
Search Problems for Speech

and Audio Sequences

by

Eugene Weinstein

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

September 2009

Mehryar Mohri—Advisor

c© Eugene Weinstein

All Rights Reserved, 2009

To my family

iv

Acknowledgments

To fully acknowledge the direct and indirect contributions of each one of my

family, friends, and colleagues that has helped me move towards the successful

completion of this thesis would surely require more pages than the technical

content. The following is my attempt to thank those that have contributed

the most, which is doubtlessly bound to result in an incomplete list.

Words cannot express my gratitude to my parents, Alla Bogomolnaya and

Alexander Weinstein. By nurturing my curiosity from a very early age, my

parents have instilled in me a passion for technology and its mathematical and

scientific foundations. From this came my never-ending desire to tinker with

computers, which eventually resulted in me pursuing my Ph.D. and completing

this thesis.

Throughout the course of my graduate school experience I have benefited

tremendously from the support and encouragement of my family and friends. I

thank Wenjun Jing for being by my side and always believing in me throughout

these four years. My sister, Ellen Weinstein, has been a daily source of support

and encouragement. David Vener has offered me much-needed advice and help

v

in numerous tough situations. I thank also my step-parents and my extended

family for taking care of me during this time.

My advisor, Mehryar Mohri, has taught me more than anybody other than

my parents. Academically, I thank him for helping me develop a capacity and

desire for scientific rigor, a thorough understanding of a number of theoretical

and applied aspects of computer science, and an ability to evaluate critically

my own work and that of others. Personally, I am indebted to him for pushing

me to realize my potential as a researcher and for supporting me through the

good and the difficult times of my Ph.D. years.

I also thank Pedro Moreno, my host at Google, for three years of fantastic

collaboration. I have benefited immensely from his expertise in the founda-

tions, design, and implementation of speech recognition systems. His guidance

has helped me tremendously in the day-to-day grind of graduate student life.

I am also indebted to the other members of my thesis committee, Juan

Pablo Bello, Ralph Grishman, and Dennis Shasha, who have taken the time

to read my drafts and to give me thorough and helpful comments that have

helped me significantly improve this thesis.

The nine years I spent at MIT before starting my Ph.D. gave me the solid

foundation I needed to embark on a research career. Jim Glass advised me

during my master’s degree work and beyond, and I thank him for showing me

the value and the excitement of research work. Anant Agarwal supervised me

in my four years as a research staff member, and gave me an opportunity to

work on a number of extremely exciting projects. Larry Rudolph’s mentorship

vi

helped me navigate the complexities of the academic world and to develop my

own individual research mentality. Ken Steele and Jason Waterman were great

collaborators in many efforts within the Oxygen project.

At NYU, I was fortunate to share an office with Ashish Rastogi, who not

only helped me in many ways with my classes and research, but who also

became a good friend. Afshin Rostamizadeh and Ameet Talwalkar were much

farther away (next door), but nevertheless I will miss chatting with them about

research and life during our coffee breaks.

At Google, I have enjoyed being part of an incredible team working on

speech recognition products and research. Specifically, Cyril Allauzen, Michiel

Bacchiani, Mike Cohen, Michael Riley, and Johan Schalkwyk all helped me

substantially during the course of this work. In addition, Corinna Cortes was

kind enough to take a personal interest in helping me navigate the corporate

environment. I also thank Adam Berenzweig for providing the music collection

on which the music identification experiments in this thesis were conducted.

I would also like to acknowledge my friends, who have all supported me

tremendously throughout the course of this thesis. I was fortunate to have

had the advice and support of Craig Springer and Igor Belakovskiy during the

ups and downs of these four years. Jon Yi volunteered to read through my

thesis draft and gave me very useful comments. While I cannot mention all

my friends by name here, I am grateful to all of them for helping make this

experience a fruitful and fun one. I was truly touched to see a number of my

friends at my defense, and I thank them for having taken the time to attend.

vii

Finally, I thank my running partner and furry companion, Max, for making

my life more joyful over the past year.

viii

Abstract

The modern proliferation of very large audio and video databases has created

a need for effective methods of indexing and searching highly variable or un-

certain data. Classical search and indexing algorithms deal with clean input

sequences. However, an index created from speech or music transcriptions

is marked with errors and uncertainties stemming from the use of imperfect

statistical models in the transcription process. This thesis presents novel algo-

rithms, analyses, and general techniques and tools for effective indexing and

search that not only tolerate but exploit this uncertainty.

We have devised a new music identification technique in which each song is

represented by a distinct sequence of music sounds, called “music phonemes.”

We learn the set of music phonemes, as well as a unique sequence of music

phonemes characterizing each song, using an unsupervised algorithm. We also

create a compact mapping of music phoneme sequences to songs. Using these

techniques, we construct an efficient and robust large-scale music identification

system.

We have further designed new algorithms for compact indexing of uncer-

ix

tain inputs based on suffix and factor automata and given novel theoretical

guarantees for their space requirements. We show that the suffix automaton

or factor automaton of a set of strings U has at most 2Q − 2 states, where

Q is the number of nodes of a prefix-tree representing the strings in U . We

also describe matching new linear-time algorithms for constructing the suffix

automaton S or factor automaton F of U in time O(|S|).

We have also defined a new quality measure for topic segmentation systems

and designed a discriminative topic segmentation algorithm for speech inputs.

The new quality measure improves on previously used criteria and is correlated

with human judgment of topic-coherence. Our segmentation algorithm uses

a novel general topical similarity score based on word co-occurrences. This

new algorithm outperforms previous methods in experiments over speech and

text streams. We further demonstrate that the performance of segmentation

algorithms can be improved by using a lattice of competing hypotheses over

the speech stream rather than just the one-best hypothesis as input.

x

Contents

Dedication . iv

Acknowledgments . v

Abstract . ix

List of Figures . xvi

List of Tables . xxii

1 Introduction 1

1.1 Motivation . 2

1.2 Summary of Contributions . 3

2 Large-Scale Music Identification 7

2.1 Introduction . 7

2.1.1 Previous Work . 8

2.1.2 Summary of Contributions 9

2.1.3 Outline . 10

2.2 Preliminaries . 11

2.2.1 Weighted Finite Automata 11

xi

2.2.2 Weighted Automata and Semirings 12

2.2.3 Efficient Automata . 13

2.3 Acoustic Modeling . 14

2.3.1 Model Initialization . 14

2.3.2 Model Training . 16

2.3.3 Measuring Convergence 17

2.4 Recognition Transducer . 19

2.4.1 Factor Automaton Construction 20

2.4.2 The Algorithmic Challenge of Factor Automata 22

2.4.3 Using Weights to Represent Song Labels 23

2.4.4 Weighted Transducer 25

2.4.5 Compact Representation 26

2.5 Improving Robustness . 26

2.6 Music Detection . 27

2.7 Experiments . 28

2.7.1 Experimental Setup . 28

2.7.2 Results and Discussion 29

2.8 Factor Uniqueness Analysis 31

2.9 Summary . 32

3 Theory and Algorithms for Suffix and Factor Automata 34

3.1 Introduction . 34

3.1.1 Previous Work . 35

xii

3.1.2 Motivation . 36

3.1.3 Summary of Contributions 37

3.1.4 Outline . 38

3.2 Preliminaries . 39

3.3 Factors of a Finite Automaton 39

3.3.1 Suffix Uniqueness of Automata 40

3.3.2 Properties of Suffix-unique Automata 41

3.3.3 Suffix and Factor Automaton Construction Using Gen-

eral Automata Algorithms 42

3.4 Space Bounds for Factor Automata 44

3.4.1 Size of Suffix and Factor Automata 44

3.4.2 Suffix Subset Inclusion 45

3.4.3 Main Size Bound . 49

3.4.4 Implications of Size Bound 53

3.4.5 k-suffix-unique Bound 55

3.5 Suffix Automaton Construction Algorithm 57

3.5.1 Algorithm Pseudocode and Description 58

3.5.2 Algorithm Complexity 63

3.6 Weighted Suffix Automaton Algorithm 71

3.6.1 Algorithm Pseudocode and Description 71

3.6.2 Algorithm Complexity 75

3.7 Experiments . 77

3.7.1 Factor Automata Size Bounds 77

xiii

3.7.2 Correctness Verification 79

3.7.3 Algorithm Speed Improvement 80

3.8 Summary . 81

4 Topic Segmentation 83

4.1 Introduction . 83

4.1.1 Previous Work . 85

4.1.2 Summary of Contributions 92

4.1.3 Outline . 94

4.2 Topic Segmentation Quality 95

4.2.1 Co-occurrence Agreement Probability 95

4.2.2 A General Measure of Topical Similarity 99

4.2.3 New Topic Segmentation Quality Measure 105

4.3 Topic Segmentation Algorithms 107

4.3.1 A General Description of Similarity-based Segmentation

Algorithms . 108

4.3.2 Support Vector Description of Speech and Text 110

4.3.3 Sphere-based Topic Segmentation 114

4.4 Lattice-based Topic Analysis 117

4.5 Experiments . 120

4.5.1 Text Similarity Evaluation 121

4.5.2 Topic Segmentation Evaluation 124

4.5.3 Discussion . 127

xiv

4.6 Summary . 130

5 Conclusion 132

5.1 Future Work . 134

5.1.1 Music Identification . 134

5.1.2 Suffix and Factor Automata 136

5.1.3 Topic Segmentation . 137

Bibliography . 139

xv

List of Figures

2.1 An illustration of changing transcription and alignment for a

particular song during the course of three iterations of acoustic

model training. mpx stands for music phoneme number x and

the vertical bars represent the temporal boundaries between

music phonemes. 18

2.2 Average edit distance per song vs. training iteration. 19

2.3 Finite-state transducer T0 mapping each song to its identifier.

mpx stands for music phoneme number x. 21

2.4 Deterministic and minimal unweighted factor acceptor F (A) for

two songs. 22

2.5 (a) Factor acceptor Fǫ(A) for two songs produced by adding

weights and ǫ-transitions to A. (b) Deterministic and minimal

weighted factor acceptor Fw(A) produced by optimizing Fǫ(A). 24

2.6 Number of factors occurring in more than one song in S for

different factor lengths. 32

3.1 Finite automaton A accepting the strings ac, acab, acba. 40

xvi

3.2 Construction of the suffix automaton using general automata al-

gorithms. (a) The automaton Aǫ produced by adding ǫ-transitions

to automaton A of Figure 3.1. (b) Suffix automaton S(A) of the

automaton A produced by applying ǫ-removal, determinization

and minimization to Aǫ. (c) Factor automaton F (A) produced

from S(A) by making every state final and minimizing. 43

3.3 (a) An automaton A. (b) The corresponding suffix automaton

S(A). To illustrate the notation suff(q) and N(q), note that

starting from state 3 in S(A) and reading the strings ab and ba

we arrive at a final state. Hence, suff(3) = {ab, ba}. The set

of states in A from which ab and/or ba can be read to reach a

final state is N(3) = {2, 1}. 46

3.4 Illustration 1 of Lemma 3.2. (a) An automaton A with paths

uv, uv′, u′v and u′v′ all going through state p. (b) The corre-

sponding suffix automaton S(A) where uv goes through q and

u′v′ goes through q′. 47

3.5 Illustration 2 of Lemma 3.2. uv and u′v are suffixes of the same

string x. Thus, u and u′ are also suffixes of the same string.

Thus, u is a suffix of u′ or vice-versa. 48

xvii

3.6 Branching nodes in the suffix class hierarchy. The root of the

hierarchy is [ǫ], and its children are [a1], . . . , [aNstr+m]. [ai], i =

1, . . . , Nstr are the equivalence classes identified by the distinct

final symbols of each string accepted by A. The other children

of [ǫ] are denoted as [aj], j = Nstr + 1, . . . , Nstr + m. 52

3.7 Algorithm for the construction of the suffix automaton of a

suffix-unique automaton A. 58

3.8 Subroutine of Create-Suffix-Automaton processing a tran-

sition of A from state p to state q labeled with a. 59

3.9 Subroutine of Create-Suffix-Automaton making all states

on the suffix chain of p final. 59

3.10 Construction of the suffix automaton using Create-Suffix-

Automaton. (a) Original automaton A. (b)-(h) Intermediate

stages of the construction of S(A). For each state (n/s, l), n is

the state number, s is the suffix pointer of n, and l is l[n]. . . 62

3.11 Illustration of Lemma 3.6. The dashed line indicates the redi-

rected transition and the notation q[r] indicates state q with

suffix link r. equiv(s)a is a suffix of equiv(q), equiv(m), and

equiv(r) and hence r, m, and q are all reachable by solid paths

ending with equiv(s)a. 66

3.12 Algorithm for the construction of the suffix automaton of a

weighted suffix-unique automaton A. 72

xviii

3.13 Subroutine of Weighted-Create-Suffix-Automaton pro-

cessing a transition of A from state p to state q labeled with

a. 73

3.14 Subroutine of Weighted-Create-Suffix-Automaton mak-

ing states on the suffix chain of p final and setting their final

weights. 74

3.15 Construction of the suffix automaton using Weighted-Create-

Suffix-Automaton. (a) Original automaton A. (b)-(g) In-

termediate stages of the construction of S(A). For each state

n[s, l]/w, n is the state number, s is the suffix pointer of n, l is

l[n], and w is the final weight, if any. 76

3.16 Comparison of automaton sizes for different numbers of songs.

“#States/Arcs Non-factor” is the size of the automaton A ac-

cepting the entire song transcriptions. “# States factor” and

“# Arcs factor” is the number of states and transitions in the

weighted factor acceptor Fw(A), respectively. 78

3.17 Number of strings in U for which the suffix of length k is also

a suffix of another string in U 79

4.1 A comparison of a reference segmentation (top) and a hypothe-

sis segmentation (bottom) for a stream of text sentences. Boxes

indicate sentences and dark lines between boxes denote topic

segment boundaries. 96

xix

4.2 A comparison of a reference segmentation (top) and a hypoth-

esis segmentation (bottom) for a stream of speech utterances.

Boxes indicate utterances and dark lines between boxes denote

topic segment boundaries. Note that the segmentation of speech

into utterances is different in the reference and the hypothesis. 98

4.3 An illustration of windowing a stream of observations. Each

square represents an observation, and the rectangle represents

the current position of the window. To advance the window one

position, the window is updated to add the observation marked

with + and to remove that marked with −. 109

4.4 An illustration of the support vector data description algorithm

in two-dimensional feature space. The sphere (c, R) found by

the algorithm contains eight out of ten observations. The two

observations xi and xj not contained by the sphere are incur a

slack penalty of ξi and ξj , respectively. The three observations

on the sphere boundary are the support patterns. 113

4.5 An illustration of two sets of observations being compared in

feature space based on their sphere descriptors. The dashed

line indicates the shortest distance between the two spheres. . 115

4.6 An example of a speech recognition word lattice. The weights

indicate negative log-likelihoods. 119

xx

4.7 The 100 most similar word pairs in our training corpus. For

each word pair x, y, we list the Porter stemmed words along

with the score sim(x, y) obtained in our training process. . . . 122

4.8 The window distance Knorm(wt, wt+δ) for a representative show.

The vertical lines are true story boundaries from the human-

labeled corpus. A line at sentence t means that sentence t + 1

is from a new story. 123

xxi

List of Tables

2.1 Identification accuracy rates under various test conditions . . . 30

4.1 CoAP and TCM measured on degenerate segmentations. . . . 126

4.2 Topic segmentation quality as measured with CoAP and TCM. 126

4.3 Topic segmentation quality for HTMM when trained on speech

data. 126

xxii

Chapter 1

Introduction

The recent explosion in the quantities of multimedia data available on the In-

ternet has precipitated the need for efficient and robust algorithms for indexing

and searching such data. From campaign speeches to rock concerts, this audio

and video content varies immensely in quality, purpose, and context. Accord-

ingly, providing human access to these data in a valuable way has been a major

challenge for both industry practitioners and academic researchers.

A rudimentary way of enabling search of audio content is by indexing the

metadata associated with each particular recording. This can be compared

roughly to indexing a large collection of PDF documents by merely using

the filename of each document. It is clear that users will want to search the

text found inside the PDF document in addition to the filename, so such an

approach is unlikely to result in a satisfactory index. Analogously for audio

collections, the user stands to benefit from an index of the content itself in

1

addition to that of just the metadata.

Meaningful search of audio content can be enabled by first transcribing the

audio signal in terms of linguistic, acoustic, or conceptual units. These units

can be words or phonemes in the case of speech, notes or chords for music, or

other generic features computed over the audio signal to produce a fingerprint

of the recording. We begin by motivating our foray into audio search with a

theme that spans all the problems we shall be discussing in this thesis.

1.1 Motivation

As we shall see, the algorithms used to enable audio content search must

overcome a primary challenge – that of uncertainty. Uncertainty can occur on

the index creation and/or retrieval side, and the way in which it is managed

directly affects the quality of the index. Correspondingly, this uncertainty

leads to a number of challenging questions related to searching and indexing

audio data. Here are some examples of such questions.

• Which units should be used to represent the audio recordings? For in-

stance, can a polyphonic music sequence be represented with a single

stream of notes? Can a one-best text hypothesis made by a speech rec-

ognizer be used to accurately index a collection of spoken audio record-

ings? Should the units be hand-crafted to correspond to some systematic

representation of audio or should they be learned automatically?

• Which algorithms should be used to construct the index? Should this be

2

a deterministic process, i.e., computing frequency-domain features over

an audio stream, or a probabilistic one, such as transcribing speech audio

with the most likely word sequence according to a model, or a combina-

tion of both? If the transcription process is ambiguous (for example, the

two best competing transcriptions for a single speech recording might

be “recognize speech” and “wreck a nice beach”), what should be done

differently in light of this ambiguity? In fact, can we leverage this ambi-

guity to discover an underlying structure to the audio data aggregated

in our index, and thus improve the quality of our index?

• Which retrieval algorithm should be used? Even if the transcription or

index construction algorithm is unambiguous, there is usually ambiguity

exhibited on the retrieval side. For example, out of a potentially very

large set of candidate audio recordings matching the search query, which

should be selected and returned to the user? How do we disambiguate

among multiple positive matches?

1.2 Summary of Contributions

In this work, we attempt to answer many of the above questions by presenting

novel algorithms, analyses and techniques for enabling or improving audio

search. As has been mentioned above, and as we shall see in detail over the

length of this thesis, audio indexing is indexing in the presence of uncertainty.

This directly leads to a number of research problems. In this thesis, we study

3

three such problems in depth.

• Music identification is content-based search of song databases. We have

developed a new music identification approach, in which each song is rep-

resented by a distinct sequence of music sounds, called “music phonemes”

in our work. Our system learns the set of music phonemes automatically

from training data using an unsupervised algorithm. We also learn a

unique sequence of music phonemes characterizing each song. Finally,

we propose a novel application of factor automata to map sequences of

music phonemes to songs. Using these techniques, we construct a music

identification system for a database of over 15,000 songs achieving an

identification accuracy of 99.4% on undistorted test data, and perform-

ing robustly in the presence of noise and distortions.

• For the music search task above, as well as a number of other indexing

scenarios, a crucial problem is constructing an efficient and scalable index

of a set of strings. In the case of music search, the strings are sequences

of music phonemes and the formalism used to model these sequences is

a factor automaton. Suffix automata and factor automata are minimal

deterministic automata representing the set of all suffixes or substrings

of a set of strings. We present a novel analysis of the size of the suffix

automaton or factor automaton of a set of strings. We show that the

suffix automaton or factor automaton of a set of strings U has at most

2Q−2 states, where Q is the number of nodes of a prefix-tree representing

4

the strings in U , a significant improvement over previous work. Our

analysis suggests that the use of factor automata of automata can be

practical for large-scale applications, a fact that is further supported

by the results of our experiments applying factor automata in music

identification. We also describe in detail a linear-time algorithm for

constructing the suffix automaton S or factor automaton F of U in time

O(|S|). The linear size guarantee for the suffix and factor automata

combined with this linear-time algorithm provides a solid and general

algorithmic basis for the use of such automata for search tasks. For

our music identification system, this novel algorithm helps speed up the

construction of the weighted suffix automaton by a factor of 17 over the

previous algorithms.

• Search of large collections of speech data can be enabled by transcribing

the source audio in terms of linguistic units, such as phonemes or words.

Discovering structural elements in the audio sequence can help us create

an effective index as well as the improve the transcription quality. To

this end, we make several contributions to the task of topic segmenta-

tion, or the automated discovery of topically-coherent segments in speech

or text sequences. We give a new measure of topic segmentation qual-

ity that is more sound than previously used criteria, and is correlated

with human judgment of topic-coherence. We then give two new topic

segmentation algorithms which employ a new measure of text similar-

ity based on word co-occurrence. Both algorithms function by finding

5

extrema in the similarity signal over the text, with the latter algorithm

using a compact support-vector based description of a window of text or

speech observations in word similarity space. In experiments over speech

and text news streams, we show that our novel algorithm outperforms

previous methods as measured both by our new quality measure, as well

as the previously used evaluation techniques. We observe that topic seg-

mentation of speech recognizer output is a more difficult problem than

that of text streams; however, we demonstrate that by using a lattice of

competing hypotheses rather than just the one-best hypothesis as input

to the segmentation algorithm, the performance of the algorithm can be

improved.

6

Chapter 2

Large-Scale Music Identification

2.1 Introduction

Automatic identification of music has been the subject of several recent studies

both in research and industry. Music identification systems attempt to match

a recording of a few seconds to a large database of songs. This technology has

numerous applications, including end-user content based search, radio broad-

cast monitoring by recording labels, and copyrighted material detection by

audio and video content providers such as YouTube.

In a practical setting, the test recording provided to a music identification

system is usually limited in length to a few seconds. Hence, a music identifica-

tion system is tasked with not only picking the song in the database that the

recording came from, but also aligning the test recording against a particular

position in the reference recoding. In addition, the machinery used to record

7

and/or transmit the query audio, such as a cell phone, is often of low quality.

These challenges highlight the need for robust music identification systems.

Our approach has robustness as a central consideration, and we demonstrate

that the performance of our system is robust to several different types of noise

and distortions.

Since the size of the database is limited, another crucial task is music

detection, that is determining if the recording supplied contains an in-set song.

We demonstrate that our system performs accurately in the music detection

task, even in the presence of noise or distortions sufficient to severely damage

its performance in the identification task.

2.1.1 Previous Work

Much of the previous work on music identification (see [19] for a recent survey)

is based on hashing of frequency-domain features. The features and hashing

technologies used vary from work to work. Wang [80, 81] used energy peaks in

the spectrogram of the recording to produce an audio signature to be hashed,

and constructed a successful commercial music identification service that is

still in use today. Haitsma et al. [34] used hand-crafted features of energy

differences between Bark-scale cepstra. Ke et al. [43] used similar features,

but selected them automatically using boosting. Covell et al. [24, 25] further

improved on Ke by using wavelet features. Casey et al. [20] used cepstral

features in conjunction with Locality Sensitive Hashing (LSH) for nearest-

neighbor retrieval for music identification and detection of cover songs and

8

remixes. Hashing approaches index the feature vectors computed over all

the songs in the database in a large hash table. During test-time, features

computed over the test audio are used to retrieve from the table.

Hashing-based approaches are marked by two main limitations, the re-

quirement to match a fingerprint exactly or almost exactly and the need for a

disambiguation step to reject many false positive matches. Batlle et al [9] pro-

posed to move away from hashing approaches by suggesting a system decoding

MFCC features over the audio stream directly into a sequence of audio events,

as in speech recognition. Each song is represented by a sequence of states in

a hidden Markov model (HMM), where a state corresponds to an elementary

music sound. However, the system looks only for atomic sound sequences of a

particular length, presumably to control search complexity.

2.1.2 Summary of Contributions

In this chapter, we present an alternative approach to music identification

based on weighted finite-state transducers and Gaussian mixture models, in-

spired by techniques used in large-vocabulary speech recognition. The ap-

proach described here was published in [82, 58, 59]. The learning phase of

our approach is based on an unsupervised training process yielding an inven-

tory of music phoneme units similar to phonemes in speech and leading to a

unique sequence of music units characterizing each song. The representation

and algorithmic aspects of this approach are based on weighted finite-state

transducers, more specifically factor transducers, which can be used to give a

9

compact representation of all song snippets for a large database over 15,000

songs. This approach leads to a music identification system achieving an iden-

tification accuracy of 99.4% on undistorted test data, and performing robustly

in the presence of noise and distortions. It allows us to index music event

sequences in an optimal and compact way and with very rare false positive

matches.

