE-TIME DEEP BELIEF NETWORKS

Bo Chen, Jo-Anne Ting, Ben Marlin, and Nando de Freitas (NIPS Deep Learning Workshop 2010)

- Two previous approaches we saw used discriminative learning
- We now look at a <u>generative</u> method, opening up more applications
- e.g. in-painting, denoising
- Another key aspect of this work is demonstrated learned invariance
- Basic module: Convolutional Restricted Boltzmann Machine (Lee et al. 2009)

18 May 2012 / 48 Learning Representations of Sequences / G Taylor

ST-DBN

- Key idea: alternate layers of spatial and temporal Convolutional RBMs
- Weight sharing across all CRBMs in a layer
- Highly overcomplete: use sparsity on activations of max-pooling units

Spatial pooling layer

ST-DBN

- Key idea: alternate layers of spatial and temporal Convolutional RBMs
- Weight sharing across all CRBMs in a layer
- Highly overcomplete: use sparsity on activations of max-pooling units

Spatial pooling layer

Temporal pooling layer

18 May 2012 / 49 Learning Representations of Sequences / G Taylor Images from Chen al. 2010

MEASURING INVARIANCE

- Measure invariance at each layer for various transformations of the input
- Use measure proposed by Goodfellow et al. (2009)

Invariance scores computed for Spatial Pooling Layer 1 (S1), Spatial Pooling Layer 2 (S2) and Temporal Pooling Layer 1 (T1). Higher is better.

18 May 2012 / 50 Learning Representations of Sequences / G Taylor Images from Chen al. 2010

DENOISING AND RECONSTRUCTION

Operations not possible with a discriminative approach

18 May 2012 / 51 Learning Representations of Sequences / G Taylor

Images from Chen al. 2010

STACKED CONVOLUTIONAL INDEPENDENT SUBSPACE ANALYSIS (ISA)

Quoc Le Will Zou, Serena Yeung, and Andrew Ng (CVPR 2011)

- Use of ISA (right) as a basic module
- Learns features robust to local translation; selective to frequency, rotation and velocity
- Key idea: scale up ISA by applying convolution and stacking

Typical filters learned by ISA when trained on static images (organized in pools - red units above)

18 May 2012 / 52 Learning Representations of Sequences / G Taylor

Images from Le et al. 2010

SCALING UP: CONVOLUTION AND STACKING

- The network is built by "copying" the learned network and "pasting" it to different parts of the input data
- Outputs are then treated as the inputs to a new ISA network
- PCA is used to reduce dimensionality

Simple example: 1D data

Image from Le et al. 2010

18 May 2012 / 53 Learning Representations of Sequences / G Taylor

LEARNING SPATIO-TEMPORAL FEATURES

- Inputs to the network are blocks of video
- Each block is vectorized and processed by ISA
- Features from Layer 1 and Layer
 2 are combined prior to
 classification

18 May 2012 / 54 Learning Representations of Sequences / G Taylor

VELOCITY AND ORIENTATION SELECTIVITY

Velocity tuning curves for five neurons in an ISA network trained on Hollywood2 data

Edge velocities (radius) and orientations (angle) to which filters give maximum response
Outermost velocity: 4 pixels per frame

18 May 2012 / 55 Learning Representations of Sequences / G Taylor

18 May 2012 / 56 Learning Representations of Sequences / G Taylor

 Learning distributed representations of sequences

18 May 2012 / 56 Learning Representations of Sequences / G Taylor

 Learning distributed representations of sequences

• For high-dimensional, multi-modal data: CRBM, FCRBM

 Learning distributed representations of sequences

• For high-dimensional, multi-modal data: CRBM, FCRBM

Activity recognition: 4 methods

18 May 2012 / 56 Learning Representations of Sequences / G Taylor

ACKNOWLEDGEMENTS

- Faculty at U Toronto: Geoff Hinton, Sam Roweis
- Faculty at NYU: Chris Bregler, Rob Fergus, Yann LeCun
- •Students and researchers at U Toronto, NYU
- •Funding: CIFAR, DARPA, ONR, Google