
1

REVIEWING
BEGINNERS’ CODE

Patrice Roy

Patrice.Roy@USherbrooke.ca; Patrice.Roy@clg.qc.ca

CeFTI, Université de Sherbrooke; Collège Lionel-Groulx

mailto:Patrice.Roy@USherbrooke.ca
mailto:Patrice.Roy@clg.qc.ca

Who am I?

• Father of five, ages 27 to 9

• Feeds and cleans up after a varying number of animals
• Look for Paws of Britannia with your favorite search engine

• Used to write military flight simulator code, among other things
• CAE Electronics Ltd, IREQ

• Full-time teacher since1998
• Collège Lionel-Groulx, Université de Sherbrooke
• Works a lot with game programmers

• Incidentally, WG21 and WG23 member (although I’ve been really busy recently)
• Involved in SG14, among other study groups
• Occasional WG21 secretary

• And so on…

3

https://www.facebook.com/Refuge-Paws-of-Britannia-351479871722962/
https://www.cae.com/
https://www.hydroquebec.com/innovation/fr/institut-de-recherche/
http://www.clg.qc.ca/
https://www.usherbrooke.ca/

Who am I?

• Father of five, ages 27 to 9

• Feeds and cleans up after a varying number of animals
• Look for Paws of Britannia with your favorite search engine

• Used to write military flight simulator code, among other things
• CAE Electronics Ltd, IREQ

• Full-time teacher since1998
• Collège Lionel-Groulx, Université de Sherbrooke
• Works a lot with game programmers

• Incidentally, WG21 and WG23 member (although I’ve been really busy recently)
• Involved in SG14, among other study groups
• Occasional WG21 secretary

• And so on…

4

https://www.facebook.com/Refuge-Paws-of-Britannia-351479871722962/
https://www.cae.com/
https://www.hydroquebec.com/innovation/fr/institut-de-recherche/
http://www.clg.qc.ca/
https://www.usherbrooke.ca/

WE HAVE A PROBLEM

5

The situation

const unsigned short MIN = 0,

MAX = 65535;

struct IdGenerator {

virtual unsigned short Take() = 0;

virtual unsigned short Give(Id) = 0;

};

class SequentialGenerator : IdGenerator {

unsigned short currentValue = MIN;

string prefix;

public:

SequentialGenerator() { prefix = ""; }

SequentialGenerator(string pref) { prefix = pref; }

// ...

// ...

Id Take() {

try {

if (currentValue > MAX)

throw new NoIdLeftException();

} catch (NoIdLeftException*) {

cout << "No id left" << endl;

Id id = Id(currentValue, prefix);

currentValue++;

return id;

}

}

public void Give(Id id) { }

}

6

The situation

• This is an excerpt from an assignment that one student sent to me this week
• There’s much more in there; this is a small bit

• From that specific group, I’ll be reading ~20 such assignments

• This is a representative sample

• There are better ones

• There are worse ones

7

The situation

const unsigned short MIN = 0,

MAX = 65535;

struct IdGenerator {

virtual unsigned short Take() = 0;

virtual unsigned short Give(Id) = 0;

};

class SequentialGenerator : IdGenerator {

unsigned short currentValue = MIN;

string prefix;

public:

SequentialGenerator() { prefix = ""; }

SequentialGenerator(string pref) { prefix = pref; }

// ...

// ...

Id Take() {

try {

if (currentValue > MAX)

throw new NoIdLeftException();

} catch (NoIdLeftException*) {

cout << "No id left" << endl;

Id id = Id(currentValue, prefix);

currentValue++;

return id;

}

}

public void Give(Id id) { }

}

8

The situation

• You might be wincing, and you might want to criticize

9

The situation

• You might be wincing, and you might want to criticize

• Be careful: this is normal code at some stages of development
• There’s information in that code

• About the individual

• About the individual’s background

• About the individual’s understanding of things at this stage

10

The situation

• You might be wincing, and you might want to criticize

• Be careful: this is normal code at some stages of development
• There’s information in that code

• About the individual

• About the individual’s background

• About the individual’s understanding of things at this stage

• There are cultural references in that code

• There’s indications that will allow us to (try to) help that person get better at
programming

11

The situation

const unsigned short MIN = 0,

MAX = 65535;

struct IdGenerator {

virtual unsigned short Take() = 0;

virtual unsigned short Give(Id) = 0;

};

class SequentialGenerator : IdGenerator {

unsigned short currentValue = MIN;

string prefix;

public:

SequentialGenerator() { prefix = ""; }

SequentialGenerator(string pref) { prefix = pref; }

// ...

// ...

Id Take() {

try {

if (currentValue > MAX)

throw new NoIdLeftException();

} catch (NoIdLeftException*) {

cout << "No id left" << endl;

Id id = Id(currentValue, prefix);

currentValue++;

return id;

}

}

public void Give(Id id) { }

}

12

The situation

const unsigned short MIN = 0,

MAX = 65535;

struct IdGenerator {

virtual unsigned short Take() = 0;

virtual unsigned short Give(Id) = 0;

};

class SequentialGenerator : IdGenerator {

unsigned short currentValue = MIN;

string prefix;

public:

SequentialGenerator() { prefix = ""; }

SequentialGenerator(string pref) { prefix = pref; }

// ...

// ...

Id Take() {

try {

if (currentValue > MAX)

throw new NoIdLeftException();

} catch (NoIdLeftException*) {

cout << "No id left" << endl;

Id id = Id(currentValue, prefix);

currentValue++;

return id;

}

}

public void Give(Id id) { }

}

13

If one has to provide feedback on
such code, context should influence
the way that feedback is conveyed

The situation

const unsigned short MIN = 0,

MAX = 65535;

struct IdGenerator {

virtual unsigned short Take() = 0;

virtual unsigned short Give(Id) = 0;

};

class SequentialGenerator : IdGenerator {

unsigned short currentValue = MIN;

string prefix;

public:

SequentialGenerator() { prefix = ""; }

SequentialGenerator(string pref) { prefix = pref; }

// ...

