


An introduction to multithreading in
C++20

AnthonyWilliams

Woven Planet
https://www.woven-planet.global

September 2022

https://www.woven-planet.global


Assumptions

New project
C++20 compiler and library



An introduction to multithreading in
C++20

Choosing your Concurrency Model
Starting and Managing Threads
Synchronizing Data



Choosing your Concurrency
Model



Choosing your Concurrency Model
Wewant to use multithreading in our applications for 2
fundamental reasons:

Scalability
Separation of Concerns

These reasons inform our choice of model.



Choosing your Concurrency Model
Wewant to use multithreading in our applications for 2
fundamental reasons:

Scalability

Separation of Concerns

These reasons inform our choice of model.



Choosing your Concurrency Model
Wewant to use multithreading in our applications for 2
fundamental reasons:

Scalability
Separation of Concerns

These reasons inform our choice of model.



Choosing your Concurrency Model
Wewant to use multithreading in our applications for 2
fundamental reasons:

Scalability
Separation of Concerns

These reasons inform our choice of model.



Multithreading for Scalability

If you want Scalability, then Amdahl’s law applies:

S =
1

1− p+
p
n

S = Maximum speedupmultiplier
p = Fraction of program that can be parallelized
n = Number of processors



Multithreading for Scalability

If you want Scalability, then Amdahl’s law applies:

S =
1

1− 0.9 +
0.9

n
S = Maximum speedupmultiplier
p = Fraction of program that can be parallelized
n = Number of processors



Multithreading for Scalability

If you want Scalability, then Amdahl’s law applies:

S =
1

1− 0.9 +
0.9

1000
S = Maximum speedupmultiplier
p = Fraction of program that can be parallelized
n = Number of processors



Multithreading for Scalability

If you want Scalability, then Amdahl’s law applies:

9.91 =
1

1− 0.9 +
0.9

1000
S = Maximum speedupmultiplier
p = Fraction of program that can be parallelized
n = Number of processors



Multithreading for Scalability

If you want Scalability, then Amdahl’s law applies:

9.999 =
1

1− 0.9 +
0.9

100000
S = Maximum speedupmultiplier
p = Fraction of program that can be parallelized
n = Number of processors



Multithreading for Scalability

If you want Scalability, then Amdahl’s law applies:

99.9 =
1

1− 0.99 +
0.99

100000
S = Maximum speedupmultiplier
p = Fraction of program that can be parallelized
n = Number of processors



Parallel Algorithms
Many standard library algorithms have parallel versions:

std::vector<MyData> data= ...;
std::sort(

std::execution::par,
data.begin(),data.end(),
MyComparator{});



Parallel Algorithms
See if you can combine consecutive calls:

std::transform(std::execution::par,...);
std::reduce(std::execution::par,...);

std::transform_reduce(std::execution::par,...);



Parallel Algorithms
See if you can combine consecutive calls:

std::transform(std::execution::par,...);
std::reduce(std::execution::par,...);

std::transform_reduce(std::execution::par,...);



Independent Tasks
Split your work into many independent tasks and use a
(non-standard) thread pool.

thread_pool tp;

void foo(){
execute(tp,[]{ do_work(); });
execute(tp,[]{ do_other_work(); });

}



Separation of Concerns

Raw performance not a priority
Large sequential tasks that can run concurrently “in the
background”



Dedicated Threads

Run each long-running task on its own thread.

std::jthread gui{[]{ run_gui(); });
std::jthread printing{[]{ do_printing(); });



Starting and Managing Threads



Starting and Managing Threads



Cooperative Cancellation



Cooperative Cancellation

GUIs often have “Cancel” buttons for long-running operations.
You don’t need a GUI to want to cancel an operation.
Forcibly stopping a thread is undesirable



Cooperative Cancellation Types

C++20 provides stdȂ::stop_source and stdȂ::stop_token to
handle cooperative cancellation.

Purely cooperative: if the target task doesn’t check, nothing
happens.



