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of Stenger's Topological Degree Formula 
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Summary. A formula due to F. Stenger expresses the topological degree of a 
continuous mapping defined on a polyhedron in R" as a constant times a 
sum of determinants of n x n matrices. We replace these determinant eva- 
luations by a scanning procedure which examines their associated matrices 
and at each of n - 1  steps discards at least half of the matrices remaining 
from the previous step. Finally we obtain a lower bound for the number of 
matrices present originally, thus giving an estimate for the minimum amount 
of labour needed in many cases to compute the degree using this method. 

Subject Classifications: AMS(MOS): 55C25. 

I. Introduction 

Let P", n > l, be a connected n-dimensional polyhedron (definition below) in R" 
and let 4": P"~R" be continuous with 4~"(p)+0"=(0,0 . . . . .  0) Vpeb(P"), the 
boundary of P". Then the topological degree of 4" on P" relative to 0 ", an 
integer denoted by d(q~",P ",0"), can be defined [1,7]. A new formula for 
d(~", P", 0"), which rendered computation of the degree far more feasible than 
was previously thought to be the general case, was given in [7, equation (4.26)]. 

At present there is much interest in using this formula to compute the degree 
[4, 5, 8, 9]. The formula involves a sum of determinants of n x n matrices, whose 
evaluation is time-consuming in practice. In this paper we replace these de- 
terminant evaluations by a procedure which scans their associated matrices for 
entries of + 1 in certain combinations. This procedure is easy to implement and 
at each of n - 1  steps can be arranged so as to discard at least half of the 
matrices remaining from the previous step. A less general version of this 
procedure was recently given by R.B. Kearfott [4, 5]; however the proof given in 
[4, 5] is quite different from the one described here. 

We conclude by giving a lower bound for the number of n x n matrices in a 
sufficient refinement (definition below) of b(P ~) in the case where d(~ ", P", 0 ~) 4=0 
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(for most applications this is the interesting case [1, 6]). This gives an estimate 
for the minimum amount of labour needed to compute d(~", P", 0") using our 
procedure. 

2. Background Material 

We shall usually use superscripts to denote dimension and subscripts for 
indexing. 

Defini t ion 2.1. The points % ,  a 1 . . . .  , aq in R" are said to be linearly independent if 
the vectors a o - a l ,  a o - a  2 . . . .  , a o - a  q are linearly independent. A q-simplex, 
q__>0, is the closed convex hull of q + t  linearly independent points called its 
vertices. 

An n-simplex in R" together with a list of its vertices can be assigned an 
orientation number which is equal to + 1 or - 1 .  This number is invariant 
(changes sign) under an even (odd) permutation of the vertices. The assignment 
is equivalent to orienting R" itself (see [1]). The orientation of R" induces an 
orientation on the vector subspaces of R" and their translations in a natural way. 
Thus a q-simplex lying in an oriented R" (so q < n) must lie in a translation of a 
q-dimensional subspace of R" and consequently has an assigned orientation 
number. We shall denote oriented q-simplexes by 

Sq =(Yo Yl "'" Yq}, 

where the Yi, 0 < i < q, are points in R". We write 

( Y o Y l  Y2 ... Yq} = - ( Y l  YoYz ... Yq} = ( Y z Y o Y l  ... Yq}, 

etc. 

Defini t ion 2.2. A q-dimensional polyhedron P~ is a union of a finite number of 
oriented q-~implexes S~, i=  1, 2 . . . . .  rn, such that for every pair $7, S~ of these 
simplexes either S 7 c~ S~ is the empty set or S~ c~ S~ is a common face, i.e., an r- 
simplex (0 < r < q) whose vertices are vertices of both S~ and S~. We write 

P~= ~ S/q. 
i= l  

Defini t ion 2.3. A q-region is a connected q-dimensional polyhedron. 
For  the rest of this paper let P" be an n-region and suppose 4" 

= (q~ 1, rp 2 . . . . .  q~,): P" --* R" is continuous with q~" (p) =~ 0 ~ = (0, 0 . . . . .  0) V p ~ b (P"). 
the boundary of P". Then the topological degree of q~" on P" relative to 0", 
denoted by d(~" ,P" ,  0~), is defined [1, 7]. We always assume that the (n-1)-  
simplexes in any representation of b(P") are oriented in such a way that we can 
write 

k 

b(P ~) = ~ tj \~1 / ''(~ . . . .  Y~)), t~ = + 1, 
j = l  
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where all possible cancellations have been carried out (see [1]) (for a p roof  that 
b(P") is an (n -1) -d imens iona l  polyhedron see [8]). 