// ...

Id Take() {

try {

if (currentValue > MAX)

throw new NoIdLeftException();

} catch (NoIdLeftException*) {

cout << "No id left" << endl;

Id id = Id(currentValue, prefix);

currentValue++;

return id;

}

}

public void Give(Id id) { }

}

14

There are many kinds of issues here. If
the code was produced by a co-

worker, or if it was produced by a first
year student, we might not insist on

the same aspects

The situation

const unsigned short MIN = 0,

MAX = 65535;

struct IdGenerator {

virtual unsigned short Take() = 0;

virtual unsigned short Give(Id) = 0;

};

class SequentialGenerator : IdGenerator {

unsigned short currentValue = MIN;

string prefix;

public:

SequentialGenerator() { prefix = ""; }

SequentialGenerator(string pref) { prefix = pref; }

// ...

// ...

Id Take() {

try {

if (currentValue > MAX)

throw new NoIdLeftException();

} catch (NoIdLeftException*) {

cout << "No id left" << endl;

Id id = Id(currentValue, prefix);

currentValue++;

return id;

}

}

public void Give(Id id) { }

}

15

There are issues of hygiene, things
that should be routinely done

The situation

const unsigned short MIN = 0,

MAX = 65535;

struct IdGenerator {

virtual unsigned short Take() = 0;

virtual unsigned short Give(Id) = 0;

};

class SequentialGenerator : IdGenerator {

unsigned short currentValue = MIN;

string prefix;

public:

SequentialGenerator() { prefix = ""; }

SequentialGenerator(string pref) { prefix = pref; }

// ...

// ...

Id Take() {

try {

if (currentValue > MAX)

throw new NoIdLeftException();

} catch (NoIdLeftException*) {

cout << "No id left" << endl;

Id id = Id(currentValue, prefix);

currentValue++;

return id;

}

}

public void Give(Id id) { }

}

16

There are issues of hygiene, things
that should be routinely done

The situation

const unsigned short MIN = 0,

MAX = 65535;

struct IdGenerator {

virtual unsigned short Take() = 0;

virtual unsigned short Give(Id) = 0;

};

class SequentialGenerator : IdGenerator {

unsigned short currentValue = MIN;

string prefix;

public:

SequentialGenerator() { prefix = ""; }

SequentialGenerator(string pref) { prefix = pref; }

// ...

// ...

Id Take() {

try {

if (currentValue > MAX)

throw new NoIdLeftException();

} catch (NoIdLeftException*) {

cout << "No id left" << endl;

Id id = Id(currentValue, prefix);

currentValue++;

return id;

}

}

public void Give(Id id) { }

}

17

There are issues related to understanding the
role of objects and the role of client code

The situation

const unsigned short MIN = 0,

MAX = 65535;

struct IdGenerator {

virtual unsigned short Take() = 0;

virtual unsigned short Give(Id) = 0;

};

class SequentialGenerator : IdGenerator {

unsigned short currentValue = MIN;

string prefix;

public:

SequentialGenerator() { prefix = ""; }

SequentialGenerator(string pref) { prefix = pref; }

// ...

// ...

Id Take() {

try {

if (currentValue > MAX)

throw new NoIdLeftException();

} catch (NoIdLeftException*) {

cout << "No id left" << endl;

Id id = Id(currentValue, prefix);

currentValue++;

return id;

}

}

public void Give(Id id) { }

}

18

There are issues related to understanding the
role of objects and the role of client code

The situation

const unsigned short MIN = 0,

MAX = 65535;

struct IdGenerator {

virtual unsigned short Take() = 0;

virtual unsigned short Give(Id) = 0;

};

class SequentialGenerator : IdGenerator {

unsigned short currentValue = MIN;

string prefix;

public:

SequentialGenerator() { prefix = ""; }

SequentialGenerator(string pref) { prefix = pref; }

// ...

// ...

Id Take() {

try {

if (currentValue > MAX)

throw new NoIdLeftException();

} catch (NoIdLeftException*) {

cout << "No id left" << endl;

Id id = Id(currentValue, prefix);

currentValue++;

return id;

}

}

public void Give(Id id) { }

}

19

There are issues with understanding
object lifecycle and memory management

The situation

const unsigned short MIN = 0,

MAX = 65535;

struct IdGenerator {

virtual unsigned short Take() = 0;

virtual unsigned short Give(Id) = 0;

};

class SequentialGenerator : IdGenerator {

unsigned short currentValue = MIN;

string prefix;

public:

SequentialGenerator() { prefix = ""; }

SequentialGenerator(string pref) { prefix = pref; }

// ...

// ...

Id Take() {

try {

if (currentValue > MAX)

throw new NoIdLeftException();

} catch (NoIdLeftException*) {

cout << "No id left" << endl;

Id id = Id(currentValue, prefix);

currentValue++;

return id;

}

}

public void Give(Id id) { }

}

20

There are issues with understanding
object lifecycle and memory management

The situation

const unsigned short MIN = 0,

MAX = 65535;

struct IdGenerator {

virtual unsigned short Take() = 0;

virtual unsigned short Give(Id) = 0;

};

class SequentialGenerator : IdGenerator {

unsigned short currentValue = MIN;

string prefix;

public:

SequentialGenerator() { prefix = ""; }

SequentialGenerator(string pref) { prefix = pref; }

// ...

// ...