Cooperative Cancellation Usage
1 Create a stdȂ::stop_source

2 Obtain a stdȂ::stop_token from the stdȂ::stop_source
3 Pass the stdȂ::stop_token to a new thread or task
4 When you want the operation to stop call
source.request_stop()

5 Periodically call token.stop_requested() to check
⇒ Stop the task if stopping requested

6 If you do not check token.stop_requested(), nothing
happens



Cooperative Cancellation Usage
1 Create a stdȂ::stop_source
2 Obtain a stdȂ::stop_token from the stdȂ::stop_source

3 Pass the stdȂ::stop_token to a new thread or task
4 When you want the operation to stop call
source.request_stop()

5 Periodically call token.stop_requested() to check
⇒ Stop the task if stopping requested

6 If you do not check token.stop_requested(), nothing
happens



Cooperative Cancellation Usage
1 Create a stdȂ::stop_source
2 Obtain a stdȂ::stop_token from the stdȂ::stop_source
3 Pass the stdȂ::stop_token to a new thread or task

4 When you want the operation to stop call
source.request_stop()

5 Periodically call token.stop_requested() to check
⇒ Stop the task if stopping requested

6 If you do not check token.stop_requested(), nothing
happens



Cooperative Cancellation Usage
1 Create a stdȂ::stop_source
2 Obtain a stdȂ::stop_token from the stdȂ::stop_source
3 Pass the stdȂ::stop_token to a new thread or task
4 When you want the operation to stop call
source.request_stop()

5 Periodically call token.stop_requested() to check
⇒ Stop the task if stopping requested

6 If you do not check token.stop_requested(), nothing
happens



Cooperative Cancellation Usage
1 Create a stdȂ::stop_source
2 Obtain a stdȂ::stop_token from the stdȂ::stop_source
3 Pass the stdȂ::stop_token to a new thread or task
4 When you want the operation to stop call
source.request_stop()

5 Periodically call token.stop_requested() to check
⇒ Stop the task if stopping requested

6 If you do not check token.stop_requested(), nothing
happens



Cooperative Cancellation Usage
1 Create a stdȂ::stop_source
2 Obtain a stdȂ::stop_token from the stdȂ::stop_source
3 Pass the stdȂ::stop_token to a new thread or task
4 When you want the operation to stop call
source.request_stop()

5 Periodically call token.stop_requested() to check
⇒ Stop the task if stopping requested

6 If you do not check token.stop_requested(), nothing
happens



Cancellation Example
void stoppable_func(std::stop_token st){

while(!st.stop_requested()){
do_stuff();

}
}

void stopper(std::stop_source source){
while(!done()){

do_something();
}
source.request_stop();

}



Custom Cancellation
You can also use stdȂ::stop_callback to provide your own
cancellation mechanism. e.g. to cancel some async IO.

Data read_file(
std::stop_token st,
std::filesystem::path filename ){

auto handle=open_file(filename);
std::stop_callback cb(st,[&]{ cancel_io(handle);});
return read_data(handle); // blocking

}



Starting and Managing Threads



Starting and Managing Threads

Tomanage threads, use the stdȂ::jthread class in 99% of cases.

stdȂ::async can be used where you want a result.

stdȂ::thread should only be used if you have no choice.



Starting and Managing Threads

Tomanage threads, use the stdȂ::jthread class in 99% of cases.

stdȂ::async can be used where you want a result.

stdȂ::thread should only be used if you have no choice.



Starting and Managing Threads

Tomanage threads, use the stdȂ::jthread class in 99% of cases.

stdȂ::async can be used where you want a result.

stdȂ::thread should only be used if you have no choice.



stdȂ::jthread—Overview
Creating a stdȂ::jthread object starts the thread.

std::jthread t{my_func,arg1,arg2};

Runs my_func(stop_token,arg1,arg2) on the new thread.

Or runs my_func(arg1,arg2) on the new thread.



stdȂ::jthread—Overview
Creating a stdȂ::jthread object starts the thread.

std::jthread t{my_func,arg1,arg2};

Runs my_func(stop_token,arg1,arg2) on the new thread.