For  t any real number,  set 

- 1  if t<O  

sgn t = 0 if t = 0  

1 if t>O. 

Definition2.4. If n = l ,  b ( P 1 ) = ( x m ) - ( x o )  (say) is said to be sufficiently refined 
relative to sgn4~l=sgnq0l  if q)l(Xo)q~1(xm)~O. If n > l ,  b(W) is said to be 
sufficiently refined relative to sgn 4" if b(W) has been subdivided so that it may 
be written as a union of a finite number  of (n -1) - reg ions  fl]-1, fl~-1 . . . .  , fl~,-~ in 
such a way that  

(i) the (n -1 ) -d imens iona l  interiors of the fl~'-~ are pairwise disjoint; 
(ii) at least one of  the functions ~0~ . . . . .  ~o,, say ~0s,, does not  vanish on each 

region fiT- 1. 
(iii) if q3s, # 0  on fiT-1, then b(flT-1) is sufficiently refined relative to sgn , - 1  

where ~ -  1 = ((p 1 . . . .  , ~s,, . . . .  (p,) (A denotes omission). 

Remark. Our Definition 2.4 differs from Definition 4.4 of [7], where an extra 
condit ion is included. However,  this extra condit ion is unnecessary for the proof  
of the results we bor row from [7];  for a full explanation see [8]. 

Notation. For  any q-simplex S q and any function 

F q +  1 = ( ] ) 1 ,  ~2  . . . .  , Yq+ 1): Sq ~Rq+ x 

where S q = (Y l  Y2.. .  Yq+ 1), we will denote by sgn F q + l(sq) the (q + 1) • (q + 1) 
matrix whose (i,j) entry is sgnT;(y~), l < i , j < q + l .  We shall denote  the de- 
terminant of this matr ix by det(sgn F q+ ~ (Sq)). 

Theorem 2.5 ([7, equat ion (4.26)]). Suppose that b(P") has been subdivided into (n 
-1)-regions fl'k -1,  l <_k<m, so that it is sufficiently refined relative to sgnq)"; 
with this subdivision suppose 

l 

b(P") = ~, t k (y~k),.. y~)), t~ = ++_ 1. 
k = l  

Then 

d((b", P", 0 " ) = ~  ~ t k det(sgn qj,((y~k, ... y~)))) (2.1) 
k = l  

Proof. See [7], or for a p roof  via the theory developed in [1] see [8]. 
It is formula (2.1), with its many determinants of n x n matrices, that we seek 

to simplify. 

3. Simplification of the Degree Formula 

Consider the matrices 

t k sgn ~" ( (y~k) . . .  y(nk))), k = 1, 2, ..., l (3.1) 
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whose de terminants  were used to compu te  d(~P", P", 0") in Theo rem 2.5. We now 
give a procedure  which to each matr ix  t k sgn ~" assigns a number  called its 
s ignature and denoted by sig(t  k sgn ~"). It  is shown in Theorem 3.2 below that 
when these signatures are added we get d (~  ", P", 0"). 

Procedure. Choose  integers r i and A i, i = 1, 2 . . . . .  n, with 1 _-< ~ _-< i and Ai = + 1 or 
- 1 V i .  

Choose  f rom (3.1) all t k sgn ~" whose r. th co lumn consists entirely of  A,'s. 
Assign a t empora ry  s ignature t kA. ( - -1 )  ""+1 to each such matr ix ;  assign the 
signature zero to every other  t k sgn 4~". 

Delete the r. th co lumn from each chosen matr ix  to form an n x ( n - 1 )  array. 
In the r,_ 1 th co lumn of this array pick all combina t ions  of  n - 1 rows having n 
- 1  A,_ l 's as entries, if any such combina t ion  exists (if not, assign t k sgn ~" the 
s ignature zero, i.e., discard the matr ix)  (if the matr ix  is not  discarded there will 
be either one or n such combinat ions) .  

I f  there is one such combina t ion ,  suppose that  the q . _ / h  row is the unique 
row with entry 0 or  - A , _ I .  Delete  this row to give an ( n - 1 )  x ( n - 1 )  matrix 
and assign a t empora ry  signature 

tk A,  A,_ l ( - 1 ) r . +  l+ . . . .  +q.-, 

to the matrix.  
I f  there are n such combina t ions  (i.e., r,_ 1 th co lumn contains  n A._ l's) then 

deleting each row in turn gives n - 1  A ,_ l ' s  in the 1;,_1 tn column. D o  this, 
obta ining n ( n -  1) x ( n -  1) matr ices with associated t empora ry  signatures 

tkA ~ A,_ 1 ( -  1) ""+ 1+ . . . .  +q,_ ~, 

th where the q,_ 1 row was the one deleted (so %_1 runs through the values 
1, 2, . . . ,n) .  