Id Take() {

try {

if (currentValue > MAX)

throw new NoIdLeftException();

} catch (NoIdLeftException*) {

cout << "No id left" << endl;

Id id = Id(currentValue, prefix);

currentValue++;

return id;

}

}

public void Give(Id id) { }

}

21

There are issues with understanding
how/when to use control structures

The situation

const unsigned short MIN = 0,

MAX = 65535;

struct IdGenerator {

virtual unsigned short Take() = 0;

virtual unsigned short Give(Id) = 0;

};

class SequentialGenerator : IdGenerator {

unsigned short currentValue = MIN;

string prefix;

public:

SequentialGenerator() { prefix = ""; }

SequentialGenerator(string pref) { prefix = pref; }

// ...

// ...

Id Take() {

try {

if (currentValue > MAX)

throw new NoIdLeftException();

} catch (NoIdLeftException*) {

cout << "No id left" << endl;

Id id = Id(currentValue, prefix);

currentValue++;

return id;

}

}

public void Give(Id id) { }

}

22

There are issues with understanding
how/when to use control structures

The situation

const unsigned short MIN = 0,

MAX = 65535;

struct IdGenerator {

virtual unsigned short Take() = 0;

virtual unsigned short Give(Id) = 0;

};

class SequentialGenerator : IdGenerator {

unsigned short currentValue = MIN;

string prefix;

public:

SequentialGenerator() { prefix = ""; }

SequentialGenerator(string pref) { prefix = pref; }

// ...

// ...

Id Take() {

try {

if (currentValue > MAX)

throw new NoIdLeftException();

} catch (NoIdLeftException*) {

cout << "No id left" << endl;

Id id = Id(currentValue, prefix);

currentValue++;

return id;

}

}

public void Give(Id id) { }

}

23

There are minor issues one looks at when
one wants to make working code better

The situation

const unsigned short MIN = 0,

MAX = 65535;

struct IdGenerator {

virtual unsigned short Take() = 0;

virtual unsigned short Give(Id) = 0;

};

class SequentialGenerator : IdGenerator {

unsigned short currentValue = MIN;

string prefix;

public:

SequentialGenerator() { prefix = ""; }

SequentialGenerator(string pref) { prefix=pref; }

// ...

// ...

Id Take() {

try {

if (currentValue > MAX)

throw new NoIdLeftException();

} catch (NoIdLeftException*) {

cout << "No id left" << endl;

Id id = Id(currentValue, prefix);

currentValue++;

return id;

}

}

public void Give(Id id) { }

}

24

There are minor issues one looks at when
one wants to make working code better

The situation

const unsigned short MIN = 0,

MAX = 65535;

struct IdGenerator {

virtual unsigned short Take() = 0;

virtual unsigned short Give(Id) = 0;

};

class SequentialGenerator : IdGenerator {

unsigned short currentValue = MIN;

string prefix;

public:

SequentialGenerator() { prefix = ""; }

SequentialGenerator(string pref) { prefix = pref; }

// ...

// ...

Id Take() {

try {

if (currentValue > MAX)

throw new NoIdLeftException();

} catch (NoIdLeftException*) {

cout << "No id left" << endl;

Id id = Id(currentValue, prefix);

currentValue++;

return id;

}

}

public void Give(Id id) { }

}

25

There are some things that are just
dangerous

The situation

const unsigned short MIN = 0,

MAX = 65535;

struct IdGenerator {

virtual unsigned short Take() = 0;

virtual unsigned short Give(Id) = 0;

}; // no virtual dtor

class SequentialGenerator : IdGenerator {

unsigned short currentValue = MIN;

string prefix;

public:

SequentialGenerator() { prefix = ""; }

SequentialGenerator(string pref) { prefix = pref; }

// ...

// ...

Id Take() {

try {

if (currentValue > MAX)

throw new NoIdLeftException();

} catch (NoIdLeftException*) {

cout << "No id left" << endl;

Id id = Id(currentValue, prefix);

currentValue++;

return id;

}

}

public void Give(Id id) { }

}

26

There are some things that are just
dangerous

The situation

• It’s difficult for a beginner to absorb all of that information at once
• Even if you show and explain things, chances are you will have to do it again soon

• Stress…

• Information overload…

27

The situation

• It’s difficult for a beginner to absorb all of that information at once
• Even if you show and explain things, chances are you will have to do it again soon

• Stress…

• Information overload…

• Providing feedback requires some measure of patience and kindness

28

The situation

• Programmers require feedback

29

The situation

• Programmers require feedback

• In particular, beginner programmers require feedback
• This includes both junior programmers and students who program, be they students in

computer science, software engineering or other fields involving programming

30

The situation

• Providing this feedback can be tedious
• Requires time and attention

• Difficult to do

• ... but essential, and too often neglected

31

The situation

• Receiving this feedback can be difficult
• We are more emotionally involved in our code than many suspect

• Criticism of one’s work can make one sensitive

32

ON A PERSONAL NOTE

33

We all need feedback

• True story... From a few days ago…

34

We all need feedback

// we are going to be storing at most N

// instances of T in buf, but we don't

// want to create the T instances

template <int N, class T, class F>

auto store_then_use(F f, bool(*read_func)(char*,int)) {

// ...

}

35

We all need feedback

// we are going to be storing at most N instances of T in buf, but we don't

// want to create the T instances

template <int N, class T, class F>

auto store_then_use(F f, bool(*read_func)(char*,int)) {

alignas(T) char buf[N * sizeof(T)];

if (!read_func(buf+0, sizeof buf))

throw read_error{};

else {

// technically, UB, and incomplete (T objects not finalized). Shhh...

return f(*reinterpret_cast<T*>(buf+0), N);

}

}

36

We all need feedback

// we are going to be storing at most N instances of T in buf, but we don't

// want to create the T instances

template <int N, class T, class F>

auto store_then_use(F f, bool(*read_func)(char*,int)) {

alignas(T) char buf[N * sizeof(T)];

if (!read_func(buf+0, sizeof buf))

throw read_error{};

else {

// technically, UB, and incomplete (T objects not finalized). Shhh...