Or runs my_func(arg1,arg2) on the new thread.



stdȂ::jthread—Basic API
stdȂ::jthread default constructor

Create an empty object with no thread
stdȂ::jthread x{Callable,Args...}

Create a new stdȂ::stop_source— src
Create a new thread running Callable(src.get_token(),Args...)
or Callable(Args...)

stdȂ::jthread destructor
Calls src.request_stop() and waits for the owned thread to finish

x.get_id()
Obtains the thread ID of the owned thread

x.join()
Wait for the owned thread to finish



stdȂ::jthread is a value type
stdȂ::jthread is a handle.

It ismovable⇒

Ownership can be transferred
Can be stored in containers (e.g.
stdȂ::vector<stdȂ::jthread>)
no need to use new



Threads: Callables and Arguments

The callable and arguments are copied into storage local to the
new thread.

This helps avoid dangling references and race conditions.

Use stdȂ::refwhen you really want a reference. Or use a lambda.



stdȂ::jthread destructor semantics
The destructor will request stop and wait for the thread to finish:

void thread_func(
std::stop_token st,
std::string arg1,int arg2){

while(!st.stop_requested()){
do_stuff(arg1,arg2);

}
}
void foo(std::string s){

std::jthread t(thread_func,s,42);
do_stuff();

} // destructor requests stop and joins



Cancellation and stdȂ::jthread
stdȂ::jthread integrates with stdȂ::stop_token to support
cooperative cancellation.

Starting a thread with stdȂ::jthread implicitly creates a
stdȂ::stop_source.
A stop token obtained from source.get_token() is passed
to your thread function as an optional first parameter.
Destroying a stdȂ::jthread calls source.request_stop()
and thread.join().

The thread still needs to check the stop token passed in to the
thread function.



Cancellation and stdȂ::jthread
stdȂ::jthread integrates with stdȂ::stop_token to support
cooperative cancellation.

Starting a thread with stdȂ::jthread implicitly creates a
stdȂ::stop_source.

A stop token obtained from source.get_token() is passed
to your thread function as an optional first parameter.
Destroying a stdȂ::jthread calls source.request_stop()
and thread.join().

The thread still needs to check the stop token passed in to the
thread function.



Cancellation and stdȂ::jthread
stdȂ::jthread integrates with stdȂ::stop_token to support
cooperative cancellation.

Starting a thread with stdȂ::jthread implicitly creates a
stdȂ::stop_source.
A stop token obtained from source.get_token() is passed
to your thread function as an optional first parameter.

Destroying a stdȂ::jthread calls source.request_stop()
and thread.join().

The thread still needs to check the stop token passed in to the
thread function.



Cancellation and stdȂ::jthread
stdȂ::jthread integrates with stdȂ::stop_token to support
cooperative cancellation.

Starting a thread with stdȂ::jthread implicitly creates a
stdȂ::stop_source.
A stop token obtained from source.get_token() is passed
to your thread function as an optional first parameter.
Destroying a stdȂ::jthread calls source.request_stop()
and thread.join().

The thread still needs to check the stop token passed in to the
thread function.



Cancellation and stdȂ::jthread
stdȂ::jthread integrates with stdȂ::stop_token to support
cooperative cancellation.

Starting a thread with stdȂ::jthread implicitly creates a
stdȂ::stop_source.
A stop token obtained from source.get_token() is passed
to your thread function as an optional first parameter.
Destroying a stdȂ::jthread calls source.request_stop()
and thread.join().

The thread still needs to check the stop token passed in to the
thread function.



stdȂ::jthread—Cancellation API
Given
std::jthread x{some_callable};

x.get_stop_source()
obtain the stop source for the thread

x.get_stop_token()
obtain a stop token for the thread

x.request_stop()
equivalent to x.get_stop_source().request_stop()



Synchronization facilities



Synchronization facilities
Most multithreaded programs need to share state between
threads.

Data Race
Unsynchronized access to a memory location frommore than
thread, where at least one thread is writing.

All data races are undefined behaviour⇒we need
synchronization.



Synchronization facilities
Most multithreaded programs need to share state between
threads.

Data Race
Unsynchronized access to a memory location frommore than
thread, where at least one thread is writing.