N o w  deal with each ( n -  1)x ( n - 1 )  matr ix  just  as each original n x n matrix 
was dealt  with after assigning the first t empora ry  signature, replacing n by n - 1  
throughout .  Cont inue  reducing until left with 1 x 1 matrices.  At  this stage the 
sum of the t empora ry  signatures of  those 1 x 1 matr ices whose ancestor  was a 
p a r t i c u l a r  t k sgn cb" is t aken  as the signature of  that  t k sgn 4~". Finally add all the 
signatures of  the t k sgn 4~". 

Observation3.1. For  n = l ,  suppose  b ( P 1 ) = ( x m ) - ( X o ) .  Then  d(~l ,  P l , 0  I) is 
defined iff (pl(xm)~ox(Xo)+ 0 (so we immediate ly  have a sufficient ref inement  by 
definition 2.4) and in fact 

d(~X, p l ,  0)=�89 c b l ( x , , ) - s g n  cbl(Xo)} [1, 7]. 

To  apply  the procedure  here, of  necessity r l = l .  As usual A l e { - 1 , 1 } .  If 
sgn ~bl(x.,)=A 1, then 

sig (sgn ~1 (x, ,))=A 1 ( -  1) r '+ ~ =A1 ; 

if not, the signature is zero. If sgn 4~l(Xo)=A 1, then 

sig(sgn �9 1 (x0)) = _ A 1 ; 
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if not, the signature is zero. Finally the signatures are added. By examining the 
various cases we see that the procedure calculates d(cb 1, p1, 01). 

Before going on to the general case n > 1 we introduce some notation. 
Let J ,  denote  the subset of {1, 2 . . . . .  m} such that j~J. implies that % , 4 : 0  on 

fl~-1 with sgn%, [a7 - ,=A ., Then equations (4.15) and (4.16) of [7] may be 
combined in our  nota t ion as 

d(dP",P",O")=(-1)~"+I A. ~ d(q~n-1, r. , f l jn- l ,  0n--1)" 
J~Jn 

For each j6J,  take 

. (k)" 5 - 1  = Z y . .  
k~Kj 

(3.2) 

SO 

b(flT-1)= Z ~ ( -  1) I+1 (y]k)....~Ik)... y~k,} 
k~Kj i= 1 

(" denotes omission) (see [-1]) with associated matrices 

( -  1) i+1 sgn 4," -1 ((y]k)... f~Ik).., y~k))), 

i = 1, 2 . . . .  , n, k~Kj, jeJ, .  (3.3) 

Theorem 3.2. Suppose b(P") is sufficiently refined relative to sgn q~" with notation 
as above. Fix the choice of r i and Ai(1 <i<=n) in the procedure. 

Then 
(i) the procedure  computes  d(~", P", 0") for n > 1 
(ii) if sgn (b"(S"- 1) is an n • n matrix, n>2 ,  whose rj th column consists entirely 

of ASs for j = n - 1 ,  n, then sig(sgn ~" (S" - l ) )=0 .  

Proof. By observat ion 3.1 above (i) holds for n = l .  We use the following 
argument for the rest of the proof:  fix v > 1. Show that (i) true for n = v -  1 =~ (ii) 
true for n = v ~ ( i )  true for n=v. 

Fix v > l  and assume that (i) holds for n = v - 1 .  Choose a v-simplex S ~ 
"~-(X 0 X 1 . . .  Xv )  and a cont inuous function F v =(T~, Y2 . . . .  ,7~): S ~ R ~  such that 

sgnTj(x~)=(i,j) entry of sgn~/'~(S v-~) for l < i , j < v  

and moreover  

sgnv , j=Aj  on all of S v for j = v - 1  and v 

(sgn Vj(Xo) is arbi t rary for j 4: r~_ 1, rv). Then d(~ ~, S ~, 0 ~) is defined and equal to 
zero because F~(x)+O ~ for any xeS  ~ [1, p. 32]. We get a sufficient refinement of  
b(S ~) relative to sgn F v by taking [3~-1=(xl x2 ... x~) with associated coordinate  
function Y,v =~ 0 on fl~- 1, and 

flv2-1"~" i (--1)i (XoXl ""Xi '"X~ ) 
i = 1  
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with associated coordinate function y . . . .  + 0 on fl~- 1. To check (iii) of definition 
2.4 for say ,-1 f12 , we observe that b(fl~ -1) is sufficiently refined relative to 
sgn F,~-) because all of b(fl~-1) may be taken as a (v-2)-region on which 7r~ 4 0  
(this is assuming v>2 ;  the v=2  case is even easier). The other conditions of 
definition 2.4 are easily verified. 