2.1.3 Outline

The remainder of this chapter is organized as follows. We begin with some

notation and definitions of relevant automata concepts in Section 2.2. In

Section 2.3, we describe our approach for automatically learning a set of el-

ementary music sounds and Gaussian mixture acoustic models representing

each sound. In Section 2.4, we cover our transducer representation for map-

ping music sound sequences to songs and the algorithms for constructing this

transducer. Section 2.5 outlines some ways of improving the robustness of the

system beyond the baseline system presented in the previous two sections. In

Section 2.6, we describe our music detection algorithm using a universal back-

ground model (UBM) for music in conjunction with a support vector machine

(SVM) classifier. In Section 2.7, we present our music identification and detec-

tion experiments on a database of 15,000 songs and in Section 2.8, we analyze

the possibility of retrieving multiple matches for a given audio recording. We

conclude in Section 2.9.

10

2.2 Preliminaries

We denote by Σ a finite alphabet. For a symbol a ∈ Σ, the notation a∗, a+,

and an denotes a repeated zero or more times, one or more times, and n times,

respectively. This notation applies to Σ itself, that is Σ∗, Σ+ and Σn denote

zero or more, one or more, and n consecutive symbols from Σ, respectively.

The length of a string x ∈ Σ∗ in number of symbols is denoted by |x|.

A number of the results presented in this thesis involve finite automata.

Finite automata have been used in both theoretical and applied computer

science from the very early days. For the purposes of this thesis, weighted

automata and transducers shall be formally defined as follows. The symbol ǫ

represents the empty string.

2.2.1 Weighted Finite Automata

Definition 2.1 A weighted automaton (Σ, Q, E, I, F, ρ) over the semiring

(S,⊕,⊗, 0, 1) is specified by alphabet Σ, a finite set of states Q, a finite set of

transitions E, a set of initial states I ∈ Q, a set of final states F ⊆ Q, and a

final weight function ρ : F 7→ S. The transition set E ⊆ Q×Σ ∪ {ǫ} × S ×Q

associates pairs of states with a symbol in Σ ∪ {ǫ} and a weight in S.

Definition 2.2 A weighted finite state transducer (Σ, ∆, Q, E, I, F, ρ) over

the semiring (S,⊕,⊗, 0, 1) is specified by input and output alphabets Σ and

∆, respectively, a finite set of states Q, a finite set of transitions E, a set of

initial states I ∈ Q, a set of final states F ⊆ Q, and a final weight function

11

ρ : F 7→ S. The transition set E ⊆ Q×Σ ∪ {ǫ} ×∆ ∪ {ǫ} × S ×Q associates

pairs of states with an input symbol, an output symbol, and a weight in S.

An alternative notation for representing the set of transitions of a deter-

ministic acceptor is to specify a partial transition function δ : Q×Σ∪{ǫ} 7→ Q

and a weight function ω : Q × Σ ∪ {ǫ} 7→ S instead of explicitly through the

set E. The corresponding notation applies also for deterministic transducers.

2.2.2 Weighted Automata and Semirings

The semiring (S,⊕,⊗, 0, 1) over which an acceptor or transducer is defined is

a mathematical formalism that specifies the weight set used and the algebraic

operations for combining weights. The operation ⊕ is used to combine the

weights of multiple paths to obtain the total weight of a set of paths, and ⊗ is

used to combine weights along a path in the computation of the total weight of

the path. 0 and 1 are the identity elements for these operations, respectively.

Two semirings used extensively in fields such as speech and text processing

are the tropical semiring (R+∪{∞}, min, +,∞, 0) and the log semiring (R+∪

{∞},⊕log, +,∞, 0), where ⊕log is defined x ⊕log y = − log(e−x + e−y). For

many applications, these semirings are used when the weights are negative

log-likelihoods. In both of these, the total weight along a given path is found

by adding the weights of the transitions composing the path, corresponding

to a product of the likelihoods. The two semirings differ in the way they

combine weights across paths. In the log semiring, the total weight assigned

12

by the automaton to a string x is ⊕log of the weights of all the paths in the

automaton labeled with x, corresponding to the sum of the likelihoods of the

paths. In contrast, in the tropical semiring, the total weight is that of the

minimum weight (maximum likelihood) path labeled with x.

Given the above, it is clear that using the tropical semiring represents mak-

ing the Viterbi approximation of the exact result, which is computed with the

log semiring. This makes the tropical semiring a convenient and, indeed, in-

valuable tool for describing algorithms in speech and language processing [62],

among many other fields. The tropical semiring is the one primarily used in

this thesis.

Unweighted automata and transducers are obtained by simply omitting

the weights from their weighted counterparts. Thus, a transition no longer

associates a weight with a pair of states but only an input and/or output label.

More formally, an unweighted automaton is simply a weighted automaton over

the Boolean semiring ({0, 1},∨,∧, 0, 1).

2.2.3 Efficient Automata

An automaton is deterministic if at any state no two outgoing transitions

share the same input label. A deterministic automaton is minimal if there

is no equivalent automaton with a smaller number of states. An automaton

is ǫ-free if it contains no ǫ-transitions. In order for search algorithms such

as Viterbi decoding, among others, to function efficiently when processing a

finite automaton, the automaton must be ǫ-free, deterministic and minimal.

13

Accordingly, such an automaton is often referred to as efficient or optimal.

A deterministic and minimal automaton is, in fact, optimal in the sense that

the lookup time for a given string in the automaton is linear in the size of the

string. As a result of the relatively recent introduction of new algorithms, such

as weighted determinization, minimization, and ǫ-removal [54, 56], automata

have become a compelling formalism used extensively in a number of fields,

including speech, image, and language processing.

2.3 Acoustic Modeling

We begin the construction of our music identification system by applying an

unsupervised algorithm to jointly learn an inventory of music phonemes and

the sequence of phonemes best representing each song.

Cepstral features have recently been shown to be effective in the analysis of

music [9, 69, 50], and in our work we also use mel-frequency cepstral coefficient

(MFCC) features computed over the song audio. We use 100ms windows over

the feature stream, and keep the first twelve coefficients, the energy, and their

first and second derivatives to produce a 39-dimensional feature vector.

2.3.1 Model Initialization

A set of music phonemes is initially created by clustering segments of pseudo-

stationary audio signal in all the songs. The song audio is segmented by

sliding a window along the features and fitting a single diagonal covariance

14

Gaussian model to each window. We compute the symmetrized KL divergence

between the resulting probability distributions of all adjacent window pairs.

The symmetrized KL divergence between two Gaussians G1 ∼ N(µ1, Σ1) and

G2 ∼ N(µ2, Σ2) as used in this work is defined as double the sum of the

non-symmetric KL divergences,

KLsym(G1, G2) = 2 (DKL(G1‖G2) + DKL(G2‖G1))

= Tr
(

Σ2Σ
−1
1

)

+ Tr
(

Σ1Σ
−1
2

)

+ (µ2 − µ1)
⊤
(

Σ−1
1 + Σ−1

2

)

(µ2 − µ1)

−2m (2.1)

where m is the dimensionality of the data. After smoothing the KL divergence

signal, we hypothesize segment boundaries where the KL divergence between

adjacent windows is above an experimentally determined threshold.

We then apply a clustering algorithm to the song segments to produce one

cluster for each of k desired phonemes. Clustering is performed in two steps.

First we apply hierarchical, or divisive, clustering in which all data points

(hypothesized segments) are initially assigned to one cluster. The centroid

(mean) of the cluster is then randomly perturbed in two opposite directions

of maximum variance to make two new clusters. Points in the old cluster are

reassigned the child cluster with higher likelihood [8]. This step ends when

the desired number of clusters or music phonemes k is reached or the number

15

of points remaining is too small to accommodate a split. In a second step

we apply ordinary k-means clustering to refine the clusters until convergence

is achieved. As in [8] we use maximum likelihood as an objective distance

function rather than the more common Euclidean distance.

2.3.2 Model Training

The acoustic model for each of our k phonemes is initially a single Gaussian

parametrized with the sufficient statistics of a single segment cluster obtained

in the initialization procedure just described. Since a single Gaussian is un-

likely to accurately represent a complex music sound, we apply an iterative

training algorithm to learn a standard Gaussian mixture acoustic model for

each phoneme.

Since there are no reference transcriptions of the song database in terms

of music sound units, we use an unsupervised learning approach similar to

that of [9] in which the statistics representing each music phoneme and the

transcriptions are inferred simultaneously. The training procedure repeats the

following two steps until convergence is achieved:

• Apply Viterbi decoding using the current model and allowing any se-

quence of music phonemes to find a transcription for each song.

• Refine the model with the standard expectation-maximization (EM)

training algorithm using the current transcriptions as reference.

16

This process is similar to the standard acoustic model training algorithm

for speech recognition with the exception that at each training iteration, a

new transcription is obtained for each song in our database. This process is

illustrated in Figure 2.1. Note that since a full Viterbi search is performed at

each iteration, the transcription as well as the alignment of phonemes to audio

frames may change.

2.3.3 Measuring Convergence

In speech recognition, each utterance is usually labeled with a ground truth

transcription that is fixed throughout the acoustic model training process.

Convergence is typically evaluated by measuring the change in model likeli-

hood from iteration to iteration. Since in our music identification scenario

no such ground truth exists, to evaluate the convergence of our algorithm we

measure how much the reference transcription changes with each iteration. To

compare transcriptions we use the edit distance, here defined as the minimal

number of insertions, substitutions, and deletions of music phonemes required

to transform one transcription into another.

For a song set S let ti(s) be the transcription of song s at iteration i and

ED(a, b) the edit distance of sequences a and b. At each iteration i, we compute

the average edit distance per song

Ci =
1

|S|

∑

s∈S

ED(ti(s), ti−1(s)) (2.2)

17

Figure 2.1: An illustration of changing transcription and alignment for a par-
ticular song during the course of three iterations of acoustic model training.
mpx stands for music phoneme number x and the vertical bars represent the
temporal boundaries between music phonemes.

as our convergence measure.

Figure 2.1 illustrates this situation by giving three example transcriptions

assigned to the same song in consecutive acoustic model training iterations. We

have t1(s) = mp2 mp5 mp86; t2(s) = mp2 mp43 mp22 mp86, and t3(s) = mp37

mp43 mp22 mp86. The edit distances computed here will be ED(t1(s), t2(s)) =

2 and ED(t2(s), t3(s)) = 1.

Figure 2.2 shows how the edit distance changes during training for three

phoneme inventory sizes. Note that, for example, with 1,024 phonemes almost

900 edits on average occurred per song between the first and second round of

training. Considering that the average transcription length is around 1,700

phonemes, this means that only around half of the phonemes remained the

same. In our experiments, convergence was exhibited after around twenty

18

 200

 300

 400

 500

 600

 700

 800

 900

 0 2 4 6 8 10 12 14 16 18 20

E
di

t D
is

ta
nc

e

Training Iteration

1,024 phones
512 phones
256 phones

Figure 2.2: Average edit distance per song vs. training iteration.

iterations. In the last few iterations of training, the average edit distance

decreases considerably to around 300, meaning around 5/6 of the phonemes

remain the same from iteration to iteration. It is intuitive that the average edit

distance achieved at convergence grows with the phoneme inventory size, since

with a very large phoneme inventory many phonemes will be statistically very

close. In the other extreme, with only one music phoneme, the transcription

would never change at all.

2.4 Recognition Transducer

Given a set of songs S, the music identification task is to find the songs in S

that contain a query song snippet x. In speech recognition it is common to con-

19

struct a weighted finite-state transducer specifying the mapping of phoneme

sequences to word sequences, and to decode test audio using the Viterbi al-

gorithm constrained by the transducer [62]. Our music identification system

operates in a similar fashion, but the final output of the decoding process is

a single song identifier. Hence, the recognition transducer must map any se-

quence of music phonemes appearing in the transcriptions found in the final

iteration of training to the corresponding song identifiers.

Let Σ denote the set of music phonemes and let the set of music phoneme

sequences describing m songs be U = {x1, . . . , xm}, xi ∈ Σ∗ for i ∈ {1, . . . , m}.

A factor, or substring, of a sequence x ∈ Σ∗ is a sequence of consecutive

phonemes appearing in x. Thus, y is a factor of x iff there exists u, v ∈ Σ∗

such that x = uyv. In our experiments, m = 15,455, |Σ| = 1,024 and the

average length of a transcription xi is more than 1,700. Thus, in the worst

case, there can be as many as 15,455× 1,7002 ≈ 45× 109 factors. The size of

a näıve prefix-tree-based representation would thus be prohibitive, and hence

we endeavor to represent the set of factors with a much more compact factor

automaton.

2.4.1 Factor Automaton Construction

We denote by F (A) the minimal deterministic automaton accepting the set

of factors of a finite automaton A, that is the set of factors of the strings

accepted by A. Similarly, we denote by S(A) the minimal deterministic au-

tomaton accepting the set of suffixes of an automaton A. In the remainder

20

0

1mp37:ε

5
mp8:ε

2mp43:ε

6mp22:ε

3mp22:ε

4

mp86:BenFoldsFive-Brick

mp37:BonJovi-LivingOnaPrayer

Figure 2.3: Finite-state transducer T0 mapping each song to its identifier. mpx
stands for music phoneme number x.

of this section, we outline a method for constructing a factor automaton of

an automaton using the general weighted determinization and minimization

algorithms. This method is described here to illustrate the concept of fac-

tor automata, as well as to give the context of the methods for constructing

factor automata previously employed both in the present work and for other

tasks (e.g., [6]). However, the novel suffix automaton algorithm we will give

in Chapter 3 enjoys a linear complexity and thus is now the preferred method

for this construction.

Let T0 be the transducer mapping phoneme sequences to song identifiers

before determinization and minimization. Figure 2.3 shows T0 when U is

reduced to two short songs. Let A be the acceptor obtained by omitting

the output labels of T0. Intuitively, to accept all factors of A, we want to

accept all the symbol sequences labeling any path between any pair of paths

in A. We can accomplish this by creating “shortcut” ǫ-transitions from the

initial state of A to all other states, making all states final, and applying ǫ-

removal, determinization, and minimization to yield an efficient acceptor. This

construction yields the factor automaton F (A) (Figure 2.4), but it does not

allow us to output the song identifier associated with each factor.

21

0

1
mp37

2
mp43

3mp22

4
mp8 5

mp86

mp43

6mp22

mp37

mp86

7
mp22

mp86

mp37

Figure 2.4: Deterministic and minimal unweighted factor acceptor F (A) for
two songs.

2.4.2 The Algorithmic Challenge of Factor Automata

Constructing a compact and efficient factor automaton that retains the map-

ping between all possible music phoneme subsequences and the songs to which

they correspond is non-trivial. The following intuitive, but näıve, solution

illustrates this point. All accepting paths of the automaton A after the ad-

dition of ǫ-transitions, i.e. all factors, can be augmented with output labels

corresponding to song identifiers. As a result, the matching song identifier is

always obtained as an output when traversing a set of input music phonemes.

However, this approach immediately fails because factors with different

output labels cannot be collapsed into the same path, and as a result upon de-

terminization and minimization the resulting transducer is prohibitively larger

than A. Thus, the primary difficulty of constructing a factor transducer for

music identification task is constructing an automaton where states and transi-

tions can be shared among paths belonging to different songs, while preserving

the mapping between phoneme sequences and songs.

22

2.4.3 Using Weights to Represent Song Labels

Our approach for avoiding the combinatorial explosion just mentioned is to use

weights, instead of output labels, to represent song identifiers. We create a

compact weighted acceptor over the tropical semiring accepting the factors of

U that associates the total weight sx to each factor x. During the application of

weighted determinization and minimization to construct a factor automaton,

the song identifier is treated as a weight that can be distributed along a path.

The property that the sum of the weights along the path labeled with x is sx

is preserved by these operations. As a result, paths belonging to transcription

factors common to multiple songs can be collapsed and the mapping between

factors to songs is preserved.

To construct the weighted factor automaton Fw(A) from T0 (Figure 2.3)

we

1. Drop the output labels to produce A.

2. Assign a numerical label to each song and augment each song’s path in

A with that label as a single weight (at the transition leaving the initial

state).

3. Add ǫ-transitions from the initial state to each other state weighted with

the song identifier corresponding to the path of the song to which the

transition serves as a “shortcut.” This produces the weighted acceptor

Fǫ(A) (Figure 2.5(a)).

23

0

1
mp37

ε

5

mp8/1

ε /1

2
ε

3

ε

6

ε /1

mp43

mp22

mp22

4

mp86

mp37

(a)

0

1mp37

2
mp43

3mp22

4
mp8/1 5

mp86

mp43

6mp22

mp86

mp37/1

7
mp22

mp86

mp37

(b)

Figure 2.5: (a) Factor acceptor Fǫ(A) for two songs produced by adding weights
and ǫ-transitions to A. (b) Deterministic and minimal weighted factor acceptor
Fw(A) produced by optimizing Fǫ(A).

4. Apply ǫ-removal, determinization, and minimization to produce the

weighted acceptor Fw(A) (Figure 2.5(b)).

Recalling that a transition with no weight indicated has a weight of 0 in the

tropical semiring, observe in Figure 2.5(b) that the numerical labels 0 and 1 are

assigned to song labels BenFoldsFive-Brick and BonJovi-LivingOnaPrayer,

respectively. Notice that, for example, the factor mp22 mp37 is correctly as-

signed a weight of 1 by Fw(A). Observe finally that information about all the

factors found in the original transducer T0 (Figure 2.3) and their corresponding

24

songs is preserved.

The weights in the automaton Fw(A) serve to represent the mapping from

music phoneme sequences to songs, and hence do not correspond to likelihoods

that can be used during the decoding process. Hence, Fw(A) is transformed

into an unweighted song recognition transducer T by treating each integer

weight as a regular output symbol. Given a music phoneme sequence as input,

the associated song identifier is obtained by summing the outputs yielded by

T .

2.4.4 Weighted Transducer

As we have just mentioned, while the transducer T is constructed with the

help of weights representing song identifiers, T itself is unweighted. This means

that during decoding all transcription factors are equally likely. However, some

phoneme sequences occur more frequently in our song collection and should

thus be preferred during the Viterbi beam search. To accomplish this, we can

view T as a weighted transducer in the log semiring (see Section 2.2) with zero

weight on each path. The distribution of the weights along a given path can

be changed (without affecting the total weight) by applying a weight pushing

algorithm [56] to the transducer T . As a result, each prefix x of a path in T is

weighted according to the frequency of snippets starting with x. Accordingly,

more frequent factors are preferred during decoding. Our experiments show

that this can result in a substantially higher accuracy for a given decoding

speed.

25

2.4.5 Compact Representation

We have empirically verified the feasibility of the construction described in

Section 2.4.3. For 15,455 songs, the total number of transitions of the trans-

ducer T is about 53.0M (million), only about 2.1 times that of the minimal

deterministic transducer T0 representing all full-song transcriptions. In Chap-

ter 3, we present the results of a careful analysis of the size of factor automata

of automata and give a matching linear-time algorithm for their construction.

These results suggest that our method can scale to a larger set of songs, e.g.,

several million songs.

2.5 Improving Robustness

When the recording quality of the test snippet is degraded, the recognized

music phoneme sequence may contain errors. However, the transducer T ,

constructed as described above, accepts only factors of the exact transcriptions

obtained during the last iteration of acoustic model training. To improve

robustness, we may compose a transducer TE with T that allows transcriptions

with errors to also be accepted, resulting in the automaton T ◦ TE. One such

corruption transducer TE is the edit distance transducer, which associates

a cost to each edit operation: deletion, insertion, or substitution [55]. In

this case, the above composition allows edits to corrupt the input sequence x

while penalizing any path allowing such corruptions in the Viterbi beam search

algorithm. The costs may be determined analytically to reflect a desired set

26

of penalties, or may be learned to maximize identification accuracy.

Robustness can also be improved by including data reflecting the expected

noise and distortion conditions in the acoustic model training process. The

resulting models are then adapted to handle similar conditions in the test data.

2.6 Music Detection

Our music detection approach relies on the use of a universal background music

phoneme model (UBM) model that generically represents all possible song

sounds. This is similar to the techniques used in speaker identification (e.g.,

[65]). The UBM is constructed by combining the Gaussian mixture model

components across all the music phonemes. We apply a divisive clustering

algorithm to yield a desired number of mixture components.

To detect out-of-set songs, we compute the log-likelihood of the best path

in a Viterbi search through the regular song identification transducer and

that given a trivial transducer that allows only the UBM. When the likeli-

hood ratio of the two models is large, one can expect the song to be in the

training set. However, a simple threshold on the likelihood ratio is not a

powerful enough classifier for accurate detection. Instead, we use a discrim-

inative method for out-of-set detection. We construct a three-dimensional

feature vector [Lr, Lb, (Lr − Lb)] for each song snippet, where Lr and Lb are

the log-likelihoods of the best path and background acoustic models, respec-

tively. These serve as the features for a support vector machine (SVM) classi-

27

fier [23, 79].

2.7 Experiments

In this section, we describe the experimental evaluation of our music iden-

tification and detection system in the context of a database of over 15,000

songs.

2.7.1 Experimental Setup

Our training data set consisted of 8,764 tracks from the uspop data set [11], as

well as an additional 6,897 tracks downloaded from a self-publishing music web

site. The collection included tracks from a total of 2,642 artists and spanned

a number of non-classical genres including pop, rock, electronica, and jazz. A

large fraction of the songs in the collection was from the nineties, but there

was some coverage of the previous several decades, going as far back as the

sixties, and some tracks recorded in the present decade. The average song

duration was 3.9 minutes, for a total of over 1,000 hours of training audio.

The test data consisted of 1,762 in-set and 1,856 out-of-set 10-second snip-

pets drawn from 100 in-set and 100 out-of-set songs selected at random. The

first and last 20 seconds of each song were omitted from the test data since

they were more likely to consist of primarily silence or very quiet audio. Our

music phoneme inventory size was 1,024 units, each Gaussian mixture acoustic

model consisting of 16 mixture components. For the music detection exper-

28

iments, we also used a UBM with 16 components. All experiments run in

faster than real time: for instance with a Viterbi search beam width of 12,

the runtime is 0.48 of real time (meaning a song snippet of m seconds can

be processed in 0.48m seconds). We tested the robustness of our system by

applying the following transformations to the audio snippets:

1. WNoise-x: additive white noise (using sox). Since white noise is a con-

sistently broadband signal, this simulates harsh noise. x is the noise

amplitude compared to saturation (i.e., WNoise-0.01 is 0.01 of satura-

tion).

2. Speed-x: speed up or slow down by factor of x (using sox). Radio

stations frequently speed up or slow down songs in order to produce

more appealing sound [9].

3. MP3-x: mp3 reencode at x kbps (using lame). This simulates compres-

sion or transmission at a lower bitrate.

For the detection experiments we used the LIBSVM implementation [21]

with a radial basis function (RBF) kernel. The accuracy was measured using

10-fold cross-validation and a grid search for the values of γ in the RBF kernel

and the trade-off parameter C of support vector machines [23, 79].

2.7.2 Results and Discussion

The identification and detection accuracy results are presented in Table 2.1.

The identification performance is almost flawless on clean data. The addition

29

Condition Identification Detection

Accuracy Accuracy

Clean 99.4% 96.9%
WNoise-0.001 (44.0 dB SNR) 98.5% 96.8%
WNoise-0.01 (24.8 dB SNR) 85.5% 94.5%
WNoise-0.05 (10.4 dB SNR) 39.0% 93.2%
WNoise-0.1 (5.9 dB SNR) 11.1% 93.5%
Speed-0.98 96.8% 96.0%
Speed-1.02 98.4% 96.4%
Speed-0.9 45.7% 85.8%
Speed-1.1 43.2% 87.7%
MP3-64 98.1% 96.6%
MP3-32 95.5% 95.3%

Table 2.1: Identification accuracy rates under various test conditions

of white noise degrades the accuracy when the mixing level of the noise is

increased. This is to be expected as the higher mixing levels result in a low

signal-to-noise ratio (SNR). The inclusion of noisy data in the acoustic model

training process slightly improves identification quality – for instance, in the

WNoise-0.01 experiment, the accuracy improves from 85.5% to 88.4%. Slight

variations in playback speed are handled quite well by our system (high 90’s);

however, major variations such as 0.9x and 1.1x cause the accuracy to degrade

into the 40’s. MP3 recompression at low bitrates is handled well by our system.