return f(*reinterpret_cast<T*>(buf+0), N);

}

}

37

We all need feedback

// we are going to be storing at most N instances of T in buf, but we don't

// want to create the T instances

template <int N, class T, class F>

auto store_then_use(F f, int(*read_func)(char*,int)) {

alignas(T) char buf[N * sizeof(T)];

if (int n = read_func(buf+0, sizeof buf); n == 0)

throw read_error{};

else {

// technically, UB, and incomplete (T objects not finalized). Shhh...

return f(*reinterpret_cast<T*>(buf+0), n);

}

}

38

We all need feedback

• I was the culprit, explaining something unrelated in one of my classes

39

We all need feedback

• I was the culprit, explaining something unrelated in one of my classes

• It’s the kind of thing I would have caught right away in someone else’s code
• When I reviewed my material, I skimmed over it, as it was from a class I had already

given in the past

• … when in class, this time, it just jumped to me, live, as I was presenting

• One of the (bright!) participants in my class saw it too

40

We all need feedback

• I was the culprit, explaining something unrelated in one of my classes

• It’s the kind of thing I would have caught right away in someone else’s code
• When I reviewed my material, I skimmed over it, as it was from a class I had already

given in the past

• … when in class, this time, it just jumped to me, live, as I was presenting

• One of the (bright!) participants in my class saw it too

• We turned it into a design discussion
• I fixed it during lunch time (whew!)

41

We All Need Feedback

• I write code and course material every day

• My colleagues read and criticize my work
• I’m grateful for this!

• I do the same for them

• I have done this for almost a quarter of a century

• I still find stuff that’s defective in material used dozens of time
• … it makes me happy!

• … it also makes me happy when people find bugs in my code

• We all need feedback

42

A PRIORI

43

A priori

• This presentation supposes a few things
• A willingness on the part of the providers to help the receivers

• A willingness on the part of the receivers to learn and get better at what they do

• A welcoming environment for those who work or study there

• This presentation supposes goodwill, really

44

NAMES AND
DEFINITIONS

45

Names and definitions

• In order to make this talk more objective and palatable, a few definitions

• From the perspective of a code review:
• The provider or providers are those reviewing the code

• The receiver or receivers are those who produced the code under review

• I will use company for the place one works in

• Companies have needs, requirements, preferences, culture, etc.

• I will use training profile for academic contexts

• Some considerations are important to all programmers, but others depend on what a class / a
training / a learning program are trying to convey / prepare individuals for

• This may be representative of some internship situations

46

WHAT?

47

What?

• In a way, providing feedback is akin to a debugging experience
• It can be done ad hoc, but it’s generally more efficient if one is prepared

• It’s hard (impossible?) to make a complete list of aspects to prepare for
• …but we can open some avenues for reflection

48

What?

• What is important to me as a provider?

• What do I want to look for?

• What would benefit the receiver the most?

• What would benefit the company / the training profile the most?

• What is essential for the code under review to be acceptable

49

What?

• What is important to me as a provider?
• My experience counts. It’s why I’m asked to provide feedback

• I know others who will read / use the code

• I know the context to which the code is destined and can guide the receiver towards it

• I have aesthetical / style preferences I might want to convey

50

What?

• What do I want to look for?
• Maybe I know the receiver’s strengths and blind spots

• Maybe I know the system’s constraints

• Maybe I’m training someone and the code is an answer to a problem prepared to bring
about some enlightenment

• Maybe the respect of some style guide is important to my company and that needs to
be conveyed

51

What?

• What would benefit the receiver the most?
• Given what I know of the receiver, what would be the feedback I should insist on?

• What are the things I could mention but that are less essential to the receiver’s personal
or professional development?

• What skills do I think my feedback could help the receiver improve?

52

What?

• What would benefit the company / the training profile the most?
• Does my company do real-time or low-latency software? If so, I might focus on

deterministic behavior and predictable performance

• Does my company expose an API to external clients? If so, I might focus on usability and
security

53

What?

• What would benefit the company / the training profile the most?
• Am I training beginners? If so, I will want to ensure that what has been discussed in class

is well understood, and I might « abstract away » problems the receiver would not be
aware of or know how to solve

• Am I training intermediate-level students? I might consider some things known to them
(e.g.: indentation) and be a bit more severe if the code seems negligent in those regards,
and I might be pay more attention to design issues (but grade them less agressively)

• In my class, I might want to insist on the idioms and good practices of the language(s)
we use to solve problems

54

What?

• What is essential for the code under review to be acceptable
• There are requirements that need to be met

• Things without which the system will not run properly

• Aspects without which the classes following mine will be harder to teach

• There might be aspects that will need to be addressed at some point but are not urgent

55

What?

• What is important to me as a provider?

• What do I want to look for?

• What would benefit the receiver the most?

• What would benefit the company / the training profile the most?

• What is essential for the code under review to be acceptable

56

As a provider, I need to prioritize and
make choices on each of these aspects

For this, I need to know what I am trying
to achieve

HOW?

57

How?

• How to review code is a question with many aspects

• Some aspects concern the provider
• How to be understood?

• How to provide feedback in a human and constructive manner?

• How to be efficient?

• Some aspects concern the receiver
• How to use the feedback efficiently?

• How to ask questions in order to get the most from the experience

• How to use feedback for personal and professional growth?

58

How?

• For the provider
• Choosing what to focus on

• Make a plan!

• Define objectives

• Doing it with reasonable effort

• Tricks and techniques

• Being effective

• Being understood

• Being kind

59

How? Choosing what to focus on

• For the provider
• Choosing what to focus on

• Make a plan!

• Define objectives

60

See the « What » section, on
previous slides

How? Choosing what to focus on

• For the provider
• Choosing what to focus on

• Make a plan!

• Define objectives

61

See the « What » section, on
previous slides

If the code review is a live experience, one
thing that can help is reading the code prior
to the meeting and having knowledge of the

code’s prior incarnation (if any)

How? Choosing what to focus on

• For the provider
• Choosing what to focus on

• Make a plan!

• Define objectives

62

See the « What » section, on
previous slides

If the code review is a live experience, one
thing that can help is reading the code prior
to the meeting and having knowledge of the

code’s prior incarnation (if any)

The best way to get
satisfying code is to be
clear a priori on what
the expectations are

How? Choosing what to focus on

• For the provider
• Choosing what to focus on

• Make a plan!

• Define objectives

63

See the « What » section, on
previous slides

If the code review is a written experience (e.g.: grading
assignments), then ensuring one only grades a combination of what’s

supposed to be known a priori and what has been taught /
announced beforehand is important. Otherwise, one can add

remarks, comments, but going further would be problematic…

How? Choosing what to focus on

• For the provider
• Choosing what to focus on

• Make a plan!

• Define objectives

64

See the « What » section, on
previous slides

If the code review is a written experience (e.g. grading
assignments), then ensuring one only grades a combination of what’s

supposed to be known a priori and what has been taught /
announced beforehand is important. Otherwise, one can add

remarks, comments, but going further would be problematic…

Students should
know how they will
be evaluated before
they begin working
on an assignment

How? Doing it with reasonable effort

• For the provider
• Doing it with reasonable effort

• Tricks and techniques

65

If the code review is a group effort, one
can assemble a small group of people

with a common set of expectations, but
different skills

How? Doing it with reasonable effort

• For the provider
• Doing it with reasonable effort

• Tricks and techniques

66

If the code review is a group effort, one
can assemble a small group of people

with a common set of expectations, but
different skills

Rare is the polymath programmer, good
at everything. Most of us have blind

spots, and it’s just normal

How? Doing it with reasonable effort

• For the provider
• Doing it with reasonable effort

• Tricks and techniques

67

For a « live » code review, applying some basic
rules of meeting management definitely helps

• Be there on time
• Be ready on time
• Set a time limit
• Make sure the expectations (if any) are clear

for everyone at the end of the meeting
• If possible, put them in writing!

How? Doing it with reasonable effort

• For the provider
• Doing it with reasonable effort

• Tricks and techniques

68

Written code reviews can be tedious and delicate

• Tedious because to be understood, one has to be clear

How? Doing it with reasonable effort

• For the provider
• Doing it with reasonable effort

• Tricks and techniques

69

Written code reviews can be tedious and delicate

• Tedious because to be understood, one has to be clear
• This can mean writing long phrases, providing

examples of what is expected, rewriting excerpts, etc.

How? Doing it with reasonable effort

• For the provider
• Doing it with reasonable effort

• Tricks and techniques

70

Written code reviews can be tedious and delicate

• Tedious because to be understood, one has to be clear
• This can mean writing long phrases, providing

examples of what is expected, rewriting excerpts, etc.
• Delicate because the provider does not necessarily see

the receiver when the feedback is being received

How? Doing it with reasonable effort

• For the provider
• Doing it with reasonable effort

• Tricks and techniques

71

Written code reviews can be tedious and delicate

• Tedious because to be understood, one has to be clear
• This can mean writing long phrases, providing

examples of what is expected, rewriting excerpts, etc.
• Delicate because the provider does not necessarily see

the receiver when the feedback is being received
• Written feedback can seem dry (no facial expressions,

less empathy)

How? Doing it with reasonable effort

• For the provider
• Doing it with reasonable effort

• Tricks and techniques

72

Written code reviews can be tedious and delicate

• Tedious because to be understood, one has to be clear
• This can mean writing long phrases, providing

examples of what is expected, rewriting excerpts, etc.
• Delicate because the provider does not necessarily see

the receiver when the feedback is being received
• Written feedback can seem dry (no facial expressions,

less empathy)

In a situation where the same remarks tend to come up
regularly (e.g.: with students), a good trick is to have a set

of short mnemonics that convey the essence of the
message, and that receivers can understand quickly

How? Doing it with reasonable effort

• Examples of mnemonics I use
• CMT

• CNS

• DANGER

• FR

• IND

• MOD

• NFP

• NRC

• NS

• TYPE

73

How? Doing it with reasonable effort

• Examples of mnemonics I use
• CMT

• CNS

• DANGER

• FR

• IND

• MOD

• NFP

• NRC

• NS

• TYPE

74

Your list may, of course, differ from mine!

How? Doing it with reasonable effort

• Examples of mnemonics I use
• CMT – problem with comments, e.g.: one would have been useful, one is misleading

• CNS

• DANGER

• FR

• IND

• MOD

• NFP

• NRC

• NS

• TYPE

75

How? Doing it with reasonable effort

• Examples of mnemonics I use
• CMT

• CNS – problem with constants, e.g.: a « magic number » where this does not seem
justified

• DANGER

• FR

• IND

• MOD

• NFP

• NRC

• NS

• TYPE

76

How? Doing it with reasonable effort

• Examples of mnemonics I use
• CMT

• CNS

• DANGER – this is just dangerous

• FR

• IND

• MOD

• NFP

• NRC

• NS

• TYPE

77

How? Doing it with reasonable effort

• Examples of mnemonics I use
• CMT

• CNS

• DANGER

• FR – I have a hard time reading your prose (FR is for « français » as I teach mostly in
French)

• IND

• MOD

• NFP

• NRC

• NS

• TYPE

78

How? Doing it with reasonable effort

• Examples of mnemonics I use
• CMT

• CNS

• DANGER

• FR

• IND – misleading indentation

• MOD

• NFP

• NRC

• NS

• TYPE

79

How? Doing it with reasonable effort

• Examples of mnemonics I use
• CMT

• CNS

• DANGER

• FR

• IND

• MOD – short for « modularization », I use this for code structure issues (badly
written loops, missing functions, functions or classes that do too much, etc.)