Now (3.2) above gives 

( - 1) rv + 1a v d ( r~ ; -  1, 3 Y  1, 0 ~-  1) = d(r~, S ' ,  0 3  = 0 (3.4) 

However since we are assuming that (i) of the theorem holds for n = v -  1 the 
procedure yields 

d(F_~- i fl[- t, 0~-1) \ r v  ' 

= ~ ( _  1)i+ 1 sig(sgn F~- l ( (x  1 ... xl .-. x~))). 
i = 1  

Thus from (3.4) 

0 = ( -  1)'~+IA~ ~ ( -  1) '+ 1 sig(sgn F~- 1 ( (x l  ... ~, ... x~))) 
i = 1  

=sig(sgn F ~((xl . . ,  x~))), 

by inspection of the procedure. Thus (ii) holds for n = v, since sgn F~((xi . . .  x~)) 
=sgn q,v(S ~- 1). 

We now show that (i) holds for n = v. We are assuming that (i) is true for n = v 
- 1 ,  and since b(fl; -1) is sufficiently refined relative to sgn ~;(1VjeJ~, the 
procedure may be used to calculate ~ d ( r  1, fl;- 1, W- 1). Thus, letting j vary 

j e d v  

over J~, choose from (3.3) all those matrices ( - 1 )  ~+1 sgn ~ - 1  whose r~ i th rv 

column consists entirely of d~_ l's and assign a temporary signature 

( - I ) ' + 1 A ~  l ( - 1 )  . . . .  + 1 = A ~ _ 1 ( - 1 )  . . . .  +~ 

to each. Apply the procedure from this point to compute the signature of each 
chosen ( - 1 ) ~ + ~ s g n ~  -1, then add these signatures. To now calculate 
d(cP ~, P~', 0 ~) use (3.2): multiply the signature of each chosen ( -  1)/+ 1 sgn ~P~( 1 by 
( _  1)~+ 1 d~ and then add these values. 

On the other hand applying the procedure to the matrices in (3.1) means that 
we shall immediately discard all those t k sgn ~ which do not have an rv th 
column consisting entirely of A~'s. We thus retain all t k sgn 4~ ~ corresponding to 
simplexes lying in ~*-1, p~ s for which jeJ~ and possibly as well some t k sgn r 
associated with other fl~-l; however these spurious tksgn~ ~ are assigned 
signature zero by part (ii) of the theorem since they must have another column 
besides the r~ 'h which consists entirely of + l's or of - l ' s .  Consequently by 
inspection the procedure is seen to coincide with the method given above for 
computing d(q ~*, P~, W). Thus (ii) holds for n = v and the proof is complete. 

Part (ii) of the theorem indicates that there is superfluous computation in the 
original procedure. We now give a modified procedure designed to avoid this, 
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and which also discards matrices arising in the procedure which have a column 
consisting entirely of zeroes, since such matrices are clearly discarded at some 
stage. 
Modif ied procedure. Chosen integers r i and A i, i =  1, 2 . . . .  ,n, with 1 <=ri<=i and 
A i = + t  or - 1 V i .  

Choose from (3.1) all t k sgn ~" whose r, 'h column consists entirely of A,'s. 
Assign a temporary signature tkA,(--1) r-+l to each such matrix; assign the 
signature zero to every other t k sgn 4~". 

If any other column of this matrix is constant (i.e., all its entries have the 
same value) assign the signature zero to the matrix, i.e., discard it. Otherwise 
delete the r, th column to form an n x ( n - 1 )  array. In the r n_,th column of this 
array pick the combination of n -  1 rows having n -  1 A,_ ,'s as entries, if such a 
combination exists; if not, discard the matrix. Suppose the qn_l th row is the 
unique row with entry 0 or - A  n i. Delete this row to give an ( n - l ) x ( n - 1 )  
matrix and assign a temporary signature 

t k A .  A n _ l ( _ _ l ) r . + l +  . . . .  +q . -1  to tksgnO n. 

Deal with this ( n -  1) x ( n -  1) matrix just as we dealt with the n x n situation 
after assigning the first temporary signature, replacing n by n - 1 .  Continue 
reducing until left with a 1 x 1 matrix. The temporary signature at this stage is 
the signature of t k sgn ~n, i.e., 

s ig( tksgn ~ n ) = t k A . A . _  l . . . A I ( - - 1 )  r~+ l +r"+ l+q"- l+'''+r*+q' 

Finally add the signatures of the chosen t k sgn ~n. 