The detection performance of our system is in the 90’s for all conditions

except the 10% speedup and slowdown. This is most likely due to the spectral

shift introduced by speeding up or slowing down the audio. This shift results

in a mismatch between the audio data and the acoustic models.

30

2.8 Factor Uniqueness Analysis

We observed that our identification system performs well when snippets of

five seconds or longer are used. Indeed, there is almost no improvement when

the snippet length increases from ten seconds to the full song. To further

analyze this, we examined the sharing of factors across songs. Let two song

transcriptions x1, x2 ∈ S share a common factor f ∈ Σ∗ such that x1 = ufv

and x2 = wfz; u, v, w, z ∈ Σ∗. Then the sections in these two songs transcribed

by f are similar. Further, if a song x1 has a repeated factor f ∈ Σ∗ such that

x1 = ufvfw, u, v, w ∈ Σ∗, then x1 has two similar audio segments. If |f |

is large, then it is unlikely that the sharing of f is coincidental, and likely

represents a repeated structural element in the song.

Figure 2.6 gives the number of factors occurring in more than one song

over a range of lengths. This illustrates that some sharing of long elements

is present, indicating similar music segments, or non-music elements such as

silence, across songs. However, factor collisions decrease rapidly as the factor

length increases. For example, we can see that for factor length of 50, only 256

out of the 24.4M existing factors appear in more than one song. Considering

that the average duration of a music phoneme in our experiments is around

200ms, a factor length of 50 corresponds to around ten seconds of audio. This

validates our initial estimate that ten seconds of music are sufficient to uniquely

map the audio to a song in our database. In fact, even with factor length of

25 music phonemes, there are only 962 non-unique factors out of 23.9M total

31

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 0 20 40 60 80 100 120

N
on

-u
ni

qu
e

F
ac

to
rs

Factor Length

Figure 2.6: Number of factors occurring in more than one song in S for different
factor lengths.

factors. This explains the fact that even a five-second snippet is sufficient for

accurate identification.

2.9 Summary

We have described a music identification system based on Gaussian mixture

models and weighted finite-state transducers and have shown it to be effective

for identifying and detecting songs in the presence of noise and other distor-

tions. The compact representation of the mapping of music phonemes to songs

based on transducers allows for efficient decoding and high accuracy.

By making these observations about the compactness of our representation,

32

we have set the stage for the theoretical and algorithmic work we undertake in

Chapter 3. There we will not only show that this representation is guaranteed

to scale gracefully as the size of the music database grows but we will give

novel algorithms that allow efficient construction of the type of music index

described in this chapter.

Finally, we have provided an empirical analysis of factor uniqueness across

songs. This analysis has verified that five-second or longer song snippets are

sufficient for very infrequent factor collision and thus accurate identification.

33

Chapter 3

Theory and Algorithms for

Suffix and Factor Automata

3.1 Introduction

Searching for patterns in massive collections of natural language texts, biolog-

ical sequences, and other widely accessible digitized sequences is a problem of

central importance in computer science. The problem has a variety of appli-

cations and has been extensively studied in the past [33, 27].

This chapter considers the problem of constructing a full index, or inverted

file, to enable search of a collection of strings. When the number of strings is

large, such as thousands or even millions, the set of strings can be compactly

stored as an automaton, which also enables efficient implementations of search

and other algorithms [6, 82]. In fact, in many contexts such as speech recogni-

34

tion or information extraction tasks, the entire set of strings is often directly

given as an automaton. In these settings, the set of strings to be indexed is a

collection of uncertain alternative representations of content such as speech or

music transcriptions (see e.g., Section 4.4). Accordingly, each string in this set

is often associated with a weight denoting a probability or a cost. The results

in this chapter hold for both weighted and unweighted automata.

An efficient and compact data structure for representing a full index of a

set of strings is a suffix automaton, a minimal deterministic automaton repre-

senting the set of all suffixes of a set of strings. Since a substring is a prefix

of a suffix, a suffix automaton can be used to determine if a string x is a

substring in time linear in its length O(|x|), which is optimal. Additionally,

just as suffix trees, suffix automata have other interesting properties in string-

matching problems which make their use and construction attractive [33, 27].

Another similar data structure for representing a full index of a set of strings

is a factor automaton, a minimal deterministic automaton representing the set

of all factors or substrings of a set of strings. Factor automata offer the same

optimal linear-time search property as suffix automata, and are strictly never

larger.

3.1.1 Previous Work

The size of suffix and factor automata of a single string has been analyzed by

Crochemore et al. [26] and Blumer et al. [14, 16]. In parallel results, these

authors demonstrated that, remarkably, the size of the factor automaton of a

35

string x is linear. More precisely, the factor automaton for a string x of length

more than three has at most 2|x| − 2 states and 3|x| − 4 transitions. These

papers also gave matching on-line linear-time algorithms for constructing a

factor automaton given a single string as input. Similar results were given for

suffix automata, the minimal deterministic automata accepting exactly the set

of suffixes of a string.

The construction and the size of the factor automaton of a finite set of

strings U = {x1, . . . , xm} has also been previously studied [15, 16]. This work

showed that an automaton accepting all factors of U can be constructed that

has at most 2‖U‖ − 1 states and 3‖U‖ − 3 transitions, where ‖U‖ is the sum

of the lengths of all strings in U , that is ‖U‖ =
∑m

i=1 |xi|.

3.1.2 Motivation

The original motivation for the work presented in this chapter was the design

of the large-scale music identification system described in Chapter 2, where

we represented our song database by a factor automaton. As mentioned in

Section 2.4.5, the automaton representation for songs was empirically com-

pact for our music collection of over 15,000 songs. Nonetheless, we wanted

to ensure that our approach would scale to a larger set of songs, e.g., several

million songs. Hence we set out to formally analyze the properties of suffix and

factor automata of automata, give bounds on their size, and devise efficient

algorithms for their construction. While our music identification system was

the original motivation for this work, the results presented in this chapter are

36

general and applicable to a number of indexation tasks in a variety of fields.

3.1.3 Summary of Contributions

In this chapter, we prove a bound on the size of the suffix automaton or factor

automaton of a set of strings that is significantly better than the bounds found

in previous work. We show that the suffix automaton or factor automaton of

a set of strings U has at most 2Q−2 states, where Q is the number of nodes of

a prefix-tree representation of the strings in U . The number of nodes Q can be

dramatically smaller than ‖U‖, the sum of the lengths of all strings. Thus, our

space bound clearly improves on previous work [15]. More generally, we give

novel bounds for the size of the suffix automaton or factor automaton of an

acyclic finite automaton as a function of the size of the original automaton and

the maximal length of a suffix shared by the strings accepted by the original

automaton. This result can be compared to that of Inenaga et al. for compact

directed acyclic word graphs whose complexity, O(|Σ|Q), depends on the size

of the alphabet [42].

Using our space bound analysis, we also give a simple algorithm for con-

structing the suffix automaton S or factor automaton F of U in time O(|S|)

from a prefix tree representing U . Our algorithm applies in fact to any weighted

or unweighted input suffix-unique automaton and strictly generalizes the stan-

dard on-line construction of a suffix automaton for a single input string. The

algorithm is easy to implement and is very efficient in practice. The linear

size guarantee for the suffix and factor automata presented in this chapter,

37

combined with this linear-time algorithm provides a solid and general algo-

rithmic basis for the use of such automata for search tasks. For the music

identification system described in Chapter 2, this novel algorithm helps speed

up the construction of the weighted suffix automaton by a factor of 17 over

the previous algorithms.

The bounds and algorithms presented in this chapter were published in

[57, 59, 60].

3.1.4 Outline

The remainder of the chapter is organized as follows. Section 3.2 introduces

string and automata definitions and terminology used throughout the chap-

ter. Section 3.3 develops the concept of suffix-uniqueness and some impor-

tant properties of suffix automata. In Section 3.4, we continue our analysis,

which culminates in new bounds on the size of the suffix automaton and fac-

tor automaton of an automaton. Section 3.5 gives a detailed description of a

linear-time algorithm for the construction of the suffix automaton and factor

automaton of a finite set of strings, or of any suffix-unique unweighted au-

tomaton, including pseudocode of the algorithm. In Section 3.6, we extend

this algorithm to produce a weighted suffix or factor automaton of an input

weighted suffix-unique automaton. Section 3.7 describes the use of factor au-

tomata in music identification and reports several empirical results related to

their size. We conclude in Section 3.8.

38

3.2 Preliminaries

Section 2.2 reviews the fundamental definitions of finite automata and related

concepts. In this section, we introduce some additional notation that will be

required in this chapter.

A factor, or substring, of a string x ∈ Σ∗ is a sequence of symbols appearing

consecutively in x. Thus, y is a factor of x iff there exist u, v ∈ Σ∗ such that

x = uyv. A suffix of a string x ∈ Σ∗ is a factor that appears at the end of x.

Put otherwise, y is a suffix of x iff there exists u ∈ Σ∗ such that x = uy. y is

a proper suffix of x, denoted by y <s x, iff y is a suffix of x and |y| < |x|. The

notation y 6<s x denotes that y is not a suffix of x.

Analogously, y is a prefix of x iff there exists u ∈ Σ∗ such that x = yu.

More generally, a factor, suffix, or prefix of a set of strings U or an automaton

A, is a factor, suffix, or prefix of a string in U or a string accepted by A,

respectively. The symbol ǫ represents the empty string. By convention, for

any string x ∈ Σ∗, ǫ is always a prefix, suffix, and factor of x. An equivalence

relation ≡ on Σ is referred to as a right-invariant equivalence relation if for

any x, y, z ∈ Σ∗, x ≡ y ⇒ xz ≡ yz. Finally, 1m=0 is the indicator function

that is 1 when m = 0 and 0 otherwise.

3.3 Factors of a Finite Automaton

This section develops the notion of a suffix-unique automaton and covers some

key properties of suffix automata, generalizing similar observations made by

39

0 1
a

2
c

3a

4

b 5

b

a

Figure 3.1: Finite automaton A accepting the strings ac, acab, acba.

Blumer et al. (1985) for a single string [14].

3.3.1 Suffix Uniqueness of Automata

In some applications such as music identification the strings considered may

be long, e.g., sequences of music sounds, but with relatively short common

suffixes. This motivates the following definition.

Definition 3.1 Let k be a non-negative integer. We will say that a finite

automaton A is k-suffix-unique if no two strings accepted by A share a suffix

of length k. A is said to be suffix-unique when it is k-suffix-unique with k = 1.

Figure 3.1 gives an example of a simple automaton A accepting three strings

ending in distinct symbols. Note that A is suffix-unique.

The main results of this chapter hold for suffix-unique automata, but we

also present some results for the general case of arbitrary acyclic automata.

Recall from Chapter 2 that we denote by F (A) the minimal deterministic

automaton accepting the set of factors of a finite automaton A. Similarly,

we denote by S(A) the minimal deterministic automaton accepting the set of

suffixes of an automaton A.

40

3.3.2 Properties of Suffix-unique Automata

Definition 3.2 Let A be a finite automaton. For any string x ∈ Σ∗, we

define end -set(x) as the set of states of A reached by the paths in A that begin

with x. We say that two strings x and y in Σ∗ are equivalent and denote

this by x ≡ y, when end -set(x) = end -set(y). This defines a right-invariant

equivalence relation on Σ∗. We denote by [x] the equivalence class of x ∈ Σ∗.

Lemma 3.1 Assume that A is suffix-unique. Then, a non-suffix factor x of

the automaton A is the longest member of [x] iff it is either a prefix of A, or

both ax and bx are factors of A for distinct a, b ∈ Σ.

Proof. Let x be a non-suffix factor of A. Clearly, if x is not a prefix, then

there must be distinct a and b such that ax and bx are factors of A, otherwise

[x] would admit a longer member. Conversely, assume that ax and bx are both

factors of A with a 6= b. Let y be the longest member of [x]. Let q be a state

in end -set(x) = end -set(y). Since x is not a suffix, q is not a final state, and

there exists a non-empty string z labeling a path from q to a final state. Since

A is suffix-unique, both xz and yz are suffixes of the same string. Since y is

the longest member of [x], x must be a suffix of y. Since ax and bx are both

factors of A with a 6= b, we must have y = x. Finally, if x is a prefix, then

clearly it is the longest member of [x]. 2

Proposition 3.1 Assume that A is suffix-unique. Let SA = (QS, IS, FS, ES)

be the deterministic automaton whose states are the equivalence classes QS =

41

{[x] 6= ∅ : x ∈ Σ∗}, its initial state IS = {[ǫ]}, its final states FS =

{[x] : end -set(x) ∩ FA 6= ∅} where FA is the set of final states of A, and

its transition set ES = {([x], a, [xa]) : [x], [xa] ∈ QS}. Then, SA is the minimal

deterministic suffix automaton of A: SA = S(A).

Proof. By construction, SA is deterministic and accepts exactly the set of

suffixes of A. Let [x] and [y] be two equivalent states of SA. Then, for all

z ∈ Σ∗, [xz] ∈ FS iff [yz] ∈ FS, that is z is a suffix of A iff yz is a suffix of A.

Since A is suffix-unique, this implies that either x is a suffix of y or vice-versa,

and thus that [x] = [y]. Thus, SA is minimal. 2

In what follows, we will be interested in the case where the automaton A

is acyclic. We denote by |A|Q the number of states of A, by |A|E the number

of transitions of A, and by |A| the size of A defined as the sum of the number

of states and transitions of A.

3.3.3 Suffix and Factor Automaton Construction Using

General Automata Algorithms

When A accepts only a single string, there are standard algorithms for con-

structing S(A) and F (A) from A in linear time [14, 26]. In the general case,

S(A) can be constructed from A as follows:

1. Add an ǫ-transition from the initial state of A to each state of A (Figure

3.2(a)).

42

0

1
a
ε

2ε

3

ε

4

ε

5

ε

c

a

b

b

a

(a)

0

1
a

2

b

3
c

c

4

b

a

5
a

6
b

b

a

(b)

0

1

a

5

b

2c

c

3

b

ab

4a b

(c)

Figure 3.2: Construction of the suffix automaton using general automata algo-
rithms. (a) The automaton Aǫ produced by adding ǫ-transitions to automaton
A of Figure 3.1. (b) Suffix automaton S(A) of the automaton A produced
by applying ǫ-removal, determinization and minimization to Aǫ. (c) Factor
automaton F (A) produced from S(A) by making every state final and mini-
mizing.

43

2. Apply an ǫ-removal algorithm, followed by determinization and mini-

mization (Figure 3.2(b)).

F (A) (Figure 3.2(c)) can be obtained similarly by further making all states

final before applying ǫ-removal, determinization, and minimization. It can also

be obtained from S(A) by making all states of S(A) final and applying mini-

mization. Note that in the example given in Figure 3.2, |F (A)|Q = |S(A)|Q−1.

This is because after state 6 of S(A) is made final, it becomes equivalent to

state 2, and the two states are combined during minimization to make state 5

of F (A).

3.4 Space Bounds for Factor Automata

In this section, we derive new bounds on the size of S(A) and F (A) in the

case of interest for our applications where A is an acyclic automaton, typically

deterministic and minimal.

3.4.1 Size of Suffix and Factor Automata

When A represents a single string x, the size of the automata S(A) and F (A)

can be proved to be linear in |x|. More precisely, the following bounds hold

for |S(A)| and |F (A)| [26, 14]:

|S(A)|Q ≤ 2|x| − 1 |S(A)|E ≤ 3|x| − 4

|F (A)|Q ≤ 2|x| − 2 |F (A)|E ≤ 3|x| − 4.
(3.1)

44

These bounds are tight for strings of length more than three. [15] gave similar

results for the case of a set of strings U by showing that the size of the factor

automaton F (U) representing this set is bounded as follows

|F (U)|Q ≤ 2‖U‖ − 1 |F (U)|E ≤ 3‖U‖E − 3, (3.2)

where ‖U‖ denotes the sum of the lengths of all strings in U .

In general, the size of an acyclic automaton A representing a finite set of

strings U can be substantially smaller than ‖U‖. In fact, |A| can be exponen-

tially smaller than ‖U‖. Thus, we are interested in bounding the size of S(A)

or F (A) in terms of the size of A, rather than the sum of the lengths of all

strings accepted by A.

3.4.2 Suffix Subset Inclusion

Our size bound for suffix automata relies on an analysis of the connection

between the suffix sets of S(A) with the states of A. We formalize this rela-

tionship with the following notation. For any state q of S(A), we denote by

suff(q) the set of strings labeling the paths from q to a final state. We also de-

note by N(q) the set of states in A from which a path labeled with a non-empty

string in suff(q) reaches a final state. See Figure 3.3 for an illustration.

Lemma 3.2 Let A be a suffix-unique automaton and let q and q′ be two states

of S(A) such that N(q) ∩N(q′) 6= ∅, then

45

0 1
a

2c
4

b

b

3a

5a

b

(a)

0 1
a

2

b

3

c

b

c 4

a

5

a

6b

b

a

(b)

Figure 3.3: (a) An automaton A. (b) The corresponding suffix automaton
S(A). To illustrate the notation suff(q) and N(q), note that starting from
state 3 in S(A) and reading the strings ab and ba we arrive at a final state.
Hence, suff(3) = {ab, ba}. The set of states in A from which ab and/or ba can
be read to reach a final state is N(3) = {2, 1}.

(

suff(q) ⊆ suff(q′) and N(q) ⊆ N(q′)
)

or

(

suff(q′) ⊆ suff(q) and N(q′) ⊆ N(q)
)

. (3.3)

Proof. Since S(A) is a minimal automaton, its states are accessible from

the initial state. Let u be the label of a path from the initial I of S(A) to

q and similarly u′ the label of a path from I to q′. By assumption, there

exists p ∈ N(q) ∩ N(q′). Thus, there exist non-empty strings v ∈ suff(q) and

v′ ∈ suff(q′) such that both v and v′ label paths from p to a final state. See

Figure 3.4 for an illustration.

46

v

v
′

u

u
′

p

(a)

u

u
′

q

q
′

v

v
′

(b)

Figure 3.4: Illustration 1 of Lemma 3.2. (a) An automaton A with paths
uv, uv′, u′v and u′v′ all going through state p. (b) The corresponding suffix
automaton S(A) where uv goes through q and u′v′ goes through q′.

47

x

vu

u’

Figure 3.5: Illustration 2 of Lemma 3.2. uv and u′v are suffixes of the same
string x. Thus, u and u′ are also suffixes of the same string. Thus, u is a suffix
of u′ or vice-versa.

By definition of u and u′, both uv and u′v′ are suffixes of A. Since A is

suffix-unique and v is non-empty, there exists a unique string accepted by A

and ending with v. There exists also a unique string accepted by A and ending

with uv. Thus, these two strings must coincide.

This implies that any string accepted by A and admitting v as suffix also

admits uv as suffix. In particular, the label of any path from an initial state

to p must admit u as suffix. Reasoning in the same way for v′ we conclude

that the label of any path from an initial state to p must also admit u′ as

suffix. Thus, u and u′ are suffixes of the same string. Thus, u is a suffix of u′

or vice-versa. Figure 3.5 illustrates this situation.

Assume without loss of generality that u is a suffix of u′. Then, for any

string w, if u′w is a suffix of A so is uw. Thus, suff(q′) ⊆ suff(q), which implies

N(q′) ⊆ N(q). When u′ is a suffix of u, we obtain similarly the other case of

the statement of the lemma. 2

Note that Lemma 3.2 holds even when A is a non-deterministic automaton.

Lemma 3.3 Let A be a suffix-unique deterministic automaton and let q and

q′ be two distinct states of S(A) such that N(q) = N(q′), then either q is a

final state and q′ is not, or q′ is a final state and q is not.

48

Proof. Assume that N(q) = N(q′). By Lemma 3.2, this implies suff(q) =

suff(q′). Thus, the same non-empty strings label the paths from q to a final

state or the paths from q′ to a final state. Since S(A) is a minimal automaton,

the distinct states q and q′ are not equivalent. Thus, one must admit an empty

path to a final state and not the other. 2

3.4.3 Main Size Bound

The following proposition extends the results of [15] which hold for a suffix

automaton of a set of strings U , to the case where U is given as an automaton

A.

Proposition 3.2 Let A be a suffix-unique deterministic and minimal automa-

ton accepting strings of length more than three. Then, the number of states of

the suffix automaton of A is bounded as follows

|S(A)|Q ≤ 2|A|Q − 3. (3.4)

Proof. If the strings accepted by A are all of the form an, S(A) can be derived

from A simply by making all its states final and the bound is trivially achieved.

In the remainder of the proof, we can thus assume that not all strings accepted

by A are of this form.

Let F be the unique final state of S(A) with no outgoing transitions. Lem-

mas 3.2-3.3 help define a tree T associated to all states of S(A) other than F

49

by using the ordering:

N(q) ⊑ N(q′) iff











N(q) ⊂ N(q′) or

N(q) = N(q′) and q′ final, q non-final.
(3.5)

We will identify each node of T with its corresponding state in S(A). By Propo-

sition 3.1, each state q of S(A) can also be identified with an equivalence class

[x]. Let q be a state of S(A) distinct from F , and let [x] be its corresponding

equivalence class. Observe that since A is suffix-unique, end -set(x) coincides

with N(q).

We will show that the number of nodes of T is at most 2|A|Q − 4, which

will yield the desired bound on the number of states of S(A). To do so, we

bound separately the number of non-branching and branching nodes of T .

Non-Branching Nodes

Let q be a node of T and let [x] be the corresponding equivalence class, with

x its longest member. The children of q are the nodes corresponding to the

equivalence classes [ax] where a ∈ Σ and ax is a factor of A.

By Lemma 3.1, if x is a non-suffix and non-prefix factor, then for some

a, b ∈ Σ such that a 6= b, there exist factors ax and bx. Thus, q admits at

least two children corresponding to [ax] and [bx] and is thus a branching node.

Thus non-branching nodes can only be either nodes q where x is a prefix, or

those where x is a suffix, that is when q is a final state of S(A).

Since the strings accepted by A are not all of the form an for some a ∈ Σ, the

50

empty prefix ǫ occurs at least in two distinct left contexts a and b with a 6= b.

Thus, the prefix ǫ, which corresponds to the root of T , is necessarily branching.

Also, let f be the unique final state of A with no outgoing transitions. The

equivalence class of the longest factor ending in f , that is the longest string

accepted by A, corresponds to the state F in S(A), which is not included in

the tree T . Thus, there are at most |A|Q − 2 non-branching prefixes.

There can be at most one non-branching node for each string accepted by

A. Let Nstr denote the number of strings accepted by A, then, the number of

non-branching nodes Nnb of T is at most Nnb ≤ |A|Q − 2 + Nstr.

Branching Nodes

To bound the number of branching nodes Nb of T , observe that since A is

suffix-unique, each string accepted by A must end with a distinct symbol ai,

i = 1, . . . , Nstr. Each ai represents a distinct left context for the empty factor

ǫ, thus the root node [ǫ] admits all [ai], i = 1, . . . , Nstr, as children. Let Tai

represent the sub-tree rooted at [ai] and let nai
represent the number of leaves

of Tai
. Let aj , j = Nstr + 1, . . . , Nstr + m denote the other children of the root

and let Taj
denote each of the corresponding sub-tree. See Figure 3.6 for an

illustration. A tree with nai
leaves has fewer than nai

branching nodes. Thus,

the number of branching nodes of Tai
is at most nai

− 1. The total number of

leaves of T is at most the number of disjoint subsets of Q excluding the initial

state and f .

Note, however, that when the root node [ǫ] admits only [ai]s, i = 1, . . . , Nstr,

51

[a1] ...