• NFP

• NRC

• NS

• TYPE

80

How? Doing it with reasonable effort

• Examples of mnemonics I use
• CMT

• CNS

• DANGER

• FR

• IND

• MOD

• NFP – that just does not work (French: « ne fonctionne pas », hence the mnemonic)

• NRC

• NS

• TYPE

81

How? Doing it with reasonable effort

• Examples of mnemonics I use
• CMT

• CNS

• DANGER

• FR

• IND

• MOD

• NFP

• NRC – does not do what has been asked (stands for « non-respect des consignes »,
not respectful of the stated requirements)

• NS

• TYPE

82

How? Doing it with reasonable effort

• Examples of mnemonics I use
• CMT

• CNS

• DANGER

• FR

• IND

• MOD

• NFP

• NRC

• NS – names that are misleading or just not significant enough

• TYPE

83

How? Doing it with reasonable effort

• Examples of mnemonics I use
• CMT

• CNS

• DANGER

• FR

• IND

• MOD

• NFP

• NRC

• NS

• TYPE – badly picked type, e.g.: an int where a bool would be reasonable, a bool
where an enum would be cleared, etc.

84

How? Doing it with reasonable effort

• Examples of mnemonics I use
• CMT

• CNS

• DANGER

• FR

• IND

• MOD

• NFP

• NRC

• NS

• TYPE

85

I also use ☺when they make me
smile, when they make me sad, and

? when they make me confused

How? Doing it with reasonable effort

• Examples of mnemonics I use
• CMT

• CNS

• DANGER

• FR

• IND

• MOD

• NFP

• NRC

• NS

• TYPE

86

These cover ≈95%+ of the feedback on code I need to give
in practice (for the rest, I take the time to write more

detailed explanations). I take a red pen, trace an ellipsis or
put arrows on the appropriate location(s) and write 2-5

capital letters

These cover ≈95%+ of the feedback on code I need to give
in practice (for the rest, I take the time to write more

detailed explanations). I take a red pen, trace an ellipsis or
put arrows on the appropriate location(s) and write 2-5

capital letters

How? Doing it with reasonable effort

• Examples of mnemonics I use
• CMT

• CNS

• DANGER

• FR

• IND

• MOD

• NFP

• NRC

• NS

• TYPE

87

When I grade code, my process is:

• I suppose the code is perfect (if it compiles and runs)

These cover ≈95%+ of the feedback on code I need to give
in practice (for the rest, I take the time to write more

detailed explanations). I take a red pen, trace an ellipsis or
put arrows on the appropriate location(s) and write 2-5

capital letters

How? Doing it with reasonable effort

• Examples of mnemonics I use
• CMT

• CNS

• DANGER

• FR

• IND

• MOD

• NFP

• NRC

• NS

• TYPE

88

When I grade code, my process is:

• I suppose the code is perfect (if it compiles and runs)
• Then, I read it

These cover ≈95%+ of the feedback on code I need to give
in practice (for the rest, I take the time to write more

detailed explanations). I take a red pen, trace an ellipsis or
put arrows on the appropriate location(s) and write 2-5

capital letters

How? Doing it with reasonable effort

• Examples of mnemonics I use
• CMT

• CNS

• DANGER

• FR

• IND

• MOD

• NFP

• NRC

• NS

• TYPE

89

When I grade code, my process is:

• I suppose the code is perfect (if it compiles and runs)
• Then, I read it
• Then, I count the number of each such mnemonic I found to see how

much I was mistaken (I sometimes stop counting if one appears too
often; the idea is to help the student grow, not crush that person)

These cover ≈95%+ of the feedback on code I need to give
in practice (for the rest, I take the time to write more

detailed explanations). I take a red pen, trace an ellipsis or
put arrows on the appropriate location(s) and write 2-5

capital letters

How? Doing it with reasonable effort

• Examples of mnemonics I use
• CMT

• CNS

• DANGER

• FR

• IND

• MOD

• NFP

• NRC

• NS

• TYPE

90

When I grade code, my process is:

• I suppose the code is perfect (if it compiles and runs)
• Then, I read it
• Then, I count the number of each such mnemonic I found to see how

much I was mistaken (I sometimes stop counting if one appears too
often; the idea is to help the student grow, not crush that person)

• I assign a weight to each mnemonic (e.g.: dangerous code costs more
than a bad choice of name), and substract from the initial, perfect score

How? Doing it with reasonable effort

• Examples of mnemonics I use
• CMT

• CNS

• DANGER

• FR

• IND

• MOD

• NFP

• NRC

• NS

• TYPE

91

These tend to come up even on first year
students; the others appear typically
when code becomes more elaborate

How? Doing it with reasonable effort

• Examples of mnemonics I use
• CMT

• CNS

• DANGER

• FR

• IND

• MOD

• NFP

• NRC

• NS

• TYPE

92

I call the MOD cases « erreurs de grande personne » (grown
person’s mistakes) since they demand some thinking with
respect to design, code structure, code organization, etc.
and hopefully are opportunities to grow as a programmer

How? Doing it with reasonable effort

• Examples of mnemonics I use
• CMT

• CNS

• DANGER

• FR

• IND

• MOD

• NFP

• NRC

• NS

• TYPE

93

These two are probably the most annoying:

• NFP often comes up when they sent me something
that does not compile or something they did not test

• NRC typically means they did not read the
assignment seriously…

How? Doing it with reasonable effort

const unsigned short MIN = 0,

MAX = 65535;

struct IdGenerator {

virtual unsigned short Take() = 0;

virtual unsigned short Give(Id) = 0;

};

class SequentialGenerator : IdGenerator {

unsigned short currentValue = MIN;

string prefix;

public:

SequentialGenerator() { prefix = ""; }

SequentialGenerator(string pref) { prefix = pref; }

// ...