All data races are undefined behaviour⇒we need
synchronization.



Synchronization facilities
Most multithreaded programs need to share state between
threads.

Data Race
Unsynchronized access to a memory location frommore than
thread, where at least one thread is writing.

All data races are undefined behaviour⇒we need
synchronization.



Synchronization facilities
C++ provides a bunch of synchronization facilities:

Latches
Barriers
Futures
Mutexes
Semaphores
Atomics



Latches



Latches
stdȂ::latch is a single-use counter that allows threads to wait for
the count to reach zero.

1 Create the latch with a non-zero count
2 One or more threads decrease the count
3 Other threads may wait for the latch to be signalled.
4 When the count reaches zero it is permanently signalled and all
waiting threads are woken.



Latch API

stdȂ::latch x{count}
Create a latch with the specified count

x.count_down()
Decrease the count. Trigger latch if count reaches zero

x.wait()
Wait for the latch to be triggered.

x.arrive_and_wait()
x.count_down() then x.wait()



Waiting for tasks with a latch
void foo(){
unsigned const thread_count=...;
std::latch done(thread_count);
std::vector<std::optional<my_data>> data(thread_count);
std::vector<std::jthread> threads;
for(unsigned i=0;i<thread_count;++i)
threads.push_back(std::jthread([&,i]{
data[i]=make_data(i);
done.count_down();
do_more_stuff();

}));
done.wait();
process_data(data);

}



Synchronizing Tests with Latches
Using a latch is great for multithreaded tests:

1 Set up the test data
2 Create a latch
3 Create the test threads
⇒ The first thing each thread does is
test_latch.arrive_and_wait()

4 When all threads have reached the latch they are unblocked to
run their code



Barriers



Barriers
stdȂ::barrier<> is a reusable barrier.

Synchronization is done in phases:

1 Construct a barrier, with a non-zero count and a completion
function

2 One or more threads arrive at the barrier
3 Some of these threads wait for the barrier to be signalled
4 When the count reaches zero, the barrier is signalled, the
completion function is called and the count is reset



Barrier API
stdȂ::barrier<task_type> x{count,task}

Create a barrier with the specified count and completion function
auto arrival_token=x.arrive()

Decrease the count. Trigger completion phase if count reaches zero
x.wait(arrival_token)

Wait for the completion phase to be complete.
x.arrive_and_wait()

x.wait(x.arrive())
x.arrive_and_drop()

Decrease the count permanently (and potentially trigger completion phase)
without waiting.



Barriers and Loops

Barriers are great for loop synchronization between parallel tasks.

The completion function allows you to do something between
loops: pass the result on to another step, write to a file, etc. It is run
on one of the participating threads.



Barrier Example
unsigned const num_threads=...;
void finish_task();

std::barrier<std::function<void()>> b(
num_threads,finish_task);

void worker_thread(std::stop_token st,unsigned i){
while(!st.stop_requested()){

do_stuff(i);
b.arrive_and_wait();

}
}



Futures



Futures
Futures provide amechanism for a one-shot transfer of data
between threads.

stdȂ::async— launch a task that returns a value
stdȂ::promise—explicitly set a value
stdȂ::packaged_task—wrap a task that returns a value

All of these give you a stdȂ::future<T> for the result.



stdȂ::future<T>—Basic API
stdȂ::future<T> default constructor

Create an empty object with no state
f.valid()

Check if the future has state
f.wait()

Wait for the data to be ready
f.wait_for(duration)

Wait for the data to be ready for the specified duration
f.wait_until(time_point)

Wait for the data to be ready until the specified time
x.get()

Wait for the data and retrieve it



Using futures
Futures provide blocking waits and polling for data:
void blocking(std::future<int> f){

f.wait(); // can be omitted
do_stuff(f.get()); // blocks until ready

}

void polling(std::future<int> f){
if(f.wait_for(0s) == std::future_status::ready){
do_stuff(f.get());