[ǫ]
oted

[a2] [aNstr
] ... [aNstr+m]

Figure 3.6: Branching nodes in the suffix class hierarchy. The root of the
hierarchy is [ǫ], and its children are [a1], . . . , [aNstr+m]. [ai], i = 1, . . . , Nstr are
the equivalence classes identified by the distinct final symbols of each string
accepted by A. The other children of [ǫ] are denoted as [aj], j = Nstr +
1, . . . , Nstr + m.

as children, that is when m = 0, then there is at least one ai, say a1, that is

also a prefix of A since any other symbol would have been the root node’s

child. The node a1 will then have also a child since it corresponds to a suf-

fix or final state of S(A). Thus, a1 cannot be a leaf in that case. Thus,

there are at most as many as
∑Nstr+m

i=1 nai
≤ |A|Q − 2 − 1m=0 leaves and

the total number of branching nodes of T , including the root is at most

Nb ≤
∑Nstr+m

i=1 (nai
−1)+1 ≤ |A|Q−2−1m=0−(Nstr +m)+1 ≤ |A|Q−2−Nstr.

The total number of nodes of the tree T is thus at most Nnb +Nb ≤ 2|A|Q−4.

2

In the specific case where A represents a single string x, the bound of

Proposition 3.2 matches that of [26] or [14] since |A|Q = |x|+1. The bound of

Proposition 3.2 is tight for strings of length more than three and thus is also

tight for automata accepting strings of length more than three. Note that the

52

automaton of Figure 3.1 is suffix-unique, deterministic, and minimal and has

|A|Q = 6 states. The number of states of the minimal suffix automaton of A

(Figure 3.2(b)) is |S(A)|Q = 7 < 2|A|Q − 3.

3.4.4 Implications of Size Bound

Corollary 3.1 Let A be a suffix-unique deterministic and minimal automaton

accepting strings of length more than three. Then, the number of states of the

factor automaton of A is bounded as follows

|F (A)|Q ≤ 2|A|Q − 3. (3.6)

Proof. As mentioned in Section 3.3.3, a factor automaton F (A) can be

obtained from a suffix automaton S(A) by making all states final and applying

minimization. Thus, |F (A)| ≤ |S(A)|. The result follows from Proposition 3.2.

2

Blumer et al. (1987) showed that an automaton accepting all factors of a set

of strings U has at most 2‖U‖− 1 states, where ‖U‖ is the sum of the lengths

of all strings in U [15]. The following gives a significantly better bound on the

size of the factor automaton of a set of strings U as a function of the number of

nodes of a prefix-tree representing U , which is typically substantially smaller

than ‖U‖.

Corollary 3.2 Let U = {x1, . . . , xm} be a set of strings of length more than

53

three and let A be a prefix-tree representing U . Then, the number of states

of the factor automaton F (U) and that of the suffix automaton S(U) of the

strings of U are bounded as follows

|F (U)|Q ≤ 2|A|Q − 2 |S(U)|Q ≤ 2|A|Q − 2. (3.7)

Proof. Let B be a prefix-tree representing the set U ′ = {x1$1, . . . , xm$m},

obtained by appending to each string of U a new symbol $i, i = 1, . . . , m, to

make their suffixes distinct and let B′ be the automaton obtained by mini-

mization of B. By construction, B has m more states than A, but since all

final states of B are equivalent and merged after minimization, B′ has at most

one more state than A.

By construction, B′ is a suffix-unique automaton and by Proposition 3.2,

|S(B′)|Q ≤ 2|B′|Q − 3. Removing from S(B′) the transitions labeled with the

extra symbols $i and connecting the resulting automaton yields the minimal

suffix automaton S(U). In S(B′), there must be a final state reachable only

by the transitions labeled with $i, which becomes non-accessible after removal

of the extra symbols. Thus, S(U) has at least one state less than S(B′), which

gives:

|S(U)|Q ≤ |S(B′)|Q − 1 ≤ 2|B′|Q − 4 = 2|A|Q − 2. (3.8)

A similar bound holds for the factor automaton F (U) following the argument

given in the proof of Corollary 3.1. 2

54

3.4.5 k-suffix-unique Bound

When A is k-suffix-unique with a relatively small k, as in our applications of

interest, the following proposition provides a convenient bound on the size of

the suffix automaton.

Proposition 3.3 Let A be a k-suffix-unique deterministic automaton accept-

ing strings of length more than three and let n be the number of strings accepted

by A. Then, the following bound holds for the number of states of the suffix

automaton of A:

|S(A)|Q ≤ 2|Ak|Q + 2kn− 3, (3.9)

where Ak is the part of the automaton of A obtained by removing the states

and transitions of all suffixes of length k.

Proof. Let A be a k-suffix-unique deterministic automaton accepting strings

of length more than three and let the alphabet Σ be augmented with n tempo-

rary symbols $1, . . . , $n. By marking each string accepted by A with a distinct

symbol $i, we can turn A into a suffix-unique deterministic automaton A′.

To do that, we first unfold all k-length suffixes of A. In the worst case,

all these (distinct) suffixes were sharing the same (k − 1)-length suffix. In

this worst case, unfolding can increase the number of states of A by as many

as kn − n states. Marking the end of each suffix with a distinct $-symbol

further increases the size by n. The resulting automaton A′ is deterministic

and |A′|Q ≤ |Ak|Q+kn. By Proposition 3.2, the size of the suffix automaton of

55

A′ is bounded as follows: |S(A′)| ≤ 2|A′| − 3. Since transitions labeled with a

$-sign can only appear at the end of successful paths in S(A′), we can remove

these transitions and make their origin state final, and minimize the resulting

automaton to derive a deterministic automaton A′′ accepting the set of suffixes

of A. The statement of the proposition follows the fact that |A′′| ≤ |S(A′)|. 2

Since the size of F (A) is always less than or equal to that of S(A), we

obtain directly the following result.

Corollary 3.3 Let A be a k-suffix-unique automaton accepting strings of length

more than three. Then, the following bound holds for the factor automaton of

A:

|F (A)|Q ≤ 2|Ak|Q + 2kn− 3. (3.10)

The bound given by the corollary is not tight for relatively small values of k

in the sense that in practice, the size of the factor automaton does not depend

on kn, the sum of the lengths of suffixes of length k, but rather on the number

of states of A used for their representation, which for a minimal automaton

can be substantially less. However, in the extreme case when k is large, e.g.,

when all strings are of the same length and k is as long as the length of the

strings accepted by A, our bound coincides with that of [15].

56

3.5 Suffix Automaton Construction Algorithm

As mentioned in Sections 2.4.1 and 3.3.3, we may construct a factor automaton

F (A) by adding ǫ-transitions to A and applying determinization and minimiza-

tion. The bounds in section 3.4 guarantee only a linear size increase from A

to S(A) and F (A). However, the ǫ-removal and determinization algorithms

used in this method have in general at least a quadratic complexity in the

size of the input automaton. Thus, while the final result of the construction

algorithm is guaranteed to be compact, the algorithms described thus far are

inefficient at best and prohibitive at worst.

This section describes a linear-time algorithm for the construction of the

suffix automaton S(A) of an input suffix-unique automaton A, or similarly

the factor automaton F (A) of A. Since, as mentioned in Section 3.3.3, a

factor automaton can be obtained from S(A) by making all states of S(A)

final and applying a linear-time acyclic minimization algorithm [70], it suffices

to describe a linear-time algorithm for the construction of S(A). It is possible

however to give a similar direct linear-time algorithm for the construction of

F (A).

Our algorithm relies on the following classical concept in the string match-

ing literature.

Definition 3.3 If a state q in the suffix automaton corresponds to the equiv-

alence class [x], then the suffix link (or suffix transition or suffix pointer or

failure state) of p, denoted by s[q], is the state corresponding to the equivalence

57

class [v], where v is longest suffix of x such that v 6≡ x.

3.5.1 Algorithm Pseudocode and Description

Figures 3.7-3.9 give the pseudocode of the algorithm for constructing the

suffix automaton S(A) = (QS, I, FS, δS) of a suffix-unique automaton A =

(QA, I, FA, δA), where δS : QS × Σ 7→ QS denotes the partial transition func-

tion of S(A) and likewise δA : QA × Σ 7→ QA that of A. As in the previous

section, f denotes the final state of A with no outgoing transitions.

Create-Suffix-Automaton(A, f)

1 S ← QS ← {I} � initial state
2 s[I]← undefined; l[I]← 0
3 while S 6= ∅ do

4 p← Head(S)
5 for each a such that δA(p, a) 6= undefined do

6 if δA(p, a) 6= f then

7 QS ← QS ∪ {q}
8 l[q]← l[p] + 1
9 Suffix-Next(p, a, q)

10 Enqueue(S, q)
11 QS ← QS ∪ {f}
12 for each state p ∈ QA and a ∈ Σ such that δA(p, a) = f do

13 Suffix-Next(p, a, f)
14 Suffix-Final(f)
15 for each p ∈ FA do

16 Suffix-Final(p)
17 return S(A) = (QS, I, FS, δS)

Figure 3.7: Algorithm for the construction of the suffix automaton of a suffix-
unique automaton A.

58

Suffix-Next(p, a, q)

1 l[q]← max(l[p] + 1, l[q])
2 while p 6= I and δS(p, a) = undefined do

3 δS(p, a)← q
4 p← s[p]
5 if δS(p, a) = undefined then

6 δS(I, a)← q
7 s[q]← I
8 elseif l[p] + 1 = l[δS(p, a)] and δS(p, a) 6= q then

9 s[q]← δS(p, a)
10 else r ← q
11 if δS(p, a) 6= q then

12 r ← copy of δS(p, a) � new state with same transitions
13 QS ← QS ∪ {r}
14 s[q]← r
15 s[r]← s[δS(p, a)]
16 s[δS(p, a)]← r
17 l[r]← l[p] + 1
18 while p 6= undefined and l[δS(p, a)] ≥ l[r] do

19 δS(p, a)← r
20 p← s[p]

Figure 3.8: Subroutine of Create-Suffix-Automaton processing a transi-
tion of A from state p to state q labeled with a.

Suffix-Final(p)

1 if p ∈ FS then

2 p← s[p]
3 while p 6= undefined and p 6∈ FS do

4 FS ← FS ∪ {p}
5 p← s[p]

Figure 3.9: Subroutine of Create-Suffix-Automaton making all states on
the suffix chain of p final.

59

The algorithm is a generalization to an input suffix-unique automaton of

the standard construction for an input string. Our presentation is similar to

that of [26]. The algorithm maintains two values s[q] and l[q] for each state

q of Sq. s[q] denotes the suffix pointer of q. l[q] denotes the length of the

longest path from the initial state to q in S(A). l is used to determine the

so-called solid edges or transitions in the construction of the suffix automaton.

A transition (p, a, q) is solid if l[p] + 1 = l[q], that is it is on a longest path

from the initial state to q, otherwise, it is a short-cut transition.

S is a queue storing the set of states to be examined. The particular queue

discipline of S does not affect the correctness of the algorithm, but we can

assume it to be a FIFO order, which corresponds to a breadth-first search and

admits of course a linear-time implementation. In each iteration of the loop of

lines 3-10 in Figure 3.7, a new state p is extracted from S. The processing of

the transitions (p, a, f) with destination state f is delayed to a later stage (lines

12-14). This is because of the particular properties of f which, as discussed

in the previous section, can be viewed as the child of different nodes of the

tree T , and thus can admit different suffix links. Other transitions (p, a, q) are

processed one at a time by creating, if necessary, the destination state q and

adding it to QS, defining l[q] and calling Suffix-Next(p, a, q).

The subroutine Suffix-Next processes each transition (p, a, q) in a way

that is very similar to the standard string suffix automaton construction. The

loop of lines 2-4 inspects the iterated suffix pointers of p that do not already

have an outgoing transition labeled with a. It further creates such transitions

60

reaching q from all the iterated suffix pointers until the initial state or a state

p′ already admitting such a transition is reached. In the former case, the suffix

pointer of q is set to be the initial state I and the transition (I, a, q) is created.

In the latter case, if the existing transition (p′, a, q′) is solid and q′ 6= q,

then the suffix pointer of q is simply set to be q′ (line 9). Otherwise, if q′ 6= q,

a copy of the state q′, r, with the same outgoing transitions is created (line

12) and the suffix pointer of q is set to be r. The suffix pointer of r is set to be

s[q′] (line 15), that of q′ is set to r (16), and l[r] defined as l[p] + 1 (17). The

transitions labeled with a leaving the iterated suffix pointers of p are inspected

and redirected to r so long as they are non-solid transitions (lines 18-20).

The subroutine Suffix-Final sets the finality of states in S(A). For any

state p that is final in A, p and all the states found by following the chain of

suffix pointers starting at p are made final in S(A) in the loop of lines 3-5.

Figure 3.10 illustrates the application of the algorithm to a particular suffix-

unique automaton. All intermediate stages of the construction of S(A) are

indicated, including s[q] and l[q] for each state q.

Our algorithm can also be used straightforwardly to generate the suffix or-

acle of a set of strings, which has been shown to have various useful properties

[4]. In the construction of the suffix oracle, no new state is created with respect

to the input. The suffix oracle of A can thus be constructed in a similar way

simply by replacing line 12 in Figure 3.8 by: r ← δS(p, a) and removing lines

15-17. This algorithm thus straightforwardly extends the construction of the

suffix oracle to the case of suffix-unique input automata.

61

0

1b 2

c

3
b

4
c

b

a

0/*,0 1/0,1
b

(a) (b)

0/*,0 1/0,1
b

3/1,2
b

0/*,0

1/0,1
b

4/0,2
c

c

3/1,2b

(c) (d)

0/*,0

1/0,1
b

5/0,1

c

3/1,2
b

4/5,2

c

0/*,0

1/0,1
b

5/0,1

c

3/1,2
b

4/5,2

c

2/3,3
b

(e) (f)

0/*,0

1/0,1
b

5/0,1
c

2/0,3

a

3/1,2
b

4/5,2
c

a

b

a

0/*,0

1/0,1

b

5/0,1c
2/0,3

a

3/1,2
b

4/5,2
c

a

b

a

(g) (h)

Figure 3.10: Construction of the suffix automaton using Create-Suffix-

Automaton. (a) Original automaton A. (b)-(h) Intermediate stages of the
construction of S(A). For each state (n/s, l), n is the state number, s is the
suffix pointer of n, and l is l[n].

62

3.5.2 Algorithm Complexity

For the complexity result that follows, we will assume an efficient representa-

tion of the transition function such that an outgoing transition with a specific

label can be found in constant time O(1) at any state. Other authors are some-

times assuming instead an adjacency list representation and a binary search

to find a transition at a given state, which costs O(min{log |Σ|, emax}) where

emax is the maximum outdegree [26, 27]. If one adopts that assumption, the

complexity results we report as well as those of Blumer et al. [14, 15] should

be multiplied by the factor min{log |Σ|, emax}.

We begin our analysis of the algorithm runtime by proving that the number

of transitions redirected in the while loop of lines 18-20 of Suffix-Next is

linear.

Transition Redirections

Our proof of the linearity of the number of transition redirections proceeds as

follows. We first prove that a redirection requires the traversal of a particular

combination of non-equivalent factors in A related to each other by a common

suffix (Lemma 3.6). Using this fact, we show that a transition is redirected

multiple times when we traverse a family of such factors in A (Corollary 3.4).

Relying on the analysis for the suffix automaton of a single string [15, 16], we

show that the number of redirections across all families in each linear chain of

states in A is linear in the length of the chain. The total number of redirections

is the sum of those across all the chains in A, which is linear in |A| (Proposition

63

3.4).

Let A be the input automaton to Create-Suffix-Automaton. We

denote as equiv(p) the longest factor v of A such that [v] is the equivalence class

corresponding to state p in S(A). Recall that the notation u <s v indicates

u is a proper suffix of v, and u 6<s v indicates that u is not a suffix of v. A

transition from state p to state q with the label a is denoted as (p, a, q), or if the

destination state is not needed for the argument simply as (p, a). We also use

the partial transition function of S(A) to refer to transitions, as δS(s, a) = q.

Lemma 3.4 Let A be suffix-unique, and let x ∈ Σ∗ be the longest string in

[x]. Then every member of [x] is a suffix of x.

Proof. Clearly x is a suffix of x. Let y ∈ Σ∗ be such that y 6= x and y ∈ [x].

Let z ∈ Σ∗ be a string such that xz is a suffix of A. Then by definition of the

equivalence relation on factors of A, yz is also a suffix of A. But by suffix-

uniqueness of A, since xz and yz are both suffixes, then y is a suffix of x.

2

For the following, note that by definition of the suffix link, s[q] = p iff

equiv(p) is the longest suffix of equiv(q) such that [equiv(p)] 6= [equiv(q)].

Lemma 3.5 If two transitions (s1, a, m1) and (s2, a1, m2) are redirected during

a single call of Suffix-Next, then m1 = m2.

Proof. The proof follows by repeated applications of Proposition 3.1. Before

the redirection, we have [equiv(s1)a] = m1 and [equiv(s2)a] = m2. After the

64

redirection we have δS(s1, a) = δS(s2, a) = r. This implies that [equiv(s1)a] =

[equiv(s2)a], and in turn that m1 = m2. 2

Now that we have established two facts that help us analyze redirections

during the construction of the suffix automaton, we prove the following two

lemmas which give the connection between redirections and the factors in A

that cause them. Figure 3.11 gives an illustration of Lemma 3.6.

Lemma 3.6 If a transition (s, a, m) is redirected, then A contains two distinct

factors of the form cwa and dwa, where c, d, a ∈ Σ, w ∈ Σ∗, and c 6= d.

Proof. By assumption, a transition is redirected. Hence, there is a call of

Suffix-Next(p, a, q), such that before the call we have δS(s, a) = m and after

the call δS(s, a) = r 6= m. By Lemma 3.5, there is a single state m associated

with all redirections made during this call of Suffix-Next.

After the redirection, we set δS(s, a) ← r (line 19), and hence we have

[equiv(s)a] = [equiv(r)]. This by Lemma 3.4 implies that equiv(s)a is a

suffix of equiv(r). Since we set s[q] ← r, and s[m] ← r, this implies that

equiv(r) <s equiv(m) and equiv(r) <s equiv(q). Hence equiv(s)a <s equiv(m)

and equiv(s)a <s equiv(q).

So far we know that equiv(s)a is a suffix of equiv(r), and a proper suffix

of equiv(m) and equiv(q). Since m 6= r then by Proposition 1, equiv(m) 6=

equiv(r). However, since by the pseudocode r becomes the suffix link of m,

we have equiv(r) <s equiv(m). Since s[q] = r and s[m] = r, m cannot be in

65

p

s

r

a

a

a

equiv(s)a

equiv(s)a
m[r]

q[r]

equiv(
s)
a

Figure 3.11: Illustration of Lemma 3.6. The dashed line indicates the redi-
rected transition and the notation q[r] indicates state q with suffix link r.
equiv(s)a is a suffix of equiv(q), equiv(m), and equiv(r) and hence r, m, and
q are all reachable by solid paths ending with equiv(s)a.

the suffix link chain of q, otherwise either q has two suffix links, or m is in the

suffix chain of r (meaning there is a cycle in the suffix chain), both of which

contradict the definition of suffix link. Thus, equiv(m) 6<s equiv(q). But m

and q do have a common suffix ending in a. In other words there exist w, v,

c, and d defined as in the lemma statement such that cwa <s equiv(m) and

dwa <s equiv(q) but c 6= d. 2

Lemma 3.7 If a transition (s, a) is redirected twice over all calls of Suffix-

Next, then A contains factors evwa, cvwa, dwa traversed in that order, such

66

that w ∈ Σ∗; v ∈ Σ+; c, d, e, a ∈ Σ; c 6= e and d 6<s v.

Proof. By assumption the transition (s, a) is redirected twice. Let m be its

destination before the redirections, and m′ and m′′ those after the first and

second redirection, respectively. By the statement and proof of Lemma 3.6

applied to the first redirection, there must be c, e ∈ Σ and v′ ∈ Σ∗ such that

ev′a and cv′a are factors of A, ev′a <s equiv(m) and cv′a <s equiv(m′). After

the redirection, we set s[m] = m′, meaning that equiv(m′) <s equiv(m). Since

the second redirection occurs, (s, a, m′) is a non-solid transition after the first

redirection, meaning that |v′| > 0. The second redirection from m′ to m′′

occurs, so again by Lemma 3.6 there must exist v ∈ Σ+ and w ∈ Σ∗ such that

v′ = vw, wa <s equiv(m′′) and a factor of the form dwa, where d ∈ Σ and

d 6<s v, follows the factors already mentioned in the traversal of A. 2

Lemma 3.8 Let (s, a) be a transition redirected twice over all calls of Suffix-

Next. If the intermediate factor cvwa of Lemma 3.7 is removed from the

traversal of A, then one redirection of (s, a) still occurs due to the remaining

factors evwa and dwa.

Proof. By assumption (s, a) is redirected twice. By Lemma 3.7, the factors

evwa, cvwa, and dwa exist in A. Let Suffix-Next(p, a, q) be the call on

which the a of dwa of Lemma 3.7 is read. Then by the pseudocode, s is in

the suffix link chain of p. Since after the first redirection we set s[m] = m′,

equiv(m′) <s equiv(m). Since the second redirection occurs, by the proof of

Lemma 3.6, equiv(s)a <s equiv(m′), and thus also equiv(s)a <s equiv(m).

67

Removing cvwa from the traversal does not change equiv(s), and hence s is

still in the suffix chain of p, and (s, a) is still a non-solid transition. Hence, it

is redirected once when dwa is traversed. 2

Definition 3.4 Let the primary factor and secondary factor of a redirection

of transition (s, a) be the factors cwa and dwa of Lemma 3.6. Then we denote

the set of all the primary and the last secondary factor of any redirections of

the transition (s, a) during the traversal of A as the redirection family Πs,a(A).

The next corollary follows from a repeated application of the argument in

Lemma 3.7.

Corollary 3.4 Let (s, a) be a redirection redirected n times during the con-

struction of S(A). Then the redirection family Πs,a(A) consists of the factors

fn+1, . . . , f1, traversed in that order where fn+1 = cn+1vnvn−1 . . . v1a, and for

k ∈ {1, . . . , n}, fk = ckvkvk−1vk−2 . . . v1a, where v1 ∈ Σ∗, v2, . . . , vn ∈ Σ+,

c1 . . . cn+1 ∈ Σ such that for k in k ∈ {1, . . . , n}, ck 6<s vk+1 and cn+1 6= cn.

The next corollary follows by an repeated application of the argument

of Lemma 3.8 to the generalized form of a redirection family just given in

Corollary 3.4.

Corollary 3.5 Let (s, a) be a redirection redirected n times during the con-

struction of S(A). Then removing k factors in the redirection family Πs,a(A)

from the traversal of A reduces the number of redirections of (s, a) to n− k.

68

Define a linear chain of A to be a path between states b and e such that

every state on the path has one outgoing transition, except for e which may

have one or zero outgoing transitions. If B is a linear chain, then Πs,a(B) ⊆

Πs,a(A) is the subset such that every member of Πs,a(B) finishes on a transition

in B. Let Π(B) be the set of all those factors belonging to redirection chains

that cause redirections inside B: Π(B) =
⋃

(s,a)∈A Πs,a(B). Finally let r(B) be

the total number of redirections made over all calls of Suffix-Next(p, a, q)

such that (p, a, q) ∈ B.

Lemma 3.9 r(B) = O(|B|).

Proof. Let str(B) be the string automaton accepting the single string read

in A by traversing the linear chain B sequentially. We know from previous

work [15, 16] that the number of redirections made during the construction

of S(str(B)) is O(|B|). By Corollary 3.5, the number of redirections made

during the construction of S(str(B)) is exactly the same as that made during

the construction of S(A) while traversing transitions of B, with the possible

exception of the first member of a given redirection family that is encountered

while traversing B. Such a factor za can cause a redirection of transition

(s, a) if it serves as a secondary factor to a primary factor traversed before

B. In the construction of S(str(B)), this redirection would not occur since

za is the first member of Πs,a(str(B)). But every transition (s, a) redirected

during the construction of S(str(B)) is associated uniquely with a redirec-

tion family Πs,a(A). Hence, there is at most one extra redirection per transi-

69

tion of S(str(B)), and thus the total number of extra redirections is at most

|S(str(B))|. We know from the previously known size bounds for the suffix

automaton of a single string [26, 14] that |S(str(B))| = O(| str(B)|) = O(|B|).