Remark 3.3. It can be shown that with a judicious choice of r n and A n the number  
of matrices retained after the first step of the modified procedure is less than the 

1 
original number by a factor of at worst ~ ,  and by choosing r i and Ai carefully 

for n - 1 > i > 2 we can discard at least half of the remaining matrices at each of 
these n - 2  steps. It is easy to see how this may be accomplished by examining 
the proof  of Corollary 3.5 below. 

Remark 3.4. In the modified procedure it is clear that the signature of any matrix 
is - 1 ,  0, or +1.  

Corollary 3.5 (to Theorem 3.2). Suppose b(P n) is sufficiently refined relative to 
sgn q~n. Let  d' = [d(4~ n, Pn, 0n)l. Then b( P") is subdivided into at least d' n 2 n- l (n - 1 ) -  
simplexes. 

Proof. By Theorem 3.2 the modified procedure yields d(~", pn, 0 n) for any choice 
o f r  i, A~ (1 < i < n )  satisfying l<r~<i ,  A~e{-1,  1} Vi. 

There are 2n possibilities for the ordered pair (r n, An). Any matrix chosen for 
two distinct pairs will have signature zero (two columns will be constant). 
Consequently we can assume that there is no overlap in choice; we count the 
minimum number  of matrices needed to give [d(dl)n,P ", On)l=d ' for a fixed pair 
( r ,  zl) then multiply this number by 2n. 
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Fix (r., A,). Consider the matrices t k sgn q~" chosen for this pair. Delete the 
r. th column from each tksgn~" to leave an n x ( n - 1 )  array. Choose r,_l 
satisfying l < r , _ ~ < n - 1 .  Then the matrices chosen at this stage for the pair 
(r,_ 1, 1) cannot overlap with those chosen for the pair (r,_ 1, - 1) if n > 2, because 
ovarlapping implies the existence of an n x ( n -  1) array with a column contain- 
ing ( n -  1) + l's and ( n -  1) - l's. Thus the minimum number of matrices needed 
for the pair (r., A.) is at least twice the minimum number needed for the pair 
(r ,_ l ,A ,_O.  

We can apply the least argument repeatedly going from the i th to the (i-- 1) t~ 

stage for i>  2. Each stage yields a factor of 2, so with the original factor of 2 n 
this gives a factor n 2 "-a. 

When i--2 is reached all that can be said is that by Remark 3.4 at least d' 
matrices are needed. This gives the final lower bound of d' n 2"- x. 

Corollary3.6 Suppose b(P") is sufficiently refined relative to sgn~b". I f  
d(~", P", 0")+0, then b(P") is subdivided into at least n 2 " - l ( n -  1)-simplexes. 

Proof. Immediate from Corollary 3.5. 

Remark 3.7. The result of Corollary 3.5 can be improved for n > 6  if we recall 
formula (2.1): 

1 l 
d(cb", P", 0")=~U~( ~ tk det(sgn ~n((y(k)... y~k)))). 

Z n . k =  1 

By Hadamard's determinant theorem [2], It k det(sgn~")[<n "/2 for all k, and it 
follows under the hypotheses of Corollary 3.5 that the above sum must contain 
at least d' 2"n !In "/2 terms; for n > 6 this is greater than d' n2"-1 (if d '+  0). 

A further improvement, valid for all n >  1, may be obtained as follows. For 
any matrix sgn~b"(S"-1), if there exists a choice of (r i, A i), 1 < i < n ,  for which 
sig(sgn ~"(S"-1))~0, it can be then shown that Idet(sgn ~b"(S"-1))[ <2"-~.  Thus 
by Corollary 3.5 there are at least d'n2"-~ determinants in (2.1), each having 
absolute value at most 2"-1. Now, using the same argument as in the previous 
paragraph, it is straightforward to show that the sum in (2.1) contains at least 

1 d'2"n 2,_2 ) d'n2"-  + ~ ( ( n -  1 ) ! -  terms. 

We conjecture that in fact the lower bound can be increased to 2d 'n!  Then 
Corollary 3.6 would have the lower bound 2 n! If so, this is certainly the best 
possible estimate: let P" be the cube of side 2 in R" with vertices all of whose 
coordinates are +_ 1. We give R" the standard 'counterclockwise' orientation. If 
q~"(x)=x for all x in P", then it is easy to show that d(~",P",O")=l. Now [3] 
gives a simplicial decomposition of P" which, as can be checked, readily yields a 
sufficient refinement of b(P") relative to sgn ~", and this sufficient refinement 
contains 2 n! ( n -  1)-simplexes. 
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