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¢ Applications: in particular, modeling human pose and activity

- highly structured data: e.g. motion capture
- weakly structured data: e.g. video
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OUTLINE

Learning representations from sequences

Existing methods, challenges
@@@

iComposabIe, distributed-state models for sequences ” /
vy

EConditional Restricted Boltzmmann Machines and their variants

) 2 5
| | '

'Using learned representations to analyze video
A brief and (incomplete survey of deep learning for activity recognition
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TIME SERIES DATA

e Time is an integral part of many human behaviours (motion, reasoning)
* |n building statistical models, time is sometimes ignored, often problematic

e Models that do incorporate dynamics fail to account for the fact that data is
often high-dimensional, nonlinear, and contains long-range dependencies

Graphic: David McCandless, informationisbeautiful.net
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TIME SERIES DATA

e Time is an integral part of many human behaviours (motion, reasoning)
* |n building statistical models, time is sometimes ignored, often problematic

e Models that do incorporate dynamics fail to account for the fact that data is
often high-dimensional, nonlinear, and contains long-range dependencies

....................................................................................................................................................................................................

Today we will discuss a number of models that have been developed to
address these challenges

Graphic: David McCandless, informationisbeautiful.net
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VECTOR AUTOREGRESSIVE MODELS

M
Vi = b—l— Z Ath_m —I—et

m=1

e Have dominated statistical time-series analysis for approx. 50 years
e Can be fit easily by least-squares regression
e Can fail even for simple nonlinearities present in the system

- but many data sets can be modeled well by a linear system
¢ \Vell understood; many extensions exist
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MARKOYV (“N-GRAM”) MODELS

e Sequential observations may have nonlinear dependence

e Fully observable

¢ Derived by assuming sequences have Markov property:
p(vil{vi™'}) = p(vil{vi_n})

¢ [his lead joint: -
is leads to joint p({vI D) =p{{v'DH [ p(vel{viZp})

o t=N-+1
e Number of parameters exponential in V!
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HIDDEN MARKOV MODELS (HMM)

Introduces a hidden
state that controls the
dependence of the

current observation ! ! !

on the past
Vi_2 Vi—1 Vi

e Successful in speech & language modeling, biology
¢ Defined by 3 sets of parameters:

- Initial state parameters, 7
- Transition matrix, A
- Emission distribution, P(Vi|ht) T
e Factored joint distribution:  p({h}, {v¢}) = p(h1)p(vilha) | [ p(helhi—1)p(vilhe)

t=2
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HMM INFERENCE AND LEARNING

o Typically three tasks we want to perform in an HMM:

- Likelihood estimation
- Inference
- Learning
¢ All are exact and tractable due to the simple structure of the model

e Forward-backward algorithm for inference (belief propagation)
e Baum-Welch algorithm for learning (EM)
e \/iterbi algorithm for state estimation (max-product)
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e Many high-dimensional data sets contain rich componential structure

¢ Hidden Markov Models cannot model such data efficiently: a single, discrete
K-state multinomial must represent the history of the time series

e To model K bits of information, they need 2* hidden states
¢ \/\Ve seek models with distributed hidden state:
- capacity linear in the number of components
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e Many high-dimensional data sets contain rich componential structure

¢ Hidden Markov Models cannot model such data efficiently: a single, discrete
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LINEAR DYNAMICAL SYSTEMS

Graphical model is the

same as HMM but

with real-valued state |

vectors : . .
Vi—2 Vi—1 @

e Characterized by linear-Gaussian dynamics and observations:

P(ht\ht — 1) = N(ht; Ah;_q, Q) p(Vt‘ht) — N(Vt; Chy, R)

e [nference is performed using Kalman smoothing (belief propagation)
® | carning can be done by EM
e Dynamics, observations may also depend on an observed input (control)

Saturday, June 16, 2012



LATENT REPRESENTATIONS FOR REAL-WORLD DATA

Data for many real-world problems (e.g. motion capture, finance) is high-
dimensional, containing complex non-linear relationships between components