Hence r(B) = O(|B|) + O(|B|) = O(|B|). 2

Proposition 3.4 The total number of transition redirections made during a

call of Create-Suffix-Automaton(A) is O(|A|).

Proof. By Lemma 3.9, the total number of redirections in any chain B across

all families is O(B). Thus, the total number of redirections over the entire

traversal of A is
∑

B∈A r(B) =
∑

B∈A O(|B|) = O(|A|). 2

Final Complexity Result

Armed with the proof of the linearity of the number of redirections made

during the construction of S(A), we now prove the following final complexity

result.

Proposition 3.5 Let A be a minimal deterministic suffix-unique automaton.

Then, the runtime complexity of algorithm Create-Suffix-Automaton(A, f)

is O(|S(A)|).

Proof. Suffix-Next is called at most once per transition, so the total

number of calls of Suffix-Next is O(|A|). Fix a transition (p, a, q) of A

with q 6= f . The cost of the execution of the steps 1-20 by Suffix-next is

proportional to the total number of iterated suffix link traversals in the loop of

70

lines 2-4 and lines 18-20. Each iteration of lines 2-4 results in a new transition

being created in S(A), so the total number of loop iterations over all calls of

Suffix-Next is O(|S(A)|). By Proposition 3.4, the total number of iterations

of the loop of lines 18-20 is O(|A|). Thus, the total complexity is O(|S(A)|).

2

3.6 Weighted Suffix Automaton Algorithm

In the forthcoming, we generalize the algorithm presented in Section 3.5 to

the weighted case. That is, we describe a new linear-time algorithm for the

construction of the suffix automaton S(A) of a weighted suffix-unique input

automaton A, or similarly the factor automaton F (A) of A. Once again in

the weighted case, since F (A) can be obtained from S(A) by making all states

of S(A) final and applying a linear-time acyclic minimization algorithm, it

suffices to describe a linear-time algorithm for the construction of S(A).

The algorithm given in this section holds over the tropical semiring (see

Section 2.2), which is used in our music identification system; however, we

conjecture that this algorithm can be generalized to arbitrary semirings.

3.6.1 Algorithm Pseudocode and Description

Figures 3.12-3.14 give the pseudocode of the algorithm for constructing the

suffix automaton S(A) = (QS, I, FS, δS, ωS, ρS) of a suffix-unique automaton

A = (QA, I, FA, δA, ωA, ρA), where the partial transition functions δS and δA

71

are as in Section 3.5; ωS : QS×Σ 7→ K and ωA : QA×Σ 7→ K give the weight for

each transition in S(A) and A, respectively; and ρS : FS 7→ K and ρA : FA 7→ K

are the final weight functions for S(A) and A. f denotes the unique final state

of A with no outgoing transitions.

Weighted-Create-Suffix-Automaton(A, f)

1 S ← QS ← {I} � initial state
2 s[I]← undefined; l[I]← 0; W [i]← 0
3 while S 6= ∅ do

4 p← Head(S)
5 for each a such that δA(p, a) 6= undefined do

6 if δA(p, a) 6= f then

7 QS ← QS ∪ {q}
8 l[q]← l[p] + 1
9 Weighted-Suffix-Next(p, a, q)

10 Enqueue(S, q)
11 QS ← QS ∪ {f}
12 for each state p ∈ QA and a ∈ Σ s.t. δA(p, a) = f do

13 Weighted-Suffix-Next(p, a, f)
14 Weighted-Suffix-Final(f)
15 for each p ∈ FA do

16 Weighted-Suffix-Final(p)
17 ρS(I)← minp∈QS

W [p]
18 return S(A) = (QS, I, FS, δS, ωS, ρS)

Figure 3.12: Algorithm for the construction of the suffix automaton of a
weighted suffix-unique automaton A.

In the following s[q], l[q], and S are as defined in Section 3.5. We assume

that for all p ∈ QA, ρA(p) = 0, since we may encode A to contain no final

weights as follows: for any state p such that ρA(p) = e, we set ρA(p) = 0 and

add a transition such that δA(p, $) = f and ωA(p, $) = e, where $ is a unique

72

Weighted-Suffix-Next(p, a, q)

1 l[q]← max(l[p] + 1, l[q])
2 W [q]←W [p] + ωA(p, a)
3 while p 6= I and δS(p, a) = undefined do

4 δS(p, a)← q
5 ωS(p, a)←W [q]−W [p]
6 p← s[p]
7 if δS(p, a) = undefined then

8 δS(I, a)← q
9 ωS(I, a)←W [q]

10 s[q]← I
11 elseif l[p] + 1 = l[δS(p, a)] and δS(p, a) 6= q then

12 s[q]← δS(p, a)
13 else r ← q
14 if δS(p, a) 6= q then

15 r ← copy of δS(p, a) � new state with same transitions
16 QS ← QS ∪ {r}
17 s[q]← r
18 s[r]← s[δS(p, a)]
19 s[δS(p, a)]← r
20 W [r]←W [p] + ωS(p, a)
21 l[r]← l[p] + 1
22 while p 6= undefined and l[δS(p, a)] ≥ l[r] do

23 δS(p, a)← r
24 ωS(p, a)←W [r]−W [p]
25 p← s[p]

Figure 3.13: Subroutine of Weighted-Create-Suffix-Automaton pro-
cessing a transition of A from state p to state q labeled with a.

73

Weighted-Suffix-Final(p)

1 m←W [p]
2 if p ∈ FS then

3 p← s[p]
4 while p 6= undefined and p 6∈ FS do

5 FS ← FS ∪ {p}
6 ρS(p)← m−W [p]
7 p← s[p]

Figure 3.14: Subroutine of Weighted-Create-Suffix-Automaton mak-
ing states on the suffix chain of p final and setting their final weights.

encoding symbol for this transition. Decoding the resulting suffix automaton

simply reverses this process. The weighted suffix automaton algorithm relies

on the computation of W [p], the forward potential of state p, i.e., the total

weight of the path from I to p in A. The introduction of W yields a natural

extension of our previous unweighted algorithm to the weighted case. This

forward potential is computed as the automaton is traversed and is used to set

weights as transitions are added to and redirected within S(A). Throughout

the algorithm, for any transition (p, a, q) in S(A), we set ωS(p, a) = W [q]−W [p]

so that traversing a suffix in S(A) yields the same weight as traversing the

original string in A. As a result, any solid transition in S(A) retains its weight

from A.

The functions Weighted-Create-Suffix-Automaton, Weighted-

Suffix-Next, and Weighted-Suffix-Final are weighted versions of their

unweighted analogues, Create-Suffix-Automaton, Suffix-Next, and

Suffix-Final, respectively. In Weighted-Create-Suffix-Automaton,

74

the processing of the transitions (p, a, f) with destination state f is again de-

layed to a later stage (lines 12-14). This is because of the special property of

f that it may admit not only different suffix pointers but also different values

of l[f] and W [f].

The subroutine Weighted-Suffix-Final sets the finality and the final

weight of states in S(A). For any state p that is final in A, p and all the

states found by following the chain of suffix pointers starting at p are made

final in S(A) in the loop of lines 4-7. The final weight of each state p′ found

by traversing the suffix pointer chain is set to W [p]−W [p′] (line 6).

Figure 3.15 illustrates the application of the algorithm to a weighted au-

tomaton. All intermediate stages of the construction of S(A) are indicated,

including s[q], W [q], and l[q] for each state q.

3.6.2 Algorithm Complexity

Proposition 3.6 Let A be a minimal deterministic suffix-unique automaton.

Then, a call to Weighted-Create-Suffix-Automaton(A, f) constructs

the suffix automaton of A, S(A), in time linear in the size of S(A), that is in

O(|S(A)|).

Proof. The unweighted version of the suffix automaton construction algo-

rithm is shown to have a linear runtime complexity in Proposition 3.5. The

total number of transitions added and redirected by the unweighted algorithm

is of course also linear. In the weighted algorithm given in Figures 3.12-3.14,

75

0

1b/2 2

c/1

3
b

4
c/2

b/3

a/4

(a)

0[*,0] 1[0,1]
b/2

0[*,0] 1[0,1]
b/2

3[1,2]
b

(b) (c)

0[*,0]

1[0,1]
b/2

4[0,2]

c/4

c/2

3[1,2]b

0[*,0]/1

1[0,1]

b/2

5[0,1]/-3

c/4

3[1,2]
b

4[5,2]

c/2

(d) (e)

0[*,0]/1

1[0,1]/3

b/2

5[0,1]/-3

c/4

3[1,2]/3
b

4[5,2]

c/2

2[3,3]
b/3

0[*,0]/1

1[0,1]/3

b/2

5[0,1]/-3c/4 2[0,3]

a/8

3[1,2]/3
b

4[5,2]
c/2

a/4

b/3

a/4

(f) (g)

Figure 3.15: Construction of the suffix automaton using Weighted-Create-

Suffix-Automaton. (a) Original automaton A. (b)-(g) Intermediate stages
of the construction of S(A). For each state n[s, l]/w, n is the state number, s
is the suffix pointer of n, l is l[n], and w is the final weight, if any.

76

transitions are added and redirected in the same way as in the unweighted

algorithm, and weights are only adjusted when transitions are added or redi-

rected (with the exception of the single initial weight adjustment in line 17

of Weighted-Create-Suffix-Automaton). Hence, the total number of

weight adjustments is also linear. 2

3.7 Experiments

We have conducted several empirical studies of the bounds and algorithms

presented in this chapter. The results are presented in this section.

3.7.1 Factor Automata Size Bounds

We have verified the novel bounds on the size of factor and suffix automata

given in Section 3.4 in the context of the music identification system described

in Chapter 2. As mentioned in Section 2.4, remarkably, even in the case of

15,455 songs, the total number of transitions of Fw(A) was 53.0M, which is

only about 0.004% more than that of F (A). We also have |F (A)|E ≈ 2.1|A|E.

As is illustrated in Figure 3.16, this multiplicative relationship is maintained

as the song set size is varied between 1 and 15,455.

The k-suffix-unique bound given in Section 3.4.5 relies on the strings in our

set U to have relatively short common suffixes. We tested this assumption in

our music identification system. For the case of 15,455 songs, U is 45-suffix-

unique, which is relatively short compared to an average string length of 1,700.

77

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 0 2000 4000 6000 8000 10000 12000 14000 16000

S
iz

e

Songs

States factor
Arcs factor

States/Arcs Non-factor

Figure 3.16: Comparison of automaton sizes for different numbers of songs.
“#States/Arcs Non-factor” is the size of the automaton A accepting the entire
song transcriptions. “# States factor” and “# Arcs factor” is the number of
states and transitions in the weighted factor acceptor Fw(A), respectively.

Figure 3.17 demonstrates that the number of suffix “collisions” drops rapidly

as the suffix size is increased. For our music collection, the number of states

of the weighted factor automaton Fw(A) compares to the size of the input

automaton A as

|Fw(A)|Q ≈ 28.8M ≈ 1.2|A|Q (3.11)

We can thus conclude that the bound of Corollary 3.3 is verified in this

empirical context.

78

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 5 10 15 20 25 30 35 40 45

N
on

-u
ni

qu
e

so
ng

s

k (suffix length)

Figure 3.17: Number of strings in U for which the suffix of length k is also a
suffix of another string in U .

3.7.2 Correctness Verification

As Section 3.3.3 describes, an alternative way of constructing suffix automata

is by adding ǫ-transitions, followed by ǫ-removal, determinization, and mini-

mization. As a result, the correctness of the output of the suffix automaton

construction algorithms given in Sections 3.5 and 3.6 may be verified by test-

ing equivalence of the resulting suffix automaton to that produced using these

general algorithms.

Our implementation was in the OpenFst toolkit [7], which also provides

implementations of the above general algorithms, as well as an equivalence

checking algorithm. Hence, our test suite was constructed by repeating the

following test scenario:

79

1. Generate a random suffix-unique string set U , along with random weights

for the weighted case.

2. Construct the deterministic and minimal input automaton A accepting

U .

3. Construct suffix automata Sg(A) with the general algorithm and Sn(A)

with the new algorithm from Section 3.5 or 3.6.

4. Check that Sg(A) and Sn(A) are equivalent.

We ran this simulation continuously for several weeks on a cluster of 20

servers. No cases were found where our algorithms produced an incorrect

result.

3.7.3 Algorithm Speed Improvement

We constructed the weighted factor automaton required for the music identi-

fication system of Chapter 2 with both the method of Section 3.3.3 and the

new suffix automaton algorithm presented in this section. The new algorithm

completed in 3,190 seconds, as compared to 56,058 seconds for the previous

algorithm. Hence, a speedup of more that 17 times was exhibited in this

empirical setting.

80

3.8 Summary

We have presented a novel analysis of the size of the suffix automaton and

factor automaton of a set of strings represented by an automaton in terms of

the size of the original automaton. Our analysis shows that suffix automata

and factor automata can be practical for constructing an index of a large

number of strings. As a result, factor automata of automata can be used to

construct a useful and compact index for very large-scale search tasks.

We have further given unweighted and weighted versions of a linear-time

algorithm for constructing the suffix automaton or factor automaton of a set

of strings in time linear in the size of a prefix tree representing them, a drastic

improvement on the previous method using the generic ǫ-removal and de-

terminization algorithms. Our algorithm applies to any input suffix-unique

automaton and generalizes the standard on-line construction of a suffix au-

tomaton for a single input string.

All the contributions presented in this chapter are generally applicable

to a number of tasks where search of a collection of strings or sequences,

possibly with associated costs or probabilities, is required. However, in this

thesis, both the motivation for this work and its empirical validation have

been in the context of the music identification system presented in Chapter

2. The size bounds presented ensure that our finite automaton representation

will scale to even larger song collections. Specifically, the expected linear

relationship between the number of songs and the size of the factor automaton

81

representing the song collection is exhibited consistently as the number of

songs is increased. Moreover, the new algorithms given in this chapter ensure

that a compact representation can be constructed efficiently. Indeed, we have

confirmed that our algorithm results in more than a 17-fold speed improvement

in the construction of the song factor automaton over the previously used

algorithms.

82

Chapter 4

Topic Segmentation

4.1 Introduction

Search of large collections of audio sequences such as speech and music relies

on a transcription of the source sequences in terms of intermediate units. As

mentioned in Chapter 1, the wide variety of possible units includes linguistic

primitives such as words or phonemes in the case of speech and elementary

music sounds such as notes or the music phonemes of Chapter 2 in the case of

music.

In order to enable effective indexation, and in turn, effective search, it is

important to analyze the transcribed sequence to discover structural elements.

For example, in the case of music phoneme transcription of Chapter 2, the

construction of a factor automaton allows us to take advantage of phoneme

sequences that appear in the transcription of multiple songs to construct an

83

efficient and accurate index.

Another type of structure that applies to audio collections is the presence

of topics. Natural language streams, such as news broadcasts and telephone

conversations, are marked with the presence of underlying topics. These topics

influence the statistics of text or speech that is produced. As a result, learning

to identify the topic underlying a given segment of speech or text, or to detect

boundaries between topics is beneficial in a number of ways. For example, for

a speech recording that is being transcribed, knowledge of the topic can be

used to improve transcription quality through the use of a speech recognizer

with a topic-dependent language model [83]. Topicality information can also

be used to improve navigation of audio and video collections such as YouTube,

by considering a common topic as a feature when creating links between items.

Finally, in real-time speech recognition applications, topicality information can

be used to improve both the quality of speech recognition and the dialogue

path selected by the system [48, 72].

In this chapter, we primarily discuss topicality in text and speech. However,

it should be noted that the notion of underlying topics or factors that account

for observed content is applicable broadly to a number of fields beyond speech

and text processing. Models traditionally used to detect and label topics

in text and speech have been used successfully for tasks ranging from music

similarity computation to image categorization [38, 49].

84

4.1.1 Previous Work

The previous work related to the material in this chapter spans several areas

of natural language and speech processing, machine learning, and information

retrieval.

Topic Models

Topic models or topic labeling algorithms assign a topic label sequence to a

stream of text or speech. Much of the recent work on topic analysis has been

focused on generative models. A good introduction to these models can be

found in [75]. Let V = {w1, w2, . . . , wn} be the vocabulary of n words. Then

an observation a is an observed set of text or speech expressed through the

empirical frequency, or expected count, Ca(wi) for each wi ∈ V . In generative

topic models, a sequence of word observations is explained by a latent sequence

of topic labels. As a result, high-dimensional text can be described with a low-

dimensional mixture of the topics learned. A simple generative formulation of

a topic model is

z = arg max
z

Pr(z|a) = arg max
z

Pr(a|z) Pr(z), (4.1)

where a is the sequence of observed text, and z is the topic label assigned.

The second equality follows by Bayes’ rule and the realization that the prior

over the observations Pr(a) does not change with respect to topic. Under such

topic models, text is labeled by decoding a maximum a posteriori sequence

85

of topics accounting for the text. In these models, a is treated as a “bag of

words,” meaning the order of the words in the text or speech stream underlying

a is generally not considered, merely the occurrence frequency of each word

within a. In practice, a can be a sentence, a window of n words, an utterance,

or a single word.

There has been a substantial body of work trying to discover the best model

for the conditional distribution Pr(a|z). Initial work proposed using a corpus of

data labeled with topics to construct a per-topic unigram language model [84].

An approach known as PLSA [40] decomposes the training observation se-

quence into topic-coherent documents, and decomposes the topic-dependent

conditional topic model into a word-topic model and a document-topic model,

Pr(a|z) and Pr(d|z), respectively. The latter likelihood defines a per-document

weight on each topic, and thus each document can be viewed as being asso-

ciated with a particular mixture of topics. One limitation of PLSA is that it

is only able to predict document classes for text seen in the training data. A

modified PLSA is used in [12] to allow for such generalization.

Latent Dirichlet Allocation (LDA) [13] is a truly generative topic model

intended to overcome some of the main limitations of PLSA. LDA does not

have a concept of documents, but views each observation as a mixture of topics

where the mixture weights themselves are random variables. Namely, the

formulation of Equation 4.1 is used, but the distributions Pr(w|z) and Pr(z)

are modeled as multinomial distributions with Dirichlet priors. As a result, any

topic mixture is possible, not just the one seen at training time. The training

86

algorithm involves finding the maximum-likelihood setting of the Dirichlet

parameters directly with expectation-maximization (EM) or approximately

with Gibbs sampling (see e.g., [75]).

While LDA has been a very popular topic model, its primary disadvantage

is that it assigns topic labels to observations one at a time without considering

the context of surrounding data in the observation stream. To rectify this,

several generative formulations have been suggested for including the transi-

tion from topic to topic in the observation stream in the model. Hidden topic

Markov models (HTMMs) [32] use an HMM structure where each state cor-

responds to a topic z, as in [84, 12]. Each topic is in turn associated with

a standard LDA model. HTMM allows for a context-dependency model for

topic-to-topic transitions to be learned at the same time as the topic model

itself. Another recent work [68] provides a slightly different context depen-

dency formulation in which each state in the Markov model accounts for the

word observations with a mixture of topic models rather than a single topic

assignment.

Topic Segmentation

Topic labeling algorithms are also topic segmentation algorithms because a

topic assignment to a stream of text or speech also implies a topic-wise seg-

mentation of the stream. However, generative topic analysis algorithms such as

HTMM and PLSA attempt to model the distribution of words in a particular

topic, the distribution of topic-to-topic transitions, and the global distribution

87

of topic labels. Certainly if one can accurately model the underlying topic

sequence, one can also easily solve the problem of topic segmentation or any

other related problem. However, our goal in this work is simpler – to arrive

at the best topic-wise segmentation of a stream of text or speech, and we en-

deavor to create an algorithm specifically designed for this problem. A number

of topic segmentation algorithms have been proposed in the literature, many

in the context of the DARPA Topic Detection and Tracking (TDT) evalua-

tion [2]. This evaluation challenged researchers to develop algorithms for three

related segmentation tasks:

• New event detection – detect the onset of a new topic in a stream of

news stories in an online fashion.

• Event detection – given a stream of news stories, determine all the topics

present.

• Text segmentation – given a stream of text or speech, determine the

boundaries between topic-coherent segments.

In this chapter, we shall target the last task specifically; however since all three

tasks involve segmenting a stream of text or speech into topic-coherent blocks,

the algorithms and quality measure we propose can be adapted to the other

tasks as well.

An early topic segmentation algorithm is known as TextTiling [36]. This

work proposed the idea of doing segmentation by computing word counts for a

88

sliding window over the input text. Text similarity is then evaluated between

pairs of adjacent windows according to a cosine similarity measure,

∑n
i=1 C1(wi)C2(wi)

√

∑n
i=1 C1(wi)2

∑n
i=1 C2(wi)2

. (4.2)

where C1(w) and C2(w) are counts for word i in windows 1 and 2, respectively,

and n is the vocabulary size. The segmentation is obtained by placing segment

boundaries between window pairs that differ significantly according to this

distance.

The cosine score is only one measure of text similarity, or lexical cohesion as

it is frequently referred to in the computational linguistics literature. One dis-

advantage of using raw word counts is that this method assigns equal weights

to all words. As a result, words that are naturally more prevalent in the cor-

pus effectively receive a high weight in the computation of the cosine score.

Several works in the TDT evaluation [17, 85, 3], especially those concerned

with detecting new stories in a news stream, as well as more recent work [30]

sought to bypass this limitation by using the term frequency–inverse document

frequency (tf–idf) to weight each word’s contribution to the similarity score.

The tf–idf score of word w in document d is often defined as

tf–idfd,w = Cd(w) log
N

Nw
, (4.3)

where Cd(w) is the count of word w in document d, N is the total number of

documents in the collection and Nw is the number of documents containing

89

the word w, though many variants of this weighting have been suggested [73].

While tf–idf has been a common theme in the topic segmentation literature

the algorithms used have varied. Brants et al. [17] showed that computing

the tf–idf-weighted Hellinger distance between adjacent stories and using a

threshold to detect topic changes yields an improvement over the cosine dis-

tance baseline. For event detection, Yang et al. and Eichmann et al. [85, 29]

used tf–idf variants in conjunction with clustering algorithms in which only

sequentially adjacent story clusters in the news stream were allowed to merge.

As we shall discuss in Section 4.2.2, considering words in isolation for topic

segmentation results in a natural limitation on the algorithms created. As

demonstrated by Kozima in 1993 [45], word pair similarity can be an important

source of information for topic segmentation. In this work, word pair similarity

was computed from a semantic network constructed from a dictionary [46].

The authors passed a single window over the input text (a single short story)

and calculated a lexical cohesion score by evaluating the similarity of word

pairs found in the window. Low lexical cohesion scores were demonstrated to

be correlated with ground truth topic boundaries as judged by human readers.

A later work proposed predicting a topic boundary before any single word

that scored poorly by dictionary-based similarity to the words seen since the

previous boundary [47]. Evaluation was still on the same single short story, and

correlation with human-placed boundaries was again observed. However, the

segmentation algorithm just mentioned was marked with the use of numerous

heuristics, which combined with the scarce evaluation put into question the

90

broad applicability of the approach.

Several works suggested that the topic segmentation problem can be viewed

as a binary classification problem at every possible segment boundary. Maxi-

mum entropy models have been a popular classifier choice; however, the choice

of features has varied. Beeferman et al. [10] used a combination of short-

range language models and long-range dependencies between words in the

text stream as input to the classifier. Reynar [71] used a number of features

computed between adjacent windows of text, including word distribution sim-

ilarity, word synonymy according to WordNet [53], and counts of hand-picked

cue words. In a topic segmentation work over the TDT speech corpora, Dha-

ranipragada et al. [28] used a combination of decision trees and maximum

entropy models with features including n-gram counts in adjacent windows of

text, as well as non-text events such as silence duration.

Novelty Detection

The term novelty detection generally stands for the task of detecting data

points that stand out as outliers in an established pattern. There is a vast

literature on novelty detection spanning many theoretical and applied fields.