// ...

Id Take() {

try {

if (currentValue > MAX)

throw new NoIdLeftException();

} catch (NoIdLeftException*) {

cout << "No id left" << endl;

Id id = Id(currentValue, prefix);

currentValue++;

return id;

}

}

public void Give(Id id) { }

}

94

How? Doing it with reasonable effort

const unsigned short MIN = 0,

MAX = 65535;

struct IdGenerator {

virtual unsigned short Take() = 0;

virtual unsigned short Give(Id) = 0;

};

class SequentialGenerator : IdGenerator {

unsigned short currentValue = MIN;

string prefix;

public:

SequentialGenerator() { prefix = ""; }

SequentialGenerator(string pref) { prefix = pref; }

// ...

// ...

Id Take() {

try {

if (currentValue > MAX)

throw new NoIdLeftException();

} catch (NoIdLeftException*) {

cout << "No id left" << endl;

Id id = Id(currentValue, prefix);

currentValue++;

return id;

}

}

public void Give(Id id) { }

}

95

DANGER
NFP

MOD

TYPE

Not the right place

We can do better,
let’s talk

I have a trick
for you☺

How? Being effective

• For the provider
• Being effective

• Being understood

• Being kind

96

How? Being effective

• For the provider
• Being effective

• Being understood

• Being kind

97

I could not stress this enough: if the receiver does
not understand the intent behind the feedback,

it’s wasted time for everyone involved

How? Being effective

• For the provider
• Being effective

• Being understood

• Being kind

98

I could not stress this enough: if the receiver does
not understand the intent behind the feedback,

it’s wasted time for everyone involved

It’s tempting to blame the receiver for misunderstanding feedback,
but clarity of intent is typically a shared burden, and for the code

review to bear fruits, being understood is essential

How? Being effective

• For the provider
• Being effective

• Being understood

• Being kind

99

I could not stress this enough: if the receiver does
not understand the intent behind the feedback,

it’s wasted time for everyone involved

It’s tempting to blame the receiver for misunderstanding feedback,
but clarity of intent is typically a shared burden, and for the code

review to bear fruits, being understood is essential

When in doubt, don’t just ask if the receiver
understood; verify, ask specific questions

How? Being effective

• For the provider
• Being effective

• Being understood

• Being kind

100

We must never forget that we’re talking to a
human being, and that we do not know what’s

going on in the receiver’s life

How? Being effective

• For the provider
• Being effective

• Being understood

• Being kind

101

We must never forget that we’re talking to a
human being, and that we do not know what’s

going on in the receiver’s life

The ultimate objective is for the receiver to
perfect his or her skills, to get better, to

contribute… Not to go hire someone else

How? Being effective

• For the provider
• Being effective

• Being understood

• Being kind

102

We must never forget that we’re talking to a
human being, and that we do not know what’s

going on in the receiver’s life

The ultimate objective is for the receiver to
perfect his or her skills, to get better, to

contribute… Not to go hire someone else

If the receiver does not seem to be in a good mental state
for a code review, or if the provider is not in a good mental
state, it might be better to postpone the effort, or to do the

review through some other means

How?

• For the receiver
• Doing one’s homework

• Try to understand what you’ve done

• Try to explain it clearly

• Ideally, the code should not need much explaining, but still…

• Re-read your own code before the review

• Simplify the process

• Respect your environment’s standards

• Respect the directives you’ve been given

• Being effective

• Be open to feedback

• Take it as a learning and growing opportunity

103

How? Doing one’s homework

• For the receiver
• Doing one’s homework

• Try to understand what you’ve done

• Try to explain it clearly

• Ideally, the code should not need much explaining, but still…

• Re-read your own code before the review

104

We cannot expect a beginner to be an expert, but we
can ask the receiver to be able to re-read the code to

be reviewed before the review effort occurs (or before
submitting an assignment)

How? Doing one’s homework

• For the receiver
• Doing one’s homework

• Try to understand what you’ve done

• Try to explain it clearly

• Ideally, the code should not need much explaining, but still…

• Re-read your own code before the review

105

We cannot expect a beginner to be an expert, but we
can ask the receiver to be able to re-read the code to

be reviewed before the review effort occurs (or before
submitting an assignment)

Alternatively, as a friend to read it and
criticize if that’s reasonable

How? Doing one’s homework

• For the receiver
• Doing one’s homework

• Try to understand what you’ve done

• Try to explain it clearly

• Ideally, the code should not need much explaining, but still…

• Re-read your own code before the review

106

We cannot expect a beginner to be an expert, but we
can ask the receiver to be able to re-read the code to

be reviewed before the review effort occurs (or before
submitting an assignment)

Alternatively, as a friend to read it and
criticize if that’s reasonable

We would hope that code would be understandable on its
own, without additional explanations, but making the effort

of explaining things may bring to light incoherences,
confusing names, functions or classes with unclear roles,

etc. which can save time and effort overall

How? Simplify the process

• For the receiver
• Simplify the process

• Respect your environment’s standards

• Respect the directives you’ve been given

107

How? Simplify the process

• For the receiver
• Simplify the process

• Respect your environment’s standards

• Respect the directives you’ve been given

108

One can help the process by doing
some work beforehand: identify the
standards in your environment and

strive to respect them

How? Simplify the process

• For the receiver
• Simplify the process

• Respect your environment’s standards

• Respect the directives you’ve been given

109

One can help the process by doing
some work beforehand: identify the
standards in your environment and

strive to respect them

This will save everyone time by reducing the
« mechanical » part of the review, e.g.:respect
the local casing protocol (snake, pascal, other),

comment format, naming practices, etc.

How? Simplify the process

• For the receiver
• Simplify the process

• Respect your environment’s standards

• Respect the directives you’ve been given

110

One can help the process by doing
some work beforehand: identify the
standards in your environment and

strive to respect them

This will save everyone time by reducing the
« mechanical » part of the review, e.g.:respect
the local casing protocol (snake, pascal, other),

comment format, naming practices, etc.

Ideally, if you disagree with local practices, the
code review is not the best time to address this

How? Simplify the process

• For the receiver
• Simplify the process

• Respect your environment’s standards

• Respect the directives you’ve been given

111

Small, personal note: pay attention
to your written prose. It saves so

much time when one can be
understood unambiguously…

How? Being effective

• For the receiver
• Being effective

• Be open to feedback

• Take it as a learning and growing opportunity

112

How? Being effective

• For the receiver
• Being effective

• Be open to feedback

• Take it as a learning and growing opportunity

113

It might seem intimidating to
receive feedback on one’s code, but

it should not be

How? Being effective

• For the receiver
• Being effective

• Be open to feedback

• Take it as a learning and growing opportunity

114

It might seem intimidating to
receive feedback on one’s code, but

it should not be

Evaluation, grading and feedback on one’s efforts in
general should be a positive thing, an opportunity to

grow as a person and as a professional

How? Being effective

• For the receiver
• Being effective

• Be open to feedback

• Take it as a learning and growing opportunity

115

It might seem intimidating to
receive feedback on one’s code, but

it should not be

Evaluation, grading and feedback on one’s efforts in
general should be a positive thing, an opportunity to

grow as a person and as a professional

Everyone has a role in establishing a
constructive ambience for feedback. The

receiver’s part is to be open, take notes, and
use the opportunity to get better

SOME IDEAS

116

Some ideas…

• Here are a few ideas you might want to try or adapt to your own situation
• Only if you feel like it and if you feel it might work for you

• The list is just a start; feel free to write to me if you experiment and try things you think
are interesting!

117

Some ideas…

• Expose the receiver to good code

118

Some ideas…

• Expose the receiver to good code
• This might be done informally

• Asking them to them make a small addition to a codebase you find particularly well done

• Suggesting they watch a good conference (with you?)

• Sharing interesting articles or tricks over lunch or coffee

• Lending them a cool book where the programming practices seem recommendable

119

Some ideas…

• Expose the receiver to good code
• This might be done informally

• Asking them to make a small addition to a codebase you find particularly well done

• Suggesting they watch a good conference (with you?)

• Sharing interesting articles or tricks over lunch or coffee

• Lending them a cool book where the programming practices seem recommendable

• Learning by example can work

• Make sure you don’t make the receiver feel diminished

• Seek to create a form of empowerment, a sentiment of growth and caring

120

Some ideas…

• Exchange roles on occasion

121

Some ideas…

• Exchange roles on occasion
• Ask the receivers for their opinion

122

Some ideas…

• Exchange roles on occasion
• Ask the receivers for their opinion

• Apply the socratic technique

• Encourage them to express their opinion through questions

• You might learn interesting things about them and their thought process

123

Some ideas…

• Exchange roles on occasion
• Ask the receivers for their opinion

• Apply the socratic technique

• Encourage them to express their opinion through questions

• You might learn interesting things about them and their thought process

• The receiver will eventually have to review code

• Being « on the other side of the fence » can help people understand each other better

124

Some ideas…

• Exchange roles on occasion
• Ask the receivers for their opinion

• Apply the socratic technique

• Encourage them to express their opinion through questions

• You might learn interesting things about them and their thought process

• The receiver will eventually have to review code

• Being « on the other side of the fence » can help people understand each other better

125

Crazy idea: you can make them review your
code, from when you began working there (if
there are still traces of it). You don’t even need

to tell them it’s yours!

Some ideas…

• Exchange roles on occasion
• Ask the receivers for their opinion

• Apply the socratic technique

• Encourage them to express their opinion through questions

• You might learn interesting things about them and their thought process

• The receiver will eventually have to review code

• Being « on the other side of the fence » can help people understand each other better

126

Crazy idea: you can make them review your
code, from when you began working there (if
there are still traces of it). You don’t even need

to tell them it’s yours!

Be humble, it’s probably not all that
good, so accept (encourage!) criticism

Some ideas…

• If you get the feeling the receiver is not progressing as you hoped, consider
assigning that person a mentor

127

Some ideas…

• If you get the feeling the receiver is not progressing as you hoped, consider
assigning that person a mentor
• It does not have to be formal

• Sometimes, just having someone else one can ask questions to makes a difference

• If some coding ideas are discussed with a more experienced colleague beforehand, the
code reviews might get more productive

128

Some ideas…

• If you get the feeling the receiver is not progressing as you hoped, consider
assigning that person a mentor
• It does not have to be formal

• Sometimes, just having someone else one can ask questions to makes a difference

• If some coding ideas are discussed with a more experienced colleague beforehand, the
code reviews might get more productive

• This can also be useful if the receiver shows promise but seems isolated
• Some people are uncomfortable with larger groups or with people in positions of

authority

• Informal mentoring is often more relaxed, like having a friend to talk to

129

Some ideas…

• If reviewing code with which you’re not entirely satisfied, try suggesting
alternatives

130

Some ideas…

• If reviewing code with which you’re not entirely satisfied, try suggesting
alternatives
• This requires more preparation

131

Some ideas…

• If reviewing code with which you’re not entirely satisfied, try suggesting
alternatives
• This requires more preparation

• Might involve some design effort

• Involve the receiver!

• It’s a learning opportunity

132

Some ideas…

• If reviewing code with which you’re not entirely satisfied, try suggesting
alternatives
• This requires more preparation

• Might involve some design effort

• Involve the receiver!

• It’s a learning opportunity

• Make sure you ask of the receiver tasks that this person can accomplish

• Giving someone tasks one cannot complete serves no good purpose

133

Some ideas…

• Stay healthy

• Stay kind

• Be human

134

THANKYOU

135