Hidden Markov Models
Pro: complex, nonlinear emission model
Con: single K -state multinomial represents entire history

Linear Dynamical Systems
Pro: state can convey much more information
Con: emission model constrained to be linear

Q@O0 OO0
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LEARNING DISTRIBUTED REPRESENTATIONS

e Simple networks are capable of discovering useful and interesting internal
representations of static data

¢ Perhaps the parallel nature of computation in connectionist models may be at
odds with the serial nature of temporal events

e Simple idea: spatial representation of time

- Need a buffer; not biologically plausible
- Cannot process inputs of differing length
- Cannot distinguish between absolute and relative position
¢ This motivates an implicit representation of time in connectionist models
where time is represented by its effect on processing
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RECURRENT NEURAL NETWORKS

(Figure from Martens and Sutskever)
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RECURRENT NEURAL NETWORKS

———— £ /'/ YA\‘ S = = = /'/ — — Ny [ =
5’#‘» o 3’«»‘%&?5@4&%
ht —1 ‘ } ht ht 41 ‘

e Neural network replicated in time

(Figure from Martens and Sutskever)
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RECURRENT NEURAL NETWORKS

(] 5K
viee (OO vOO v OO

e Neural network replicated in time

¢ At each step, receives input vector, updates its internal representation via
nonlinear activation functions, and makes a prediction:

vi =Wy, 1 +Whh, | +b,
hje = e(vjz)

St — Wyhht + by

?)k,t — g(yk,t)

(Figure from Martens and Sutskever)
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¢ Possibly high-dimensional, distributed, internal representation and nonlinear
dynamics allow model, in theory, model complex time series

¢ Exact gradients can be computed exactly via Backpropagation Through Time
e |t is an interesting and powerful model. What’s the catch?

- Training RNINs via gradient descent fails on simple problems

- Attributed to “vanishing” or “exploding” gradients

- Much work in the 1990’s focused on identifying and addressing these
Issues: none of these methods were widely adopted
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TRAINING RECURRENT NEURAL NETWORKS

¢ Possibly high-dimensional, distributed, internal representation and nonlinear
dynamics allow model, in theory, model complex time series

¢ Exact gradients can be computed exactly via Backpropagation Through Time
e |t is an interesting and powerful model. What’s the catch?

- Training RNINs via gradient descent fails on simple problems
- Attributed to “vanishing” or “exploding” gradients
- Much work in the 1990’s focused on identifying and addressing these
Issues: none of these methods were widely adopted
¢ Best-known attempts to resolve the problem of RNN training:

- Long Short-term Memory (LSTM) (Hochreiter and Schmidhulber 1997)
- Echo-State Network (ESN) (Jaeger and Haas 2004)
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FAILURE OF GRADIENT DESCENT

Two hypotheses for why gradient descent fails for NN:
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FAILURE OF GRADIENT DESCENT

Two hypotheses for why gradient descent fails for NN:

¢ increased frequency and severity of bad local minima

(Figures from James Martens)

Saturday, June 16, 2012



FAILURE OF GRADIENT DESCENT

Two hypotheses for why gradient descent fails for NN:

¢ increased frequency and severity of bad local minima

¢ pathological curvature, like the type seen in the
Rosenbrock function:

f(z,y) = (1 — )% +100(y — 2%)*

loglF)

igh reduction
and curvature

low reduction
‘ and curvature

18 May 2012 / 15
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(Figures from James Martens)
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SECOND ORDER METHODS

e Model the objective function by the local approximation:

F(0+ ) ~ ao(p) = (6) + AF(O) T+ 50" By

where p is the search direction and B is a matrix which quantifies curvature
¢ |n Newton’s method, B is the Hessian matrix, H

e By taking the curvature information into account, Newton’s method “rescales”
the gradient so it is a much more sensible direction to follow

¢ Not feasible for high-dimensional problems!

(Figure from James Martens)
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HESSIAN-FREE OPTIMIZATION

Based on exploiting two simple ideas (and some additional “tricks”):
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e For an n-dimensional vector d, the Hessian-vector product Hd can easily be
computed using finite differences at the cost of a single extra gradient evaluation

- In practice, the R-operator (Perimutter 1994) is used instead of finite differences
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HESSIAN-FREE OPTIMIZATION

Based on exploiting two simple ideas (and some additional “tricks”):

e For an n-dimensional vector d, the Hessian-vector product Hd can easily be
computed using finite differences at the cost of a single extra gradient evaluation

- In practice, the R-operator (Perimutter 1994) is used instead of finite differences

® There is a very effective algorithm for optimizing quadratic objectives which
requires only Hessian-vector products: linear conjugate-gradient (CG)

éThis method was shown to effectively train RNNs in the pathological :
long-term dependency problems they were previously not able to solve
(Martens and Sutskever 2011) =
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GENERATIVE MODELS WITH DISTRIBUTED STATE

e Many sequences are high-dimensional and have complex structure

- RNNs simply predict the expected value at the next time step
- Cannot capture multi-modality of time series

e Generative models (like Restricted Boltzmann Machines) can express the
negative log-likelihood of a given configuration of the output, and can capture
complex distributions

e By using binary latent (hidden) state, we gain the best of both worlds:

- the nonlinear dynamics and observation model of the HMM without the
simple state

- the representationally powerful state of the LDS without the linear-Gaussian
restriction on dynamics and observations
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DISTRIBUTED BINARY HIDDEN STATE

¢ Using distributed binary representations
for hidden state in directed models of time
series makes inference difficult. But we
can:

- Use a Restricted Boltzmann Machine
(RBM) for the interactions between
hidden and visible variables. A factorial
posterior makes inference and sampling
easy.

- Treat the visible variables in the previous
time slice as additional fixed inputs

Saturday, June 16, 2012
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MODELING OBSERVATIONS WITH AN RBM

¢ S0 the distributed binary latent (hidden) state of an RBM lets us:

- Model complex, nonlinear dynamics
- Easily and exactly infer the latent binary state given the observations
e But RBMs treat data as static (i.i.d.)

Hidden variables (factors) at time t

JOX _

@OOO0O

Visible variables (joint angles) at time t
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MODELING OBSERVATIONS WITH AN RBM

¢ S0 the distributed binary latent (hidden) state of an RBM lets us:

- Model complex, nonlinear dynamics
- Easily and exactly infer the latent binary state given the observations
e But RBMs treat data as static (i.i.d.)

Hidden variables (factors) at time t

JOX _

'Y Yolele e
\ — A W\
Visible variables (joint angles) at time t

E—1
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MODELING OBSERVATIONS WITH AN RBM

¢ S0 the distributed binary latent (hidden) state of an RBM lets us:

- Model complex, nonlinear dynamics
- Easily and exactly infer the latent binary state given the observations
e But RBMs treat data as static (i.i.d.)

Hidden variables (factors) at time t

JOX _

@O OO0
Visible variables (joint angles) at tir:et\
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CONDITIONAL RESTRICTED BOLTZMANN MACHINES

(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)
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(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)
o Start with a Restricted Boltzmann Machine (RBM)
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CONDITIONAL RESTRICTED BOLTZMANN MACHINES

(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)
o Start with a Restricted Boltzmann Machine (RBM)

e Add two types of directed connections
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(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)
o Start with a Restricted Boltzmann Machine (RBM)

e Add two types of directed connections
- Autoregressive connections model short-term, linear structure
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(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)
o Start with a Restricted Boltzmann Machine (RBM)

e Add two types of directed connections

- Autoregressive connections model short-term, linear structure
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Hidden layer
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CONDITIONAL RESTRICTED BOLTZMANN MACHINES