Novelty detection techniques have been used to find anomalies in data streams

ranging from cell phone network usage [41] to mammogram detection [76, 39] to

handwritten digit recognition [74, 39]. Several surveys of the novelty detection

literature have been published [51, 52, 37].

Assuming the presence of outliers, many novelty detection approaches at-

91

tempt to learn a model of the data that reflects the true distribution more

than the empirical distribution. However, as was pointed out by [77, 74], de-

tecting outliers is a simpler problem than modeling the full distribution of the

data. Hence, these authors suggested that to detect outliers, it suffices to give

a boundary separating the bulk of the points and those classified as outliers

without attempting to estimate the data distribution. Treating points lying on

the decision boundary as support patterns, an outlier classifier of a compact

form similar to that of the support vector machine [23, 79] can be given in

the form of a sphere enclosing the non-outlier points [77] or as a hyperplane

separating the non-outlier points from the origin [74].

4.1.2 Summary of Contributions

In this chapter, we describe our work on topic segmentation, defined here as

automatic division of a stream of text or speech into topic-coherent segments.

Throughout the work, we address specifically the case when the input to the

topic segmentation algorithm is a speech audio sequence. We point out ma-

jor limitations of the currently accepted topic segmentation quality measure

known as CoAP, including the fact that it does not take into account the word

content of the segments produced by the algorithms. We then introduce a

general measure of text and speech similarity and give a topic segmentation

quality measure incorporating this similarity score and overcoming many of

the limitations of CoAP.

Speech-to-text transcription of audio streams is a process inherently marked

92

with errors and uncertainty, which results in difficulties for algorithms trying

to discover topical structure. We create novel algorithms for topic segmenta-

tion that use word co-occurrence statistics to evaluate topic-coherence between

pairs of adjacent windows over the speech or text stream and hypothesize seg-

ment boundaries at extrema in the similarity signal. Our algorithms move

beyond cosine-similarity and other methods based purely on comparing word

distributions. In our approach, we apply our general similarity measure to

evaluate topic-coherence between pairs of adjacent windows over the speech or

text stream. In this way, our topic segmentation algorithms are related to the

music segmentation algorithm used for acoustic model initialization of Section

2.3.1.

We point out that similarity-based algorithms suffer from a vulnerability to

off-topic word content in a generally topic-coherent observation stream intro-

duced by speech recognition errors and/or filler text. To create a more robust

algorithm, we employ the use of a compact support-vector based description

of a window of text or speech observation in word similarity space. We prove

that our text similarity measure is a positive definite symmetric (PDS) kernel,

and thus that such a description can be found by solving a convex optimization

problem. We demonstrate that, indeed, by comparing these compact feature-

space descriptions of the window statistics rather than the window statistics

themselves, we can create a more accurate topic segmentation algorithm.

In experiments over speech and text streams from the Topic Detection and

Tracking (TDT) corpus, we show that our novel algorithm outperforms a mod-

93

ern generative learning technique, the hidden topic Markov model (HTMM) [32],

as measured both by our new Topic Closeness Measure (TCM) as well as the

previously used CoAP measure. In line with the overall theme of this thesis,

we note that topic segmentation in the presence of uncertainty introduced by

the use of the speech recognizer can be improved by using the text hypothe-

ses competing with the single most likely one. Specifically, we demonstrate

that information from two information sources derived from speech recognition

word lattices can help improve topic segmentation over the one-best baseline.

Some of the results presented in this chapter were published in [61].

4.1.3 Outline

The remainder of the chapter is organized as follows. In Section 4.2, we review

CoAP, point out its limitations, and develop a new topic segmentation mea-

sure based on a general formulation for computing similarity between streams

of natural language text or speech. In Section 4.3, we give a general formula-

tion of similarity-based topic segmentation algorithms, and suggest two new

algorithms within this formulation. In Section 4.4, we report our technique

for incorporating lattice information from a speech recognizer into topic seg-

mentation algorithms. We present our empirical results in Section 4.5 and

conclude in Section 4.6.

94

4.2 Topic Segmentation Quality

In this section we seek a new quality measure for topic segmentation algo-

rithms. This measure should be applicable both to segmentations produced

by topic models such as HTMM [32], which implicitly segment the text stream

by assigning topic labels to successive segments, as well as explicit segmenta-

tion algorithms such as TextTiling [36]. It should also apply to text as well

as speech input, and should reflect human intuition about what constitutes a

good segmentation. The most popular quality measure used in past work is

known as the Co-occurrence Agreement Probability, or CoAP.

4.2.1 Co-occurrence Agreement Probability

Let the input to a segmentation algorithm be a sequence of observations T =

(x1, . . . , xm). We refer to the correct segmentation provided by human judges

of topicality or some other oracle as the reference, and that provided by a

topic segmentation algorithm to be evaluated as the hypothesis. CoAP [10] is

broadly defined as:

PD(ref, hyp) =
∑

1≤i≤j≤n

D(i, j) (δref(i, j)⊕δhyp(i, j)) , (4.4)

where D(i, j) is a distance probability distribution over observations i, j; δref

and δhyp are indicator functions that are one if observations i and j are in the

same topic in the reference and hypothesis segmentations, respectively; and ⊕

is the exclusive NOR operation (“both or neither”). In practice, CoAP scoring

95

is almost always reduced to a single sliding window of fixed size k over the

observations, meaning that D is the distribution with its mass placed entirely

on the event {i, j : j − i = k}. This form of CoAP, or more precisely the error

according to this form of CoAP, is often referred to in the literature as Pk.

For example, consider the reference and hypothesis text segmentations

given in Figure 4.1 and assume that k = 2. In the reference, sentence pairs

(1, 3), (2, 4), (4, 6) are in different segments, while (3, 5) is in the same seg-

ment. In the hypothesis, (1, 3), (3, 5), (4, 6) are in different segments, while

(2, 4) is in the same. Hence, the hypothesis segmentation contains one false

positive segment boundary, (3, 5) and one false negative, (2, 4). Thus, out

of four window positions, two are in agreement and two are not, hence this

segmentation receives 50% according to CoAP with k = 2.

Sentence. This is a long long sentence.

Sentence. This is a long long sentence.

This is a long long long sentence. This is a long sentence. This is a long sentence. This is a long long long sentence.

This is a long long long sentence. This is a long sentence. This is a long sentence. This is a long long long sentence.

Figure 4.1: A comparison of a reference segmentation (top) and a hypothesis
segmentation (bottom) for a stream of text sentences. Boxes indicate sentences
and dark lines between boxes denote topic segment boundaries.

Various modifications of CoAP have been used in previous studies, includ-

ing those assigning different weights to false positive and false negative segment

boundaries (e.g., [64]). Another modification of CoAP known as WindowDiff

proposed to compare the number of segment boundaries encountered within a

window of size k rather than simply the presence or absence of one [66].

CoAP functions purely by analyzing the segmentation of the observations

96

into topic-coherent segments, without taking into account the content of the

segments labeled as topic-coherent. As a result, every spurious or missing

topic boundary is penalized equally without regard for the topics that it falsely

separates or fails to correctly separate, thus yielding a measure that may not

accurately reflect the quality of the segmentation. To illustrate this point,

consider again the reference and hypothesis segmentations of Figure 4.1 with

k = 2. CoAP penalizes the false negative boundary (2, 4) and the false positive

boundary (3, 5) equally. However, suppose that the word distribution of the

topic-coherent reference sentence range [3, 5] is very close to that of sentence 2

and very far from that of sentence 6. Thus, while the hypothesis segmentation

falsely includes both 2 and 6 in segments overlapping the true topic-coherent

segment [3, 5], the inclusion of 6 should be penalized more than the inclusion

of 2. Our new measure presented in Section 4.2.3 formalizes this intuition.

Additionally, CoAP is dependent on the choice of window size k. Win-

dowDiff does not suffer as much from this dependence, but a value for k must

still be chosen and still affects the score [66]. Various heuristics exist for the

choice of k. One idea used in previous work has been to set k equal to half the

average reference segment length. Another popular setting is such that the

score for degenerate segmentations (i.e., random segmentations, those that

place every possible boundary, or those that place none at all) get a score of

around 50%. This latter heuristic is the one used in the implementation of

CoAP in this work.

Finally, by matching sentences i and j of Equation 4.4 between the refer-

97

This is a long long long utterance. This is a long utterance. This is a long utterance. This is a long long long utterance. Utterance. This is a long long utterance.

This is a long long utterance. This is a long long utterance.This is a long utterance. Utterance. Utterance. Utterance.Utterance.

Figure 4.2: A comparison of a reference segmentation (top) and a hypothesis
segmentation (bottom) for a stream of speech utterances. Boxes indicate ut-
terances and dark lines between boxes denote topic segment boundaries. Note
that the segmentation of speech into utterances is different in the reference
and the hypothesis.

ence and hypothesis, CoAP implicitly requires that the reference and the hy-

pothesis segmentations are obtained by placing boundaries in the same stream

of text, or at least two streams of text where sentence i in the reference corre-

sponds exactly to sentence i in the hypothesis. However, the hypothesis seg-

mentation can be over the output of a speech recognizer, and hence the text

can differ from that of the reference segmentation due to recognition errors,

and may even be broken differently into utterances, as is illustrated in Figure

4.2. One way of handling this limitation used in previous work [64] and in this

work is to align the reference text with the hypothesis text temporally. In this

case, k becomes a temporal separation, i.e., number of seconds, rather than

the sentence-wise separation of the text case. But even with this approach the

behavior of the measure in certain cases is not well-defined. For example, in

the reference segmentation of Figure 4.2, it is possible for the temporal CoAP

window to be placed toward the end of segment 4 and not be aligned to any

utterance in the hypothesis. This is handled by various heuristics, e.g., pick

the utterance closest to the boundary (the one used in this work). Moreover,

98

in contrast to the text case, it is not clear how far apart successive windows

should be, i.e., how to sample the distribution D(i, j). In this work, we ad-

vanced the window k seconds after each comparison between the reference and

hypothesis. For the above reasons, there exists a rather significant mismatch

between the measure actually used for the text case and the speech case.

4.2.2 A General Measure of Topical Similarity

As we have discussed in detail above, CoAP is marked with various limitations,

which we seek to address in the following. To formalize the intuition of con-

sidering not only the placement of segment boundaries but also the closeness

of the segments they separate, we shall require the use of a similarity measure

between segments of text or speech observations. One rudimentary similarity

function is the cosine distance (Equation 4.2). As mentioned in Section 4.1.1,

such dot-product based similarity functions are vulnerable to more frequent

words being weighted more heavily in the similarity score, a limitation which

may be rectified with the use of tf–idf word weighting [17].

Alternatively, the word frequency over the topic segment can be viewed

as an unsmoothed unigram probability distribution of words in the segment.

To evaluate the similarity of two segments of speech or text, we may compare

their probability distributions. A number of probability distance functions

can be used here, including the L1 distance, L2 distance, and the symmetrized

relative entropy or KL-divergence.

However, the distance measures just mentioned are all limited in that they

99

are based on evaluating the divergence in probability assigned to a given word

between the two distributions. For example, if the first segment being con-

sidered has many occurrences of “sport”, then a segment making no mention

of “sport” but mentioning “baseball” frequently would be assigned the same

similarity score as a segment not mentioning anything relevant to sports at

all.

Mutual Information for Words

Clearly, what is required is a measure of closeness between words. Various

similarity measures have been suggested, such as those obtained by mining

thesaurus or dictionary entries [63, 46, 71]. One powerful indicator of word sim-

ilarity is co-occurrence in speech or text segments known to be topic-coherent.

A measure that captures this intuition is mutual information.

Let V be the vocabulary, and x, y ∈ V be two words. If T is a training

corpus, then let CT (x, y), CT (x), and CT (y) be the empirical probabilities of

x and y appearing together, and that of x and y appearing, in T , respectively.

The pointwise mutual information (PMI) between x and y is then defined as

PMI(x, y) = log
CT (x, y)

CT (x)CT (y)
, (4.5)

The definition of “appearing together” can be interpreted to mean prox-

imity in the word stream (see e.g., [22]). However, since topic segmentation is

our task, we assume that our training corpus T is pre-segmented into topic-

100

coherent segments, and we say that x and y appear together when they appear

in the same segment.

The logarithm in Equation 4.5 is customarily used due to connections with

well-understood quantities in information theory, such as entropy. However,

since logarithm is a monotone function, dropping it in the above formula does

not change the ordering of word pairs and results in the similarity measure

we shall define below being a positive definite symmetric (PDS) kernel. Thus,

our similarity score between words is

sim(x, y) =
CT (x, y)

CT (x)CT (y)
. (4.6)

In past work [18, 78], some authors have referred to this quantity as interest,

however, we shall refer to it simply as similarity.

Similarity Measure of Natural Language Texts

Our goal is to design a segmentation quality measure that penalizes segments

spanning multiple topics while rewarding segments that respect topic bound-

aries. In the following measure, we match up segments between the reference

and the hypothesis segmentation. Intuitively, those segments in the hypothesis

that span multiple reference segments will likely get a low similarity score when

compared to either reference segment, while hypothesis segments respecting

reference segment boundaries will receive a high similarity score. Recall that

we have set out with the goal of reducing the penalty of hypothesized segment

101

boundaries that do not exactly match reference boundaries if the segments

hypothesized are close in content to the reference segments they overlap. The

similarity score sim(·, ·) allows us to quantify this intuition.

If a and b are two segments of text or speech, let Ca(w) and Cb(w) be the

empirical frequencies of word w in a and b, respectively, which when prop-

erly normalized (see Section 4.4) correspond to probability distributions over

words. We will evaluate the total similarity of a pair of observations a and b

as

K(a, b) =
∑

w1∈a,w2∈b

Ca(w1) Cb(w2) sim(w1, w2) (4.7)

Let the vocabulary be V = {w1, w2, . . . , wn}. Let A and B be the column

vectors of empirical word frequencies such that Ai = Ca(wi) and Bi = Cb(wi)

for i = 1, . . . , n. Let K be the matrix such that Ki,j = sim(wi, wj). The

similarity score can then be written as a matrix operation,

K(a, b) = A⊤KB. (4.8)

A normalization yields

Knorm(a, b) =
A⊤KB

√

(A⊤KA)(B⊤KB)
, (4.9)

which ensures the score is in the range [0, 1] and for any input a, the self-

similarity is Knorm(a, a) = 1.

102

In the following, we show that the general measure of text similarity Knorm

is a positive definite symmetric (PDS) kernel. This fact enables us to use Knorm

to map word observations into a similarity feature space for the support vector

based topic segmentation algorithm we shall present in Section 4.3.2.

Let K be as above a matrix of the similarity scores between words, Ki,j =

sim(wi, wj). Then, we may make the following claim.

Proposition 4.1 Knorm is a positive-definite symmetric (PDS) kernel.

Proof. In the following, as in Equation 4.6, the empirical frequencies and

expectations are computed over a training corpus T . For notational simplicity

we omit the subscript T . Let 1wi
be the indicator function of the event “wi

occurred” and let

Kij =
C(wi, wj)

C(wi)C(wj)

=
E[1wi

1wj
]

E[1wi
]E[1wj

]

= E

[

1wi

E[1wi
]

1wj

E[1wj
]

]

. (4.10)

Clearly K is symmetric. Recall that for two random variables X and Y , we

have

Cov(X, Y) = E[XY]− E[X]E[Y]. (4.11)

Thus we have

103

Cov

(

1wi

E[1wi
]
,

1wj

E[1wj
]

)

= E

[

1wi

E[1wi
]

1wj

E[1wj
]

]

−E

[

1wi

E[1wi
]

]

E

[

1wj

E[1wj
]

]

= E

[

1wi

E[1wi
]

1wj

E[1wj
]

]

− 1 (4.12)

Next, recall that any covariance matrix is positive semidefinite, and thus

for any c1, . . . , cm ∈ R,

m
∑

i,j=1

cicj Cov

(

1wi

E[1wi
]
,

1wj

E[1wj
]

)

≥ 0. (4.13)

According to Equation 4.12, this can be rewritten as

m
∑

i,j=1

cicj

(

E

[

1wi

E[1wi
]

1wj

E[1wj
]

]

− 1

)

≥ 0, (4.14)

that is

m
∑

i,j=1

cicj E

[

1wi

E[1wi
]

1wj

E[1wj
]

]

−
m
∑

i,j=1

cicj ≥ 0. (4.15)

Now, let 1 and C denote column vectors of size m such that 1i = 1 and

Ci = ci for i = 1, . . . , m. Then,

104

m
∑

i,j=1

cicj = Tr(CC⊤11⊤)

= Tr(C⊤11⊤C)

= Tr((C⊤1)2) ≥ 0. (4.16)

Combining Equations 4.15 and 4.16, we get

m
∑

i,j=1

cicj E

[

1wi

E[1wi
]

1wj

E[1wj
]

]

≥
m
∑

i,j=1

cicj ≥ 0. (4.17)

This shows that the matrix K is positive semi-definite.

Now, if K(a, b) = A⊤KB, where A denotes the column vector of the counts

for the wi’s, A = (Ca(w1), . . . , Ca(wN))⊤, and similarly with B, then

K(a, b) =< K1/2A,K1/2B >, (4.18)

so, K is a PDS kernel. Normalization preserves PDS, so Knorm is also a PDS

kernel. 2

4.2.3 New Topic Segmentation Quality Measure

This property of Knorm just discussed enables us to map word observations

into a similarity feature space for the support vector based topic segmentation

algorithm we will present in Section 4.3.3. However, we first use this general

measure of similarity for text to create a topic segmentation quality measure

105

that we call the Topic Closeness Measure (TCM). TCM overcomes the limi-

tations of CoAP discussed in Section 4.2.1, and as we shall see in Section 4.5,

correlates strongly with CoAP in empirical trials.

Let k and l be the number of segments in the reference and hypothesis

segmentation, respectively. Additionally, let r1, . . . , rk and h1, . . . , hl be the

segments in the reference and hypothesis segmentation, respectively. Q(i, j)

quantifies the overlap between the two segments i, j. In this work, Q(i, j) is

the indicator variable that is one when reference segment i overlaps with hy-

pothesis segment j, and zero otherwise. However, various other functions can

be used for Q, such as the duration of the overlap or the number of overlapping

sentences or utterances. Similarly, other similarity scoring functions can be

incorporated in place of Knorm. The topic closeness measure (TCM) between

the reference segmentation R and the hypothesis segmentation H is defined as

TCM(R, H) =

∑k
i=1

∑l
j=1 Q(i, j)Knorm (ri, hj)
∑k

i=1

∑l
j=1 Q(i, j)

. (4.19)

TCM is a more desirable measure of topic closeness than CoAP for a num-

ber of reasons. Like CoAP, TCM is in the range [0, 1], and is symmetric in

the sense the if the reference and hypothesis segmentations are exchanged the

score is the same. However, unlike CoAP, through the use of a text similar-

ity measure, TCM considers not only the placement of the topic boundaries

but also the closeness of the content of the segments being separated by the

boundaries. Additionally, the use of TCM is not dependent on the window

106

size parameter k used in previous measures. Finally, TCM is applicable in the

same form to topic segmentations over text and speech streams.

TCM does consider the placement of topic boundaries, and accordingly,

accomplishes the goal of CoAP – to penalize false positive and false negative

segmentations. For example, adding a spurious boundary (i.e., one that sepa-

rates two segments of the same topic) in a hypothesis segmentation would add

one to l and would thus be penalized by the extra contribution to the normal-

ization term
∑k

i=1

∑l
j=1 Q(i, j). Deleting a boundary between two different-

topic segments is also penalized because the similarity score Knorm between the

combined segment and the overlapping reference segments would be decreased.

4.3 Topic Segmentation Algorithms

As discussed in Section 4.1.1, there is a body of past work on topic segmenta-

tion algorithms using the general notion of similarity of adjacent text or speech

windows. Various similarity measures are used by these algorithms, such as

the cosine distance, possibly weighted by the tf–idf score. However, as we have

pointed out in Section 4.2.2, these similarity measures are limited in that they

consider only the frequencies of individual words, rather than those of related

word pairs.

As in [47], the segmentation algorithm presented in this work is based

on word-pair similarity. We adopt the general measure Knorm of Equation

4.9 as a method of evaluating similarity of two segments of text or speech.

107

In the following, we first suggest a straightforward and intuitive algorithm

which places topic boundaries in the observation stream where Knorm between

the two windows on either side of the boundary is small. As Knorm also

underlies the TCM segmentation quality score presented in Section 4.2.3, this

approach attempts to increase the TCM of the hypothesized segmentation.

We then note that the performance of such an algorithm can be compromised

by outlier sentences or utterances in the observation sequence, and suggest

to use a compact support-vector based description to obtain a summary of a

window of text or speech, producing a second, more robust, algorithm.

4.3.1 A General Description of Similarity-based Seg-

mentation Algorithms

As we have already discussed in detail, topic segmentation algorithms here as

well as in the literature compare adjacent windows of observations. Let the

input be a sequence of observations T = (x1, . . . , xm). Then a topic segmenta-

tion algorithm must decide the set b of topic boundaries in T , that is the set of

indices i such that xi and xi+1 belong to different topics. For i ∈ {δ, . . . , m},

we will refer to a window of observations of size δ ending at i as the set

wi = {xi−δ+1, . . . , xi}. The windowing of an observation stream is illustrated

in Figure 4.3. Let si = s(wi, wi+δ) be either a similarity score or a distance

between wi and wi+δ. If si is a similarity score, we may hypothesize a segment

boundary where the similarity signal dips below a global threshold to define

108

the boundary set b = {i : si < θ}. Because the range of s on either side of a

true boundary might vary, a more robust segmentation algorithm is to look for

local extrema in s. This is accomplished by passing a window of size δ over s

and hypothesizing boundaries where minima or maxima occur, depending on

whether s is a similarity or distance score.

......

Figure 4.3: An illustration of windowing a stream of observations. Each square
represents an observation, and the rectangle represents the current position of
the window. To advance the window one position, the window is updated to
add the observation marked with + and to remove that marked with −.

To denote the minimum and maximum of a range of s values, let rmax(s, i, j) =

max(si, . . . , sj) and rmin(s, i, j) = min(si, . . . , sj). If s is a similarity score

then we obtain a segmentation algorithm by detecting local minima in s, and

applying the absolute threshold θ to each local minimum,

b = {i : si < θ ∧ si = rmin(s, i− ⌊δ/2⌋, i + ⌊δ/2⌋)}. (4.20)

If s is a distance function then we detect local maxima in s,

b = {i : si > θ ∧ si = rmax(s, i− ⌊δ/2⌋, i + ⌊δ/2⌋)}. (4.21)

109

Equations 4.20 and 4.21 yield a general formulation for topic segmentation

algorithms based on distance or similarity functions. To arrive at the first

algorithm used in this work, we let si = Knorm(wi, wi+δ) and apply Equation

4.20. This simple search for local extrema, combined with the use of Knorm

to evaluate similarity, results in a novel segmentation algorithm, to which we

will refer as the similarity-based segmentation algorithm.

4.3.2 Support Vector Description of Speech and Text

Intuitively, a new topic occurs in the stream of text or speech when the word

content changes drastically from one window of observations to the next. The

topic segmentation algorithms based on similarity among word frequencies,

such as that based on Knorm just mentioned, already reflect this intuition

because two adjacent windows with significantly different word distributions

would be assigned a low similarity. However, using the verbatim empirical

word distribution within a window is problematic because there might be filler

or off-topic content within a generally topic-coherent stream of observations.

For example, consider the following two examples:

1. A powerful explosion tore through a cafe frequented by Russian soldiers,

south of Chechnya’s capital Grozny, Sunday, killing at least eight peo-

ple, including the owner of the cafe and four Russian soldiers. Russia’s

Interfax News Agency quotes security sources as saying Chechen rebels

have claimed responsibility for the attack. That’s our news summary till

110

now. I’m David Coller, VOA News.

2. the program one five emmys and carson was awarded the presidential

medal of freedom and all the signed a law in nineteen ninety two more

than fifteen million viewers tuned in to watch and say goodbye issue very

hard.