}
}



stdȂ::promise<T>—Basic API

stdȂ::promise<T> default constructor
Create an object with an empty state

p.valid()
Check if the promise has state

p.set_value()
Set the value in the state

p.set_exception(ex_ptr)
Set the exception in the state

p.get_future()
Get the stdȂ::future<T> for the state



Passing data with Futures
std::promise<MyData> prom;
std::future<MyData> f=prom.get_future();

std::jthread thread1{[f=std::move(f)]{
do_stuff(f.get());

}};

std::jthread thread2{[&prom]{
prom.set_value(make_data());

}};



Passing exceptions with Futures
std::promise<MyData> prom;
std::future<MyData> f=prom.get_future();

std::jthread thread1{[f=std::move(f)]{
do_stuff(f.get()); // throws my_exception

}};

std::jthread thread2{[&prom]{
prom.set_exception(
std::make_exception_ptr(my_exception{}));

}};



Launching tasks with stdȂ::async
stdȂ::async can be used to create threads.

// Call func(arg1,arg2) on a new thread
auto f=std::async(std::launch::async,

func,arg1,arg2);

f.get()will return the result of the call to func
f owns the thread. Similar to jthread—the destructor will
wait for the thread to exit.



stdȂ::future<T> is one-shot
After calling f.get(), a stdȂ::future no longer holds a value.

std::promise<MyData> prom;
std::future<MyData> f=prom.get_future();

do_stuff(f.get());
assert(!f.valid());
f.get(); // error, will throw



stdȂ::shared_future<T>

stdȂ::shared_future allows multiple threads to receive the
same result.
std::promise<MyData> prom;
std::shared_future<MyData> f=

prom.get_future().share();

std::jthread thread1{[f]{ do_stuff(f.get()); }};
std::jthread thread2{[f]{ do_stuff(f.get()); }};



Mutexes



Mutexes

Mutex: Mutual Exclusion

Amutex is a means of preventing concurrent execution.

⇒we should use them as sparingly as possible.



Mutexes

Mutex: Mutual Exclusion

Amutex is a means of preventing concurrent execution.

⇒we should use them as sparingly as possible.



C++ Mutexes
C++ provides 6 mutex types. For most code that is 5 too many.

stdȂ::mutex⇐ Use this one
stdȂ::timed_mutex
stdȂ::recursive_mutex
stdȂ::recursive_timed_mutex
stdȂ::shared_mutex
stdȂ::shared_timed_mutex



C++ Mutexes
C++ provides 6 mutex types. For most code that is 5 too many.

stdȂ::mutex⇐ Use this one
stdȂ::timed_mutex
stdȂ::recursive_mutex
stdȂ::recursive_timed_mutex
stdȂ::shared_mutex
stdȂ::shared_timed_mutex



Locking mutexes

Locking and unlocking is done via RAII types.

stdȂ::scoped_lock⇐ use this one
stdȂ::unique_lock
stdȂ::lock_guard
stdȂ::shared_lock



Locking example

int some_data;
std::mutex some_data_mutex;

void add_to_data(int delta){
std::scoped_lock lock(some_data_mutex); // locks
some_data+=delta;

} // unlocks mutex in lock destructor



Locking multiple mutexes
class account
{
std::mutex m;
currency_value balance;

public:
friend void transfer(account& from,account& to,
currency_value amount)

{
std::scoped_lock lock_from(from.m);
std::scoped_lock lock_to(to.m);
from.balance -= amount;
to.balance += amount;

}
};



Locking multiple mutexes
Thread 1 Thread 2
Calls transfer(a1,a2,v1) Calls transfer(a2,a1,v2)
Locks a1.m Locks a2.m
Tries to lock a2.m Tries to lock a1.m
Blocks Blocks

DEADLOCK



Locking multiple mutexes
class account
{
std::mutex m;
currency_value balance;

public:
friend void transfer(account& from,account& to,
currency_value amount)

{
std::scoped_lock locks(from.m,to.m);
from.balance -= amount;
to.balance += amount;

}
};



Waiting for Data



Waiting for Data

How do you wait for data to be ready?