(Taylor, Hinton and Roweis NIPS 2006, JMLR 2011)
o Start with a Restricted Boltzmann Machine (RBM)

e Add two types of directed connections

- Autoregressive connections model short-term, linear structure
- History can also influence dynamics through hidden layer

Hidden layer

e Conditioning does not change inference nor learning h,

—> Visible layer

Recent history
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CONTRASTIVE DIVERGENCE LEARNING

Fixed O® O Fixed OWO

Aj ~ dat\ %> recon

Fixed @ Q Fixed X @ Q

iter =0 iter =1
(data) (reconstruction)

\ 4

¢ \\hen updating visible and hidden units, we implement directed connections
by treating data from previous time steps as a dynamically changing bias

¢ Inference and learning do not change
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STACKING: THE CONDITIONAL DEEP BELIEF NETWORK
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e | carn a CRBM

Hidden layer

Visible layer
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STACKING: THE CONDITIONAL DEEP BELIEF NETWORK

e | carn a CRBM

e Now, treat the sequence of hidden units as “fully
observed” data and train a second CRBM

Hidden layer

Visible layer
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STACKING: THE CONDITIONAL DEEP BELIEF NETWORK

e | carn a CRBM

e Now, treat the sequence of hidden units as “fully
observed” data and train a second CRBM

" : " Hidden layer
e The composition of CRBMs is a conditional deep w | d
belief net //4'
Hidden layer
Visible layer
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STACKING: THE CONDITIONAL DEEP BELIEF NETWORK

e | carn a CRBM

e Now, treat the sequence of hidden units as “fully
observed” data and train a second CRBM

Hidden layer

e The composition of CRBMSs is a conditional deep

belief net //' I
e [t can be fine-tuned generatively or discriminatively 0

—> —> Hidden layer

—> — Visible layer
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MOTION SYNTHESIS WITH A 2-LAYER CDBN

e Model is trained on ~8000 frames
of 60fps data (49 dimensions)

¢ 10 styles of walking: cat, chicken,
dinosaur, drunk, gangly, graceful,
normal, old-man, sexy and strong

¢ 600 binary hidden units per layer

e < 1 hour training on a modern
workstation
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MODELING CONTEXT

¢ A single model was trained on 10 “styled”
walks from CMU subject 137

® [he model can generate each style based
on initialization

¢ \/\Ve cannot prevent nor control
transitioning

e How to blend styles?

e Style or person labels can be provided as
part of the input to the top layer

Saturday, June 16, 2012
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MODELING CONTEXT

Labels
* A single model was trained on 10 “styled” o
walks from CMU subject 137

P
® [he model can generate each style based
on initialization / I
@

¢ \/\Ve cannot prevent nor control
" ' _’ 1
transitioning |, |Tdden fayer

e How to blend styles? \/l

e Style or person labels can be provided as ® [
part of the input to the top layer —>»  |—» | Visible layer

Hidden layer
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MULTIPLICATIVE INTERACTIONS

e | et latent variables act like gates, that
dynamically change the connections between
other variables

® This amounts to letting variables multiply
connections between other variables: three-way
multiplicative interactions

¢ Recently used in the context of learning
correspondence between images (Memisevic &
Hinton 2007, 2010) but long history before that
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GATED RESTRICTED BOLTZMANN MACHINES (GRBM)
Two views: Memisevic & Hinton (2007)




INFERRING OPTICAL FLOW: IMAGE “ANALOGIES”

e Toy images (Memisevic & Hinton 20006) E E

® No structure in these images, only how
they change

e Can infer optical flow from a pair of
Images and apply it to a random image
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BACK TO MOTION STYLE

¢ Introduce a set of latent “context” variables
whose value is known at training time

® [n our example, these represent “motion style”
but could also represent height, weight, gender,
etc.

