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Abstract

The proficiency level of the learner is an
important factor in various educational
settings. In order to find the adequate
language difficulty level, we classify texts
written by language learners of German
into proficiency levels A, B and C, as
defined by the CEFR (Common European
Framework of Reference for Languages),
based on linguistic features extracted
from the texts. Working on