Busy wait?
std::mutex m;
std::optional<Data> data;

void busy_wait(){
while(true){
std::scoped_lock lock(m);
if(data.has_value()) break;

}
process_data();

}



Busy waiting is bad
Busy waiting:

Consumes CPU time waiting
Wastes electricity
Delays the notification

stdȂ::condition_variable provides notifications to avoid busy
waiting.



Busy waiting is bad
Busy waiting:

Consumes CPU time waiting
Wastes electricity
Delays the notification

stdȂ::condition_variable provides notifications to avoid busy
waiting.



Condition Variables optimize waiting
std::mutex m;
std::condition_variable cond;
std::optional<Data> data;

void cv_wait(){
std::unique_lock lock(m);
cond.wait(lock,[]{return data.has_value();});
process_data();

}



Condition Variable notifications
stdȂ::condition_variablemust be notified.

void cv_notify(){
{

std::scoped_lock lock(m);
data = make_data();

}
cond.notify_one();

}



CancellingWaits
Handling cancellation with busy waits is easy:
void busy_wait(std::stop_token token){

while(true){
if(token.stop_requested()) return;
std::scoped_lock lock(m);
if(data.has_value()) break;

}
process_data();

}

For condition variables we need
stdȂ::condition_variable_any.



Cancelling Condition VariableWaits
std::condition_variable_any cond;

void cv_wait(std::stop_token token){
std::unique_lock lock(m);
if(!cond.wait(lock,token,
[]{return data.has_value();}))
return;

process_data();
}



Semaphores



Semaphores
A semaphore represents a number of available “slots”. If you
acquire a slot on the semaphore then the count is decreased until
you release the slot.

Attempting to acquire a slot when the count is zero will either block
or fail.

A threadmay release a slot without acquiring one and vice versa.



Semaphores II
Semaphores can be used to build just about any synchronization
mechanism, including latches, barriers andmutexes.
See The Little Book Of Semaphores.

Mostly you are better off using the higher level structures.

A binary semaphore has 2 states: 1 slot free or no slots free. It can
be used as amutex.

https://greenteapress.com/wp/semaphores/


Semaphores in C++20

C++20 has stdȂ::counting_semaphore<max_count>
stdȂ::binary_semaphore is an alias for stdȂ::counting_semaphore<1>.

As well as blocking sem.acquire(), there are also sem.try_acquire(),
sem.try_acquire_for() and sem.try_acquire_until() functions that
fail instead of blocking.



Semaphore Example

std::counting_semaphore<5> slots(5);

void func(){
slots.acquire();
do_stuff(); // at most 5 threads can be here
slots.release();

}



Atomics



Atomics
Atomic variables are the lowest level of synchronization primitive.

In C++ they are written stdȂ::atomic<T>.

Tmust be Trivially copyable, and Bitwise comparable.

Except T can also be stdȂ::shared_ptr<U> or
stdȂ::weak_ptr<U>.



Atomics
Atomic variables are the lowest level of synchronization primitive.

In C++ they are written stdȂ::atomic<T>.

Tmust be Trivially copyable, and Bitwise comparable.
Except T can also be stdȂ::shared_ptr<U> or
stdȂ::weak_ptr<U>.



Lock free or not?
stdȂ::atomic<T>may not be lock-free—may use an internal
mutex.

stdȂ::atomic_flag, stdȂ::atomic_signed_lock_free and
stdȂ::atomic_unsigned_lock_free are only guaranteed
lock-free types.

Only most platforms stdȂ::atomic<integral-type> and
stdȂ::atomic<T*> are lock-free.

Can query with stdȂ::atomic<T>Ȃ::is_always_lock_free.



Summary



Summary

Avoid managing your own threads if you can
Use stdȂ::jthread for threads
Use stdȂ::stop_token for cancellation
Use stdȂ::future, stdȂ::latch and stdȂ::barrierwhere
you can
Use stdȂ::mutex almost everywhere else
Use stdȂ::atomic in rare cases



Questions?


	Choosing your Concurrency Model
	Cooperative Cancellation
	Starting and Managing Threads
	Synchronization facilities
	Latches
	Barriers
	Futures
	Mutexes
	Waiting for Data
	Semaphores
	Atomics
	Summary
	Questions?