Snippet 1 is a human transcript and snippet 2 was produced by a speech

recognizer. Both are derived from the TDT corpus. It is easy to see that the

last two sentences of snippet 1 are off-topic. If the following news story also

has a different topic, but also has similar filler text, this might increase the

similarity of the two stories, thus increasing the likelihood of a segmentation

error. Additionally, snippet 2 clearly contains off-topic content due to speech

recognition errors1.

To combat this drawback of computing similarity based on raw word statis-

tics, we desire a compact description of the text or speech that is able to

separate the distribution of the majority of the observations from the noise

or outliers. The descriptors of Tax and Duin [77] attempt to find a sphere

in feature space that encloses the true data from a given class but excludes

outliers within that class and data from other classes. An alternative approach

of Schölkopf et al. [74] posits this task as separating data from the origin in

feature space, a problem that is equivalent to the spheres problem for many

1The reference transcription for the second snippet is: The program won five Emmys and
Carson was awarded the Presidential Medal of Freedom. When he signed off in 1992 more
than 50 million viewers tuned in to watch him say good bye. I bid you a very heart [end of
utterance] felt good night.

111

kernels, including the one used in this work. This problem is often referred

to as one-class classification, and because the problem formulation resembles

that of support vector machines (SVM) [23, 79], often as the one-class SVM.

We adopt the more intuitive spheres formulation.

More formally, given a set of observations x1, . . . , xm ∈ X , our task is to find

a ball or sphere that, by enclosing the observations in feature space, represents

a compact description of the data. We assume the existence of mapping of data

observations into a feature space, Φ: X 7→ F . This results in the existence of

a kernel operating on a pair of observations, K(x, y) = Φ(x) · Φ(y). A sphere

in feature space is then parametrized by a center c ∈ F and radius R ∈ R.

Our optimization allows each observation xi to lie outside the sphere by a

distance ξi, at the cost of incurring a penalty in the objective function. This

is illustrated in Figure 4.4. The optimization problem written in the form of

[74] is

min
R∈R,ξ∈Rm,c∈F

R2 + 1
νm

∑

i ξi

subject to ‖Φ(xi)− c‖2 ≤ R2 + ξi, ξi ≥ 0 for i ∈ [1, m]. (4.22)

The objective function attempts to keep the size of the sphere small, while

reducing the total amount by which outlier observations violate the sphere

constraint. The parameter ν controls the tradeoff between these two goals.

Using standard optimization techniques, we may write the Lagrangian of this

112

Figure 4.4: An illustration of the support vector data description algorithm
in two-dimensional feature space. The sphere (c, R) found by the algorithm
contains eight out of ten observations. The two observations xi and xj not
contained by the sphere are incur a slack penalty of ξi and ξj, respectively.
The three observations on the sphere boundary are the support patterns.

optimization problem utilizing Lagrangian variables αi ≥ 0, i ∈ [0, m]. Solving

for c, we obtain

c =
∑

i

αiΦ(xi). (4.23)

Substituting this back into the primal problem of Equation 4.22, we obtain

the dual problem, in which the kernel k takes the place of dot products between

training patterns. The dual problem is

min
α

∑m
i,j=1 αiαjK(xi, xj)−

∑m
i=1 αiK(xi, xi)

subject to 0 ≤ αi ≤
1

νm
,
∑m

i=1 αi = 1. (4.24)

113

By substitution into the Equation of a sphere in feature space, the classifier

then takes the form

f(x) = sgn

(

R2 −
m
∑

i,j=1

αiαjK(xi, xj) + 2

m
∑

i=1

αiK(xi, x)−K(x, x)

)

(4.25)

The resulting data description is a combination of the support patterns

xi : αi 6= 0. The radius R may be recovered from the classifier as

R =

√

√

√

√

l
∑

i,j=1

αiαjK(xi, xj)− 2

l
∑

i=1

αiK(xi, xsv) + K(xsv, xsv), (4.26)

where xsv is any support pattern.

Finally, we note that for any kernel K such that K(x, x) is a constant,

the sphere problem described above has the same solution as the separation

from the origin problem known as the one-class SVM, as is pointed out in [74].

For our kernel Knorm of Equation 4.9, Knorm(x, x) = 1, thus the condition for

equivalence is met and thus our geometric description may be viewed as an

instance of either problem.

4.3.3 Sphere-based Topic Segmentation

The sphere-based support vector method yields a compact geometric descrip-

tion of text and speech segments. In contrast to using simple word frequencies,

114

this method is designed to be robust to the presence of outliers in the sentence

or utterance stream. It also yields a natural geometric formulation for com-

paring two sets of observation streams, as follows.

Figure 4.5: An illustration of two sets of observations being compared in fea-
ture space based on their sphere descriptors. The dashed line indicates the
shortest distance between the two spheres.

We compute a distance between two sets of text or speech streams by calcu-

lating the geometric shortest distance in feature space between the two spheres

representing them. This comparison is illustrated in Figure 4.5. Assume that

we are comparing two windows of observations w1 and w2. Let x1,1, . . . , xm1,1

and x1,2, . . . , xm2,2 be the word frequency counts, and let α1,1, . . . , αm1,1 and

α1,2, . . . , αm2,2 be the dual coefficients resulting from solving the optimization

problem of Equation 4.24, for w1 and w2, respectively. Then the resulting

support vector descriptions are represented by spheres (c1, R1) and (c2, R2)

which are found through the application of Equations 4.23 and 4.26. Then,

the distance between the centers of the spheres is the Euclidean distance in

the feature space. Since the mapping Φ(·) is implicitly expressed through the

115

kernel K(·, ·), the distance is also computed by using the kernel, as

‖c1 − c2‖
2 = ‖c1‖

2 + ‖c2‖
2 − 2‖c1‖‖c2‖ =

m1
∑

i,j=1

αi,1αj,1K(xi,1, xj,1)

+

m2
∑

i,j=1

αi,2αj,2K(xi,2, xj,2)

− 2
m1
∑

i=1

m2
∑

j=1

αi,1αj,2K(xi,1, xj,2). (4.27)

The shortest distance between the spheres is simply obtained by subtracting

the radii to obtain

dist(w1, w2) = ‖c1 − c2‖ − (R1 + R2). (4.28)

Note that it is possible for the sphere descriptors to overlap, and in fact in

practice this is frequently the case for adjacent windows of observations. In

this case, the quantity dist(w1, w2) will be negative. Hence, it does not always

represent a geometric margin, but nevertheless it can be viewed as an an

algebraic measure of separation even if it is negative.

By using the kernel Knorm of Equation 4.9, we map the observations in each

window into a high-dimensional word similarity space. Distances between a

pair of patterns in this space represent the divergence in similarity between

word pairs across two patters computed according to the mutual information-

116

based word similarity score of Equation 4.6. As we have shown in Proposition

4.1, Knorm is a positive definite symmetric kernel, which guarantees the con-

vexity of the dual optimization problem of Equation 4.24.

To construct our final discriminative topic segmentation algorithm, we sim-

ply set si = dist(w1, w2), and hypothesize segment boundaries in the observa-

tion at local maxima in the s signal above the threshold θ, b = {i : si > θ∧si =

rmax(s, i− ⌊δ/2⌋, i + ⌊δ/2⌋)}. In the following, we will refer to this algorithm

as the sphere-based or the support-vector topic segmentation algorithm.

4.4 Lattice-based Topic Analysis

There is a significant literature on topic analysis of spoken language (e.g.,

[84, 12]). However, the majority of these works use only the one-best recog-

nition hypothesis as input to a topic labeling and/or segmentation algorithm.

Since modern recognizers use the Viterbi sub-optimal beam search to approxi-

mate the most likely word sequence, there is always a beam of almost-as-likely

hypotheses being considered. As a result, it is possible to produce a list, or

more compactly, a graph, of the top hypotheses along with their likelihoods.

Such a graph is known as a lattice (see Figure 4.6 for an illustration). Lat-

tices can be represented with finite automata, which enables compactness,

lookup efficiency, and easy implementation of necessary lattice manipulations

with general automata algorithms [54]. A recent work [35] demonstrated an

improvement using word and phoneme lattices for assigning topic labels to

117

pre-segmented utterances in isolation. In this work we focus exclusively on

word lattices.

In our topic segmentation algorithms, we use two information sources de-

rived from lattices, expected counts and confidence scores, as follows. The

input to all the algorithms described in this paper is a sequence of bag-of-word

observations. Let a be a set of observations and fa(w) the set of word weights

to be computed. If no lattice information is available then a is represented by

a bag of the l words appearing in its one-best hypothesis, (w1, . . . , wl). Then

fa(w) =
∑l

i=1 1wi=w.

If a word lattice is available, we may compute for each word in the lattice a

total posterior probability, or expected count, accumulated over all the paths

that contain that word. If V is the vocabulary the expected count of the word

w according to a stochastic lattice automaton A, i.e., that with the weights of

all the paths summing to one, is

fa(w) =
∑

u∈V ∗

|u|w[[A]](u), (4.29)

where |u|w is the number of occurrences of word w in string u and [[A]](u) is the

probability associated by A to string u. The set of expected counts associated

with all the words found in the lattice can be computed efficiently [5]. We

also compute word-level confidence scores for the one-best hypothesis using a

logistic regression classifier. The classifier takes two features as input, the word

expected counts just mentioned and a likelihood ratio between the standard

118

0 1
about/3.02

not/0.05
2

ordinary

3
berkeley/0.05

4

berkley/2.94

5
june/3.37

6

junior’s/0.80

juniors/0.66

junior’s/0.77

juniors/0.63

years

Figure 4.6: An example of a speech recognition word lattice. The weights indicate negative log-likelihoods.

119

recognizer with full context-dependent acoustic models and a simple recognizer

with context-independent models. If each word wi has an associated confidence

c(wi), then

fa(w) =
l
∑

i=1

c(wi)1wi=w. (4.30)

Finally, the word weights fa(w) are normalized to produce the counts that

serve as input to the segmentation algorithm,

Ca(w) =
fa(w)

∑

w∈V fa(w)
. (4.31)

4.5 Experiments

Our experimental work has been in the context of the English portion of

the TDT corpus of broadcast news speech and newspaper articles [44]. The

speech corpus consisted of 447 news show recordings of 30-60 minutes per

show, for a total corpus size of around 311 hours. For the experiments involv-

ing speech data, we used 41 and 69 shows picked from the Voice of America

English News Program (VOA ENG) and MS-NBC News With Brian Williams

(MNB NBW), containing 957 and 1,674 stories, for development and testing,

respectively. The 337 shows from other sources were used for training. The

training shows contained 6,310 stories, and were annotated with human seg-

mentations and transcriptions for each story. Certain stories were also an-

notated by hand with topics such as “Earthquake in El Salvador,” but these

120

labels were not used in the model training. For those experiments using text

data, a total of 1,314 training news streams were used, including the human

transcripts of the 337 news shows already mentioned as well as 977 non-speech

news streams, from the New York Times (NYT NYT) and the Associated

Press (APW ENG), with a total of 15,110 non-speech stories.

4.5.1 Text Similarity Evaluation

Figure 4.7 contains a listing of the 100 word pairs x, y with the top similarity

score sim(x, y), after the application of Porter stemming [67]. Note that many

word pairs fit human intuition about words that are expected to occur to-

gether in topic-coherent documents (e.g., “banjo, bluegrass”, “extraterrestri,

ionospher”, “cystic, fibrosi”).

The general text similarity measure Knorm of Equation 4.9 is a key compo-

nent underlying TCM. To evaluate it empirically, we computed Knorm between

all pairs of stories with human topic labels. With 291 stories, there were 3,166

same-topic story pairs and 39,172 different-topic pairs in our experiment. The

average pairwise similarity between different-topic story pairs was 0.2558 and

that between same-topic story pairs was 0.7138, or around 2.8 times greater.

This indicates that our text similarity measure is a good indicator of topical

similarity between two segments of text or speech.

We also explored the correlation between Knorm and true segmentation

boundaries by processing each show’s transcription by sliding a window of

δ = 6 sentences along the text and accumulating the word frequencies within

121

krono,thirti 8801
darden,milken 4885
banjo,bluegrass 4314
kristol,luntz 3675
dakar,senegales 3373
jeanni,unz 3335
espi,rostenkowski 3308
biomass,goodwin 3308
fri,powder 3257
kinda,portia 3216
diari,portia 3101
extraterrestri,ionospher
3063
lamott,pastri 3040
pack,powder 2983
boyc,opal 2968
jeanni,opri 2916
broder,darden 2858
cystic,fibrosi 2858
comet,meteor 2770
quartet,thirti 2670
lift,powder 2614
menotti,solstic 2573
epilepsi,sinus 2573
powder,trail 2467
jerrold,kessel 2389
rushdi,salman 2378
basal,lesion 2370
biomass,turbin 2358
opal,superstit 2339
ionospher,telescop 2315
colosio,salina 2297
mack,purcel 2270
caramel,lamott 2237
bombai,fiftieth 2237

centimet,metric 2189
hydrogen,iceland 2167
boyc,superstit 2159
fanni,mae 2152
ionospher,piggyback
2144
elmo,homesick 2144
gal,portia 2144
powder,taho 2102
antiterrorist,nintendo
2075
krono,quartet 1993
minivan,windstar 1898
gobi,soya 1893
fri,pack 1888
eleph,fineman 1882
seneg,senegales 1765
jammu,shia 1715
koppel,nightlin 1686
dakar,seneg 1665
biomass,nutshel 1654
kurdish,kurdistan 1633
coughlan,goldberg 1625
fri,lift 1616
kurdistan,mule 1608
elmer,fiftieth 1608
casa,opal 1608
herbicid,soya 1602
dalai,lama 1589
hankin,solar 1527
fri,trail 1524
lift,pack 1496
boyc,casa 1484
aidid,somalia 1476
kurd,kurdistan 1474

limo,tranc 1470
acr,powder 1467
opium,poppi 1447
fiftieth,kilo 1429
aidid,allah 1429
brando,marlon 1413
pack,trail 1412
atkinson,foss 1357
fog,rosco 1349
bean,soya 1340
firfer,insulin 1319
crocodil,strieker 1319
akita,tanzanian 1286
menendez,mistrial 1286
archbishop,monsignor
1261
fri,taho 1260
coker,wilei 1257
altman,vultur 1247
krikalev,soyuz 1246
lift,trail 1238
consul,dominican 1233
diamet,ionospher 1225
gel,sinu 1225
opium,triangl 1212
atol,reef 1212
pack,taho 1202
halperin,repeal 1201
catalogu,constantin 1201
condom,ohh 1197
malaria,mosquito 1189
calori,litman 1187
chile,mercosur 1180
steroid,vial 1177

Figure 4.7: The 100 most similar word pairs in our training corpus. For each
word pair x, y, we list the Porter stemmed words along with the score sim(x, y)
obtained in our training process.

122

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 50 100 150 200 250 300 350

W
in

do
w

 S
im

ila
rit

y

Sentence #

Figure 4.8: The window distance Knorm(wt, wt+δ) for a representative show. The vertical lines are true story
boundaries from the human-labeled corpus. A line at sentence t means that sentence t + 1 is from a new
story.

123

each window. For each sentence t, let wt be the window ending at sentence t.

Figure 4.8 displays the plot of Knorm(wt, wt+δ) for a representative show. As

this figure illustrates, true topic boundaries are extremely well correlated with

local minima in the similarity score. Similar trends are observed with other

shows in the corpus.

4.5.2 Topic Segmentation Evaluation

For the speech experiments, the audio for each show was first automatically

segmented into utterances, while removing most non-speech audio, such as

music and silence [1]. Each utterance was transcribed using the Google large-

vocabulary continuous speech recognizer. This recognizer (the baseline system

of [1]) used standard PLP cepstral features, a vocabulary of about 71K words,

GMM-based triphone HMM acoustic models, and smoothed 4-gram language

models pruned to about 8M n-grams. Both the acoustic and language models

were trained on standard Broadcast News (BN) corpora. The word error rate

of this recognizer on the 1997 BN evaluation set was 17.7%.

The vocabulary for all algorithms consisted of a subset of 8,821 words.

This was constructed by starting with the set of words seen in the recognizer

transcription of the training data, applying Porter stemming [67], removing

a stoplist of function and other words not likely to indicate any topic, and

keeping only those words occurring more than five times. The HTMM was

trained with an Expectation Maximization (EM) algorithm initialized with

random values for model parameters. Our HTMM had 20 topics and hyper-

124

parameters α and β set as in [75]. To minimize the possibility of a particular

randomization overfitting the test data, we ran 20 trials of model training and

testing and picked the model that had the best segmentation quality on the

development data set.

For the algorithms based on Knorm, the parameter set included the thresh-

old θ and the window size δ for both algorithms. The sphere-distance based

algorithm was additionally parametrized by the regularization tradeoff pa-

rameter ν. For both algorithms, we performed parameter selection on the

development data set. Since these two algorithms rely on the use of the co-

occurrence based word similarity score, their training consists of calculating

word and word pair frequencies over a corpus of text segmented into topic-

coherent chunks. The input to the training stage of all the segmentation

algorithms were human transcriptions of the speech news broadcasts as well

as non-speech news sources, as detailed above.

Table 4.1 gives segmentation quality scores for degenerate segmentations

with boundaries decided by a fair coin toss (Random), all possible boundaries

(Full), and no boundaries at all (None).

We trained two separate HTMMs, the first using reference text as training

data, and the second using the one-best transcription of the training data.

Since these two algorithms rely on the use of the word similarity score of

Equation 4.6, their training consists of calculating word and word pair fre-

quencies over a corpus of text segmented into topic-coherent segments. The

input to this training procedure were human transcriptions of the speech news

125

Table 4.1: CoAP and TCM measured on degenerate segmentations.

Input Type CoAP TCM

Text Random 50.4% 58.4%
Text Full 50.4% 51.8%
Text None 49.6% 56.2%

One-best Random 50.8% 48.8%
One-best Full 51.0% 43.0%
One-best None 49.1% 52.9%

Table 4.2: Topic segmentation quality as measured with CoAP and TCM.

Input Type Algorithm Quality Measure

CoAP TCM

Text
HTMM 66.9% 72.6%

Sim 72.0% 75.0%
SV 76.6% 77.7%

One-best
HTMM 65.0% 61.5%

Sim 60.4% 62.8%
SV 68.6% 66.0%

Counts
HTMM 65.5% 62.4%

Sim 59.4% 63.4%
SV 68.5% 66.5%

Confidence
HTMM 68.3% 64.2%

Sim 59.7% 63.8%
SV 69.2% 66.8%

Table 4.3: Topic segmentation quality for HTMM when trained on speech
data.

Input Type CoAP TCM

One-best 67.3% 62.8%
Counts 69.7% 64.1%

Confidence 68.8% 64.9%

126

broadcasts as well as non-speech news sources, as detailed above. Since refer-

ence segmentations into topic-coherent segments of our speech transcriptions

of the training data were not available, we did not train these algorithms

on speech data. However, testing was conducted on speech and text sources

across all conditions and algorithms. The results for the HTMM trained on

speech data are given in Table 4.3, while the results for all three algorithms

trained on text data are given in Table 4.2. The results for the similarity-

based segmentation algorithm of Section 4.3.1 and the support-vector based

algorithm of Section 4.3.3 are denoted as Sim and SV, respectively. Across

all algorithms, we tested on the reference text (Text), as well as three modi-

fications of speech transcriptions, one-best transcriptions with frequencies as

weights (One-best), one-best transcriptions weighted with confidence scores

(Confidence), and words weighted with lattice expected counts (Counts).

4.5.3 Discussion

In the following, all comparisons are made in terms of relative error improve-

ments. TCM error and CoAP error are both defined as 1−TCM and 1−CoAP,

respectively. We make the following observations about the results just men-

tioned.

1. Segmentations produced by all three segmentation algorithms signifi-

cantly outperform degenerate segmentations by both measures.

2. The similarity-based segmentation algorithm does not show a consistent

127

improvement over HTMM in the cases where the inputs are derived

from speech recognition data. However, for text test data, this algorithm

outperforms HTMM. This results verifies empirically that the variability

in the word distribution introduced by speech recognition errors is a

challenge for similarity-based segmentation algorithms.

3. While the performance of the similarity-based algorithm degrades in the

presence of speech recognition errors, the SV algorithm outperforms

HTMM and Sim significantly across all test conditions by both mea-

sures. For example, compared to HTMM, segmentation error is reduced

by 29.3% and 18.6% when we test on text data and by 10.3% and 11.7%

when we test on one-best speech data, with CoAP and TCM, respec-

tively. The fact that the SV algorithm beats HTMM substantially while

the Sim algorithm fails to do so serves as strong empirical evidence that

SV yields an effective geometric description of text and speech observa-

tions. This geometric formulation allows the SV algorithm to overcome

noise introduced by speech recognition errors and outliers in the ob-

servation stream while capturing the true topicality information of the

window being considered.

4. Improvements are additionally demonstrated by using lattice informa-

tion in segmentation algorithms. For example, for HTMM, lattice counts

yield a 2.3% and 3.5% relative improvement with text and speech train-

ing, respectively, in TCM error compared to the one-best baseline, and

128

1.4% and 7.3% in terms of CoAP. Confidence scores also yield improve-

ments with both measures, 7.0% and 5.6% relative by TCM and 9.4%

and 4.6% by CoAP. The SV algorithm also achieves improvements when

confidence scores are used, of 1.9% and 2.4% by CoAP and TCM over the

one-best baseline. In other cases, while both the SV and Sim algorithm

consistently exhibit an improved TCM score over the one-best case when

lattice information is used, this is not the case when the quality is mea-

sured with CoAP. This can possibly be attributed to the inconsistency

in the definition of the CoAP measure in the case of speech transcripts

(see the next item and Section 4.2.1). An alternative explanation is that

the Sim algorithm lacks the robustness to handle the errors in the alter-

native hypotheses considered when lattice information is used. However,

since both the HTMM and SV algorithms improve consistently when

lattice-based confidence scores are used, we conclude that lattice infor-

mation is a helpful feature for topic segmentation of speech recognition

transcripts.

5. TCM is an effective measure of topic segmentation quality. Qualitatively,

its output is generally correlated with that of CoAP. One interesting com-

parison to make is that between the Text case and the One-best case.

Intuitively, we can expect topic segmentation on the reference transcrip-

tions to be a much easier task than that on the output of a speech

recognizer, due to the transcription errors present in the latter. Indeed,

for HTMMs, error reductions from One-best to Text are achieved, but

129

5.4% as measured by CoAP, and 28.8% by TCM. For SV, the reduction

is 25.5% by CoAP and 34.4% by TCM. This asymmetry can possibly be

attributed to the mismatch between the CoAP used for text and that

used for speech mentioned in Section 4.2.1. Past experiments (e.g., [28])

have observed that only small degradations in topic segmentation quality

are attributed to speech recognition errors. However, since these trials

were evaluated with CoAP-style quality measures, this suggests that the

quality degradations may have been understated.

4.6 Summary

In this chapter, we have made several contributions to topic analysis of streams

of speech and text. The first is to give a new measure of topic segmentation

quality that overcomes major limitations of past evaluation techniques. Unlike

previous quality measures, TCM applies generally to both speech and text

sources, does not depend on a fixed window size, and considers similarity

between segments labeled as topic-coherent, rather than simply the presence

or absence of a segment boundary. In empirical trials, TCM is correlated

with the previous measure. Additionally, the general text similarity measure

underlying TCM is empirically correlated with ground truth topic boundaries

and topic assignment in a human-labeled corpus of news text and speech.

We have further outlined a general formulation for distance-based topic

segmentation algorithms which builds upon and generalizes previous work in

130

the topic segmentation literature. We have proposed two new topic segmen-

tation algorithms based on our general measure of topical similarity. The first

algorithm functions by comparing adjacent observation windows according to

a similarity measure for words trained on co-occurrence statistics. The second

is based on comparing compact geometric descriptions of the adjacent windows

in topic similarity feature space. We have demonstrated both algorithms to be

empirically effective, with the geometric description lending robustness to the

latter algorithm in the presence of noise introduced by off-topic content and

speech recognition errors. This algorithm significantly and consistently sur-

passes in quality the segmentation produced by a hidden topic Markov model

(HTMM). This result holds when segmentation quality is measured by TCM

as well as by the previously used CoAP measure.

Finally, we have demonstrated that in the presence of uncertainty resulting

from the use of a speech recognizer, topic segmentation algorithms can be

improved by using recognition hypotheses other than that receiving the highest

likelihood. We have used two information sources derived from lattices, word

frequencies or counts and word confidence scores, as weights on words found

in the observation stream, and have observed improvements with both.

131

Chapter 5

Conclusion

In this thesis, we have studied the problem of searching very large audio col-

lections. Reflecting the difficulty of this task is the diversity of the problems

encountered in this field, and in this thesis. Not only have the problems we

have addressed been broad in scope, but also in nature, ranging from theo-

retical to algorithmic to applied. The main contributions of this thesis have

been

1. A large-scale, robust, and scalable music identification system based on

weighted finite-state transducers.

2. A new, substantially improved bound on the size of suffix and factor

automata in terms of the size of the input automaton.

3. A matching new linear-time algorithm for the construction of suffix and

factor automata.

132

4. A new topic segmentation quality measure that considers the closeness

in content of the segments labeled as topic-coherent.

5. A new discriminative topic segmentation algorithm able to remove out-

liers in the presence of noise and off-topic content.

As we have discussed, all the problems we have considered are related in

that they share the common challenge of uncertainty. In music identification,

both the transcription of a song in terms of music sound units and the identity

of a song matching a given query is uncertain. Our music phoneme selection

algorithm has allowed us to learn a set of music sounds in an unsupervised way.

In addition, our index implementation based on Gaussian mixture acoustic

models and weighted finite-state transducers has allowed us to efficiently and

robustly match the query audio to our database.

Crucial to many indexing tasks, especially those involving uncertain data,

is constructing a compact data structure that is efficient to query. Suffix and

factor automata meet the requirements for compactness and efficiency, as they

are minimal automata and are optimal in query complexity. We have presented

new bounds that guarantee that a suffix automaton or factor automaton never

has more than twice the number of states than its suffix-unique input automa-

ton. We have also given a new linear-time algorithm for constructing suffix

and factor automata that substantially improves the efficiency of indexing un-

certain data.

133

Search and indexing of spoken language is marked with uncertainty stem-

ming from the error-prone nature of speech-to-text transcription. However,

index quality and effectiveness can be improved by segmenting the speech

stream by topic. Through our topic segmentation quality measure, we have

provided researchers and practitioners with a new tool for evaluating the suc-

cess of their segmentation algorithms. Furthermore, we have designed a new

segmentation algorithm able to function well in the presence of transcription

errors and other off-topic content occurring naturally in spoken language.

5.1 Future Work

5.1.1 Music Identification

In our description of previous music identification systems, we noted that

many previous approaches have been based on hashing individual feature vec-

tors computed over the music sequence. In contrast, our music identification

approach builds a description of each song in terms of automatically-learned

elementary music sounds, leading to a number of interesting analysis opportu-

nities. One aspect of music phonemes that should be explored in more detail

is the connection between each music phoneme and the sound it represents.

Is it the case that a given music phoneme corresponds to the onset of a drum

beat, or strong vocals, or just plain silence? Further research in this direction

may help us discover the “correct” music phoneme inventory size to use in a

music identification system.

134

By describing each song as a sequence of elementary music sounds, our

music identification approach gives us a tool for in-depth analysis of musical

structure. We began to explore this avenue of research in Section 2.8 by

counting the number of song collisions for different transcription factor lengths.

However, much more exploration can be done, for instance to consider what

it means when two songs have a collision of a long factor – have we discovered

an instance of plagiarism, or a cover song? Is looking for long factors repeated

several times within a song an effective algorithm for chorus detection?

The new size bounds presented in Chapter 3 guarantee that the size of our

index scales gracefully as the database size increases. However, one additional

important question is whether the query time will also scale gracefully. We

have observed that our index of over 15,000 songs can be queried robustly in

faster than real-time. This is facilitated by our use of deterministic and mini-

mal factor automata, which are optimal data structures in the sense that the

query time is linear in the size of the query. However, in our music identifi-

cation system, many competing music phoneme transcriptions are considered

simultaneously by the Viterbi decoder. Increasing the song collection size sub-

stantially may increase the number of paths being considered at any given

point during the decoding of a test audio snippet, hence slowing down the

decoding process. Since in such a search the vast majority of the paths would

be pruned away due to poor match of the acoustic models to the observa-

tions, there is reason to be optimistic that this slowdown would not be large.

However, further exploration of the precise slowdown encountered would be

135

beneficial.

In general, even given the compactness guarantees given in this thesis,

for extremely large song collections the index representation may be difficult

to construct and/or search on a single machine. In these cases, it may be

necessary to split the song database into several parts that can be queried in

parallel. The retrieval process will then require an additional step to pick the

best match among those returned. The design of such a disambiguation step

would be facilitated by the availability of general automata operations, which

allow straightforward manipulation of sets of alternative hypotheses. However,

more work should be done to explore the specific challenges of such a system.

5.1.2 Suffix and Factor Automata

As we have mentioned, the bound on the size of the suffix and factor automata

given in Corollary 3.3 is not tight in the sense that in practice, shared suffixes

of length k are not expanded to produce kn states in S(A) or F (A). An

interesting avenue of future research would be to analyze in finer detail the

impact of suffix sharing on the size of the factor and suffix automata.

On the algorithmic side, as we have noted the weighted suffix automa-

ton construction algorithm of Section 3.6 functions in the tropical semiring.

We have also conjectured that this algorithm can be extended to arbitrary

semirings. Proving this conjecture true would allow the generalization of this

algorithms to new tasks and strengthen the algorithmic foundation of suffix

and factor automata.

136

5.1.3 Topic Segmentation

The form of the new Topic Closeness Measure of Section 4.2.3 is extremely

general in that it allows the use of different overlap scores Q(i, j), for which

in this work we have used a simple indicator function; as well that of the text

or speech similarity measure, for which we have used Knorm. Future work

should explore other choices. For example, Q(i, j) could measure the degree

of overlap in terms of time or number of words. Knorm could be replaced with

simpler similarity scores, such as the cosine distance, or more complex ones,

such as ones based on language models trained over large corpora.

The sphere-based data descriptions of Section 4.3.2 are in practice effective

at reducing the effect of noise on segmentation quality, and are associated

with theoretical generalization performance guarantees. However, we have not

analyzed the generalization performance for the sphere-based segmentation

algorithm as a whole. Exploring this would be a valuable avenue of future

research.

The topic segmentation algorithms presented in this thesis can be used as

an initial stage in producing a topic-wise labeling of the observation stream.

After segmentation, a topic classification algorithm such as that of [35] may

be used to produce a sequence of labels. This choice between pre-segmenting

an observation stream before labeling the individual segments and assigning

a label sequence directly to the observations presents itself in speech recogni-

tion [31], among other tasks. In our work, we have evaluated the performance

of our algorithm in the topic segmentation task; however, a hybrid segmen-

137

tation/classification algorithm of the type just mentioned can be compared

directly to topic models such as HTMM in the topic labeling task. In ad-

dition, as we have mentioned in Section 4.1.2, the general threshold-based

topic segmentation algorithm in this thesis is similar to the algorithm used

to pre-segment songs for acoustic model training for the music identification

task. Thus, for both topic and music analysis, it would be beneficial to explore

hybrid segmentation/classification approaches.

138

Bibliography

[1] Christopher Alberti, Michiel Bacchiani, Ari Bezman, Ciprian Chelba,

Anastassia Drofa, Hank Liao, Pedro Moreno, Ted Power, Arnaud

Sahuguet, Maria Shugrina, and Olivier Siohan. An audio indexing sys-

tem for election video material. In International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), pages 4873–4876, Taipei,

Taiwan, 2009.

[2] James Allan, Jaime Carbonell, George Doddington, Jonathan Yamron,

and Yiming Yang. Topic detection and tracking pilot study: Final report.

In DARPA Broadcast News Transcription and Understanding Workshop,

pages 194–218, San Francisco, California, USA, February 1998. Morgan

Kaufmann Publishers, Inc.

[3] James Allan, Ron Papka, and Victor Lavrenko. On-line new event de-

tection and tracking. In Conference on Research and Development in

Information Retrieval (SIGIR), pages 37–45, Melbourne, Australia, 1998.

139

[4] Cyril Allauzen, Maxime Crochemore, and Mathieu Raffinot. Efficient ex-

perimental string matching by weak factor recognition. In Annual Sympo-

sium on Combinatorial Pattern Matching (CPM), pages 51–72, London,

UK, 2001. Springer-Verlag.

[5] Cyril Allauzen, Mehryar Mohri, and Brian Roark. Generalized algorithms

for constructing statistical language models. In Meeting of the Association

for Computational Linguistics, pages 40–47, Sapporo, Japan, 2003.

[6] Cyril Allauzen, Mehryar Mohri, and Murat Saraclar. General in-

dexation of weighted automata - application to spoken utterance re-

trieval. In Meeting of the Human Language Technology Conference and

North American Chapter of the Association for Computational Linguis-

tics (HLT/NAACL), Workshop on Interdisciplinary Approaches to Speech

Indexing and Retrieval., pages 33–40, Boston, Massachusetts, May 2004.

[7] Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and

Mehryar Mohri. OpenFst: a general and efficient weighted finite-state

transducer library. In Conference on Implementation and Application of

Automata (CIAA), pages 110–121, Prague, Czech Republic, July 2007.

[8] Michiel Bacchiani and Mari Ostendorf. Joint lexicon, acoustic unit in-

ventory and model design. Speech Communication, 29:99–114, November

1999.

140

[9] Eloi Batlle, Jaume Masip, and Enric Guaus. Automatic song identifica-

tion in noisy broadcast audio. In International Conference on Signal and

Image Processing, Kauai, Hawaii, USA, 2002.

[10] Doug Beeferman, Adam Berger, and John Lafferty. Statistical models for

text segmentation. Machine Learning, 34(1-3):177–210, 1999.

[11] Adam Berenzweig, Beth Logan, Daniel P.W. Ellis, and Brian Whitman.

A large-scale evaluation of acoustic and subjective music-similarity mea-

sures. Computer Music Journal, 28(2):63–76, 2004.

[12] David M. Blei and Pedro J. Moreno. Topic segmentation with an aspect

hidden Markov model. In Conference on Research and Development in

Information Retrieval (SIGIR), pages 343–348. ACM Press, 2001.

[13] David M. Blei, Andrew Y. Ng, Michael I. Jordan, and John Lafferty.

Latent Dirichlet allocation. Journal of Machine Learning Research, 3:993–

1022, January 2003.

[14] Anselm Blumer, Janet Blumer, David Haussler, Andrzej Ehrenfeucht,

M. T. Chen, and Joel I. Seiferas. The smallest automaton recognizing the

subwords of a text. Theoretical Computer Science, 40:31–55, 1985.

[15] Anselm Blumer, Janet Blumer, David Haussler, Ross M. McConnell, and

Andrzej Ehrenfeucht. Complete inverted files for efficient text retrieval

and analysis. Journal of the ACM, 34(3):578–589, 1987.

141

[16] Janet A. Blumer. Algorithms for the directed acyclic word graph and

related structures. PhD thesis, Denver University, 1985.

[17] Thorsten Brants, Francine Chen, and Ayman Farahat. A system for

new event detection. In Conference on Research and Development in

Information Retrieval (SIGIR), pages 330–337, Toronto, Canada, 2003.

[18] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur. Dy-

namic itemset counting and implication rules for market basket data. In

ACM SIGMOD International Conference on Management of Data, pages

255–264, Tucson, Arizona, USA, 1997.

[19] Pedro Cano, Eloi Batlle, Ton Kalker, and Jaap Haitsma. A review of audio

fingerprinting. Journal of VLSI Signal Processing Systems, 41:271–284,

2005.

[20] Michael Casey, Christophe Rhodes, and Malcolm Slaney. Analysis of min-

imum distances in high-dimensional musical spaces. IEEE Transactions

on Audio, Speech, and Language Processing, 16(5):1015–1028, July 2008.

[21] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support

vector machines. http://www.csie.ntu.edu.tw/˜cjlin/libsvm, 2001.

[22] Kenneth Ward Church and Patrick Hanks. Word association norms, mu-

tual information, and lexicography. Computational Linguistics, 16(1):22–

29, 1990.

142

[23] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine

Learning, 20(3):273–297, 1995.

[24] Michelle Covell and Shumeet Baluja. Audio fingerprinting: Combining

computer vision & data stream processing. In International Conference

on Acoustics, Speech, and Signal Processing (ICASSP), volume 2, pages

213–216, Honolulu, Hawaii, 2007.

[25] Michelle Covell and Shumeet Baluja. Waveprint: Efficient wavelet-based

audio fingerprinting. Pattern Recognition, 41(11):3467–3480, November

2008.

[26] Maxime Crochemore. Transducers and repetitions. Theoretical Computer

Science, 45(1):63–86, 1986.

[27] Maxime Crochemore and Wojciech Rytter. Jewels of Stringology. World

Scientific, 2002.

[28] Satya Dharanipragada, Martin Franz, J. Scott McCarley, K. Papineni,

Salim Roukos, T. Ward, and W.-J. Zhu. Statistical methods for topic

segmentation. In International Conference on Speech and Language Pro-

cessing (ICSLP), pages 516–519, Beijing, China, 2000.

[29] David Eichmann and Padmini Srinivasan. A cluster-based approach to

broadcast news. In James Allan, editor, Topic detection and tracking:

event-based information organization, pages 149–174. Kluwer Academic

Publishers, Norwell, MA, USA, 2002.

143

[30] Michel Galley, Kathleen McKeown, Eric Fosler-Lussier, and Hongyan

Jing. Discourse segmentation of multi-party conversation. In Meeting

of the Association for Computational Linguistics, pages 562–569, Morris-

town, NJ, USA, 2003. Association for Computational Linguistics.

[31] James Glass. A probabilistic framework for segment-based speech recog-

nition. Computer, Speech, and Language, 17:137–152, 2003.

[32] Amit Gruber, Michal Rosen-Zvi, and Yair Weiss. Hidden topic Markov

models. In Conference on Artificial Intelligence and Statistics (AIS-

TATS), San Juan, Puerto Rico, 2007.

[33] Dan Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge

University Press, Cambridge, UK, 1997.

[34] Jaap Haitsma, Ton Kalker, and Job Oostveen. Robust audio hashing for

content identification. In Content-Based Multimedia Indexing (CBMI),

Brescia, Italy, September 2001.

[35] Timothy J. Hazen and Anna Margolis. Discriminative feature weighting

using MCE training for topic identification of spoken audio recordings.

In International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 4965–4968, Las Vegas, Nevada, USA, 2008.

[36] Marti A. Hearst. TextTiling: segmenting text into multi-paragraph

subtopic passages. Computational Linguistics, 23(1):33–64, 1997.

144

[37] Victoria Hodge and Jim Austin. A survey of outlier detection method-

ologies. Artificial Intelligence Review, 22(2):85–126, 2004.

[38] Matthew Hoffman, David Blei, and Perry Cook. Content-based musical

similarity computation using the hierarchical dirichlet process. In Interna-

tional Conference on Music Information Retrieval (ISMIR), Philadelphia,

Pennsylvania, USA, September 2008.

[39] Heiko Hoffmann. Kernel PCA for novelty detection. Pattern Recognition,

40(3):863–874, 2007.

[40] Thomas Hofmann. Probabilistic latent semantic indexing. In Conference

on Research and Development in Information Retrieval (SIGIR), pages

50–57, Berkeley, California, USA, 1999.

[41] Jaakko Hollmn and Volker Tresp. Call-based fraud detection in mobile

communication networks using a hierarchical regime-switching model.

In Conference on Advances in Neural Information Processing Systems

(NIPS), pages 889–895. MIT Press, 1999.

[42] Shunsuke Inenaga, Hiromasa Hoshino, Ayumi Shinohara, Masayuki

Takeda, Setsuo Arikawa, Giancarlo Mauri, and Giulio Pavesi. On-line

construction of compact directed acyclic word graphs. Discrete Applied

Mathematics, 146(2):156–179, 2005.

145

[43] Yan Ke, Derek Hoiem, and Rahul Sukthankar. Computer vision for music

identification. In Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 597–604, San Diego, California, USA, June 2005.

[44] Junbo Kong and David Graff. TDT4 Mul-

tilingual Broadcast News Speech Corpus.

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2005S11,

2005.

[45] Hideki Kozima. Text segmentation based on similarity between words. In

Meeting of the Association for Computational Linguistics, pages 286–288,

Columbus, Ohio, USA, 1993.

[46] Hideki Kozima and Teiji Furugori. Similarity between words computed by

spreading activation on an English dictionary. In Conference on European

chapter of the Association for Computational Linguistics, pages 232–239,

Utrecht, The Netherlands, 1993.

[47] Hideki Kozima and Akira Ito. A scene-based model of word prediction. In

International Conference on New Methods in Language Processing (NEM-

LAP), pages 110–120, Ankara, Turkey, 1996.

[48] Ian R. Lane, Tatsuya Kawahara, Tomoko Matsui, and Satoshi Nakamura.

Dialogue speech recognition by combining hierarchical topic classification

and language model switching. IEICE - Transactions on Information and

Systems, E88-D(3):446–454, 2005.

146

[49] David Liu and Tsuhan Chen. Unsupervised image categorization and

object localization using topic models and correspondences between im-

ages. In International Conference on Computer Vision (ICCV), Rio De

Janeiro, Brazil, October 2007.

[50] Beth Logan and Ariel Salomon. A music similarity function based on

signal analysis. In International Conference on Multimedia and Expo

(ICME), pages 745–748, Tokyo, Japan, August 2001.

[51] Markos Markou and Sameer Singh. Novelty detection: a review - part 1:

statistical approaches. Signal Processing, 83(12):2481–2497, 2003.

[52] Markos Markou and Sameer Singh. Novelty detection: a review - part 2:

neural network based approaches. Signal Processing, 83(12):2499–2521,

2003.

[53] George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross,

and Katherine Miller. Five papers on WordNet. In Christiane Fellbaum,

editor, WordNet: An Electronic Lexical Database. MIT Press, May 1998.

[54] Mehryar Mohri. Finite-state transducers in language and speech process-

ing. Computational Linguistics, 23(2):269–311, 1997.

[55] Mehryar Mohri. Edit-distance of weighted automata: General definitions

and algorithms. International Journal of Foundations of Computer Sci-

ence, 14(6):957–982, 2003.

147

[56] Mehryar Mohri. Statistical Natural Language Processing. In M. Lothaire,

editor, Applied Combinatorics on Words. Cambridge University Press,

2005.

[57] Mehryar Mohri, Pedro Moreno, and Eugene Weinstein. Factor automata

of automata and applications. In International Conference on Implemen-

tation and Application of Automata (CIAA), Prague, Czech Republic,

July 2007.

[58] Mehryar Mohri, Pedro Moreno, and Eugene Weinstein. Robust music

identification, detection, and analysis. In International Conference on

Music Information Retrieval (ISMIR), Vienna, Austria, September 2007.

[59] Mehryar Mohri, Pedro Moreno, and Eugene Weinstein. Efficient and

robust music identification with weighted finite-state transducers. IEEE

Transactions on Audio, Speech, and Language Processing, 2009.

[60] Mehryar Mohri, Pedro Moreno, and Eugene Weinstein. General suffix au-

tomaton construction algorithm and space bounds. Theoretical Computer

Science, 410(37), September 2009.

[61] Mehryar Mohri, Pedro Moreno, and Eugene Weinstein. A new quality

measure for topic segmentation of text and speech. In Conference of

the International Speech Communication Association (Interspeech), pages

2743–2746, Brighton, UK, 2009.

148

[62] Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. Weighted

Finite-State Transducers in Speech Recognition. Computer Speech and

Language, 16(1):69–88, 2002.

[63] Jane Morris and Graeme Hirst. Lexical cohesion computed by thesaural

relations as an indicator of the structure of text. Computational Linguis-

tics, 17(1):21–48, 1991.

[64] NIST. Topic Detection and Tracking Phase 2 (TDT2) Evaluation Plan.

http://www.nist.gov/speech/tests/tdt/1998/doc/tdt2.eval.plan.98.v3.5.pdf, 1998.

[65] Alex Park and Timothy J. Hazen. ASR dependent techniques for speaker

identification. In International Conference on Spoken Language Process-

ing (ICSLP), pages 1337–1340, Denver, Colorado, USA, September 2002.

[66] Lev Pevzner and Marti A. Hearst. A critique and improvement of an eval-

uation metric for text segmentation. Computational Linguistics, 28(1):19–

36, 2002.

[67] Martin F. Porter. An algorithm for suffix stripping. Program, 14(3):130–

137, 1980.

[68] Matthew Purver, Thomas L. Griffiths, Konrad P. Körding, and Joshua B.

Tenenbaum. Unsupervised topic modelling for multi-party spoken dis-

course. In International Conference on Computational Linguistics and

meeting of the Association for Computational Linguistics, pages 17–24,

Sydney, Australia, 2006.

149

[69] David Pye. Content-based methods for the management of digital music.

In International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 2437–2440, Istanbul, Turkey, June 2000.

[70] Dominique Revuz. Minimisation of acyclic deterministic automata in

linear time. Theoretical Computer Science, 92:181–189, 1992.

[71] Jeffrey C. Reynar. Statistical models for topic segmentation. In Meeting

of the Association for Computational Linguistics, pages 357–364, College

Park, Maryland, USA, 1999.

[72] G. Riccardi, A. Gorin, A. Ljolje, and M. Riley. A spoken language sys-

tem for automated call routing. In International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), pages 1143–1146, Munich, Ger-

many, 1997.

[73] Gerard Salton and Christopher Buckley. Term-weighting approaches

in automatic text retrieval. Information Processing & Management,

24(5):513–523, 1988.

[74] Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alex J. Smola,

and Robert C. Williamson. Estimating the support of a high-dimensional

distribution. Neural Computation, 13(7):1443–1471, 1999.

[75] Mark Steyvers and Tom Griffiths. Probabilistic topic models. In

Thomas K. Landauer, Danielle S. McNamara, Simon Dennis, and Walter

150

Kintsch, editors, Handbook of Latent Semantic Analysis, pages 427–448.

Routledge, 2007.

[76] L. Tarassenko, P. Hayton, N. Cerneaz, and M. Brady. Novelty detection

for the identification of masses in mammograms. In International Con-

ference on Artificial Neural Networks (ICANN), pages 442–447, Paris,

France, 1995.

[77] David M. J. Tax and Robert P. W. Duin. Support vector domain descrip-

tion. Pattern Recognition Letters, 20(11-13):1191–1199, 1999.

[78] Peter D. Turney. Mining the web for synonyms: PMI-IR versus LSA on

TOEFL. In European Conference on Machine Learning (ECML), pages

491–502, Freiburg, Germany, 2001.

[79] Vladimir Vapnik. Statistical Learning Theory. Wiley, 1998.

[80] Avery L. Wang. An industrial-strength audio search algorithm. In Inter-

national Conference on Music Information Retrieval (ISMIR), Washing-

ton, DC, USA, October 2003.

[81] Avery L. Wang. The Shazam music recognition service. Communications

of the ACM, 49(8):44–48, August 2006.

[82] Eugene Weinstein and Pedro Moreno. Music identification with weighted

finite-state transducers. In International Conference on Acoustics, Speech,

and Signal Processing (ICASSP), volume 2, pages 689–692, Honolulu,

Hawaii, USA, 2007.

151

[83] Jun Wu and Sanjeev Khudanpur. Building a topic-dependent maximum

entropy model for very large corpora. In International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), volume 1, pages 777–

780, Orlando, Florida, USA, 2002.

[84] J.P. Yamron, I. Carp, L. Gillick, S. Lowe, and P. van Mulbregt. Event

tracking and text segmentation via hidden Markov models. In Automatic

Speech Recognition and Understanding (ASRU), pages 519–526, Santa

Barbara, California, USA, 1997.

[85] Yiming Yang, Tom Pierce, and Jaime Carbonell. A study of retrospective

and on-line event detection. In Conference on Research and Development

in Information Retrieval (SIGIR), pages 28–36, Melbourne, Australia,

1998.

152