® [he contextual variables gate every existing
pairwise connection in our model
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LEARNING AND INFERENCE

¢ | carning and inference remain almost the same
as in the standard CRBM

¢ \/Ve can think of the context or style variables as
“blending in” a whole “sub-network”

¢ This allows us to share parameters across
styles but selectively adapt dynamics
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SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
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SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

Hidden layer

Vit @ V‘;@

Input layer Output layer
(e.g. data at time t-1:1-N)  (e.g. data at time t)
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SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

Hidden layer v, QQ@‘@ Style Hidden layer

N he|)
Zy Q@Q Features

Vit @ V‘;@ Vet @ Vi @
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SUPERVISED MODELING OF STYLE

Hidden layer

V<t @ V‘;@

Input layer Output layer
(e.g. data at time t-1:1-N)  (e.g. data at time t)
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OVERPARAMETERIZATION

vy @@@‘@ Style Hidden layer

e Note: weight Matrix WV-" has been replaced by \
a tensor YRz | (Likewise for other weights) h |())
Zy Q@Q Features

* The number of parameters is O(N?) - per
group of weights

® More, if we want sparse, overcomplete hiddens

e However, there is a simple yet powerful solution!

V<t @ Vi @

Input layer Output layer
(e.g. data at time t-1:t-N)  (e.g. data at time t)
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FACTORING

h
o Wz‘; [
W /g h
Wiy
Vv
if

171

vh v h Z
Wi = WHWEW
I

Style features

QWO

Hidden layer

Wyh

171

Vi

h,

@

9,

Output layer
(e.g. data at time 1)

(Figure adapted from Roland Memisevic)
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SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
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SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

Hidden layer

Vit @ V‘;@

Input layer Output layer
(e.g. data at time t-1:1-N)  (e.g. data at time t)
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SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

Hidden layer Hidden layer

h, |(7)

ver|(®) V| ver|® ve |

Input layer Output layer Input layer Output layer
(e.g. data at time t-1:1-N)  (e.g. data at time t) (e.g. data at time t-1:t-N)  (e.g. data at time t)
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SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

Hidden layer v, QQ@‘@ Style Hidden layer

N he|)
Zy Q@Q Features

ver|(®) V| ver|® ve |

Input layer Output layer Input layer Output layer
(e.g. data at time t-1:1-N)  (e.g. data at time t) (e.g. data at time t-1:t-N)  (e.g. data at time t)
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SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

Hidden layer v, QQ@‘@ Style Hidden layer

N he|)
Zy Q@Q Features

ver|(®) V| ver|® ve |

Input layer Output layer Input layer Output layer
(e.g. data at time t-1:1-N)  (e.g. data at time t) (e.g. data at time t-1:t-N)  (e.g. data at time t)
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SUPERVISED MODELING OF STYLE

(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)

Hidden layer v, QQ@‘@ Style Hidden layer

N he|)
Zy Q@Q Features

Vit @ V‘;@ Vet @ Vi @

Input layer Output layer Input layer Output layer
(e.g. data at time t-1:1-N)  (e.g. data at time t) (e.g. data at time t-1:t-N)  (e.g. data at time t)
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SUPERVISED MODELING OF STYLE

Hidden layer

V<t @ V‘;@

Input layer Output layer
(e.g. data at time t-1:1-N)  (e.g. data at time t)
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SUPERVISED MODELING OF STYLE

Hidden layer

V<t @ V‘;@

Input layer Output layer
(e.g. data at time t-1:1-N)  (e.g. data at time t)
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(Taylor, Hinton and Roweis ICML 2009, JMLR 2011)
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PARAMETER SHARING

O0® O0®
~, © N

OO OO
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[ @00
MOTION SYNTHESIS: X
FACTORED 3RD-ORDER CRBM
v, |® v |

e Same 10-styles dataset

¢ 600 binary hidden units

e 3x200 deterministic factors

¢ 100 real-valued style features

e < 1 hour training on a modern
workstation

e Synthesis is real-time

summary
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[ @00
MOTION SYNTHESIS: X
FACTORED 3RD-ORDER CRBM
v, |® ve (D)

e Same 10-styles dataset

¢ 600 binary hidden units

e 3x200 deterministic factors

¢ 100 real-valued style features

e < 1 hour training on a modern
workstation

e Synthesis is real-time

summary
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ACTIVITY RECOGNITION

3D convolutional neural networks R % %
: . . . . ; |r_ II__I' I h
: Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu (2010) rr |T|_- rr. nnnnnnnnnn n T Nt

\\\\\
@f

136@21x12

EConvqutionaI gated restricted Boltzmann machines
: Graham Taylor, Rob Fergus, Yann LeCun, and Chris Bregler (2010)

......................................................................................................................................................................... Y e
ettt ettt bttt ettt ettt )ty b
: . . © e (nve) VLY SN~ o :
:Space-time deep belief networks G L L s o | Sk |
. . . \ A A .
: Bo Chen, Jo-Anne Ting, Ben Marlin, and Nando de Freitas (2010) CRBM) (CRBM) (CRBM SRE) Maxepool
: £5< K 7’ ££X Max-pool a pixel ggg Convolve :
: K55 &F5F) |&&E ) Convolve o “*Zw r

nyaz T g w n ‘J”ﬁ‘ﬂwl éw :

%ch = npy BPz-7 '

v(© vy v v(nve) W p(ﬂ) (1) p(nv )

:Stacked convolutional independent subspace analysis
Quoc Le, Will Zou, Serena Yeung, and Andrew Ng (2011)
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3D CONVNETS FOR ACTIVITY RECOGNITION

Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu (ICML 2010)
e One approach: treat video frames as still images (LeCun et al. 2005)

¢ Alternatively, perform 3D convolution so that discriminative features across
space and time are captured

(a) 2D convolution

temporal

temporal

Multiple convolutions applied to contiguous frames
to extract multiple features

Images from Ji et al. 2010

(b) 3D convolution
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3D CNN ARCHITECTURE

e -
W

7x6x3 3D

7x7x3 3D 2x2

convolution

.

input:
7@60x40

II__

LN

C4:
13*6@21x12

H1:
C2: S3:
33@60x40 232@54x34 232@27x17

Subsample 3 different 3D filters
spatially applied to each of 5
channels in 2 blocks

2 different 3D filters
applied to each of 5
blocks independently

Hardwired to extract:
1)grayscale
2)grad-x
3)grad-y
4)flow-x
5)flow-y
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full
connnection

i convolution . li ¢ convolution

|| r subsampllng r . subsampling .
x C6:
128@1x1

>

S5:
13*6@7x4

Image from Ji et al. 2010

Two fully-
connected
layers

Action units



3D CONVNET: DISCUSSION

e Good performance on TRECVID surveillance data (CellloEar, ObjectPut,
Pointing)

e Good performance on KTH actions (box, handwave, handclap, jog, run,
walk)

e Still a fair amount of engineering: person detection (TRECVID), foreground
extraction (KTH), hard-coded first layer

Image from Ji et al. 2010
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LEARNING FEATURES FOR VIDEO UNDERSTANDING

Transformation
feature maps

e Most work on unsupervised feature extraction
has concentrated on static images

¢ \/\Ve propose a model that extracts motion-
sensitive features from pairs of images

e EXxisting attempts (e.g. Memisevic & Hinton
2007, Cadieu & Olshausen 2009) ignore the
pictorial structure of the input

¢ Thus limited to modeling small image patches

Image pair
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GATED RESTRICTED BOLTZMANN MACHINES (GRBM)
Two views: Memisevic & Hinton (2007)




CONVOLUTIONAL GRBM

Graham Taylor, Rob Fergus, Yann LeCun, and Chris Bregler (ECCV 2010)

<«

k

N

P—

Poiling é;pi Né
e | ke the GRBM, captures third-order interactions e g N, /
e Shares weights at all locations in an image z /
¢ As in a standard RBM, exact inference Is efficient raeya;ru ) N,

¢ |nference and reconstruction are performed
through convolution operations

o
o % ¢
R
R
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A
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MORE COMPLEX EXAMPLE OF “ANALOGIES”

(Taylor et al. ECCV 2010)
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MORE COMPLEX EXAMPLE OF “ANALOGIES”

(Taylor et al. ECCV 2010)

Feature maps
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MORE COMPLEX EXAMPLE OF “ANALOGIES”

(Taylor et al. ECCV 2010)

Feature maps

/

Output
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(Taylor et al. ECCV 2010)

MORE COMPLEX EXAMPLE OF “ANALOGIES”
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Feature maps

Output

Input

Output

Input
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MORE COMPLEX EXAMPLE OF “ANALOGIES”

Feature maps
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HUMAN ACTIVITY: KTH ACTIONS DATASET

* We learn 32 feature maps g Il NN I N B R
+6 are shown here K A K K

"
& H

e KTH contains 25 subjects = --nnnnn---

berforming 6 actions under 4 EHERIEIEIEIEINIRIN)

conditions o BRAEIEIEIEAEEAR AR IR AR

FIEINIEIEIEIEIE TN AN AN

e Only preprocessing is local |
Time

contrast normalization

eMotion sensitive features (1,3) WEEFFRLRIPINILEE

eEcige features (4 7 EEREERRIFIIINE
e e R ITAINI
EEENEREF IS
EEENE RIS

Hand clapping (above); Walking (below)
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ACTIVITY RECOGNITION: KTH

Convolutional

Prior Art architectures
HOG3D+KM+SVM 85.3 |convGRBM+3D-convnet+logistic reg. 88.9
HOG/HOF+KM+SVM 86.1 |convGRBM+3D convnet+MLP 90.0
HOG+KM+SVM 79.0 [3D convnet+3D convnet+logistic reg. 79.4
HOF+KM+SVM 88.0 |3D convnet+3D convnet+MLP 79.5

e Compared to methods that do not use explicit interest point detection
e State of the art: 92.1% (Laptev et al. 2008) 93.9% (Le et al. 2011)
e Other reported result on 3D convnets uses a different evaluation scheme
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ACTIVITY RECOGNITION: HOLLYWOOD 2

e 12 classes of human action extracted from 69 movies (20 hours)

e Much more realistic and challenging than KTH (changing scenes, zoom, etc.)

¢ Performance Is evaluated by mean average precision over classes

Method Average Prec.

Prior Art (Wang et al. survey 2009):
HOG3D+KM+SVM 45.3
HOG/HOF+KM+SVM 47.4
HOG+KM+SVM 39.4
HOF+KM+SVM 45.5
Our method:

GRBM+SC+SVM 46.8
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SPACE-TIME DEEP BELIEF NETWORKS

Bo Chen, Jo-Anne Ting, Ben Marlin, and Nando de Freitas (NIPS Deep Learning Workshop 2010)

® TwO previous approaches we saw used
discriminative learning

p/W

¢ \/\Ve now look at a generative method, $5 q % |
opening up more applications i — b W pee
- e.g. in-painting, denoising Aot ﬁ%{q

. . g g g Convolve
e Another key aspect of this work is

demonstrated learned invariance / / image v

¢ Basic module: Convolutional Restricted / image from Chen al. 2010
Boltzmann Machine (Lee et al. 2009)
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ST-DBN

e Key idea: alternate layers of spatial and temporal Convolutional RBMs
¢ \Veight sharing across all CRBMs in a layer

e Highly overcomplete: use sparsity on activations of max-pooling units

p(O) p(l) p(nw)

Spatial pooling layer

18 May 2012 / 49 Images from Chen al. 2010
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ST-DBN

e Key idea: alternate layers of spatial and temporal Convolutional RBMs
¢ \Veight sharing across all CRBMs in a layer

¢ Highly overcomplete: use sparsity on activations of max-pooling units

s(0) g(nst)
p© o) p(v) £

. nSt
503 7¢!W’| Stack
CRBM

T55 Max-pool

a pixel 5“715 Convolve

WI
np -¢|W| %
nP'y z--"

W ) (= - L2

p©@ O p(nve)

S,

Spatial pooling layer Temporal pooling layer

18 May 2012 / 49 Images from Chen al. 2010
earning Representations of Sequences / G Taylor

Saturday, June 16, 2012



MEASURING INVARIANCE

¢ Measure invariance at each layer for various transformations of the input
¢ Use measure proposed by Goodfellow et al. (2009)

Firing rate of unit J Translation Zooming 2D Rotation 3D Rotation
| 40 — 40 40 40
' nvariant = Iél
ﬁ —=== Overly Selective 35| | 39 =1 35| %l 35] T ]
l"l —-=== Not Selective 30t 1 30t 1 30t 1 301 Q
P = =
AL\ 25| | 25] | 25} { 25]
vl 4}1’,% R Y SE, N 207 1 20} 1 207 1 20}
1" l'l 157 1 15§ 1 15§ 1157 =
P b ot _._ _____________
/' T Degree of Transformation 10 S1 S2 TH 10 S1 82 Tt 10 S1 82 Tt 10 S1 82 Tt

I I l l E! Invariance scores computed for Spatial Pooling Layer 1 (S1), Spatial Pooling Layer

2 (S2) and Temporal Pooling Layer 1 (T1).
Higher is better.
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DENOISING AND RECONSTRUCTION

e Operations not possible with a discriminative approach

i | A

Test f c ted test f Reconstruction: Reconstruction:
estirame orrupted test frame 1 layer ST-DBN 2 layer ST-DBN
A &' A
y P ' Observed gazes
\ N
3!
. Reconstructions
18 May 2012 / 51 Images from Chen al. 2010
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STACKED CONVOLUTIONAL INDEPENDENT SUBSPACE
ANALYSIS (ISA)

Quoc Le Will Zou, Serena Yeung, and Andrew Ng (CVPR 2011)

Layer 2 units
e Use of ISA (right) as a basic module

Layer 1 units

¢ | earns features robust to local
translation; selective to frequency,
rotation and velocity

Input

e Key idea: scale up ISA by applying
convolution and stacking

Typical filters learned by ISA when trained on
static images
(organized in pools - red units above)
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SCALING UP: CONVOLUTION AND STACKING

Simple example: 1D data

® The network is built by “copying” the
learned network and “pasting” it to
different parts of the input data

e Qutputs are then treated as the inputs S\ combinedoutput
to a new ISA network _—

whitening

e PCA is used to reduce dimensionality

ISA

First half of input Second half of input

Image from Le et al. 2010
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LEARNING SPATIO-TEMPORAL FEATURES

® [Inputs to the network are blocks
of video

e Fach block Is vectorized and
processed by ISA

e Features from Layer 1 and Layer
2 are combined prior to
classification

Saturday, June 16, 2012

Local feature

AL
1 | Video block




VELOCITY AND ORIENTATION SELECTIVITY

normalized response

15 2 2.5 35 P
velocity (pixelAframe)

Edge velocities (radius) and orientations (angle) to which
filters give maximum response
Outermost velocity: 4 pixels per frame

Velocity tuning curves for five neurons in an ISA network
trained on Hollywood2 data
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SUMMARY
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SUMMARY

¢ | earning distributed representations of
segquences
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SUMMARY O

¢ | earning distributed representations of O
segquences
y | OOO@O
\ h, |(D
2| @DQO
¢ For high-dimensional, multi-modal data: X
CRBM, FCRBM
Vo @ Vi @
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SUMMARY

¢ | earning distributed representations of

Sequences

¢ For high-dimensional, multi-modal data:
CRBM, FCRBM

¢ Activity recognition: 4 methods
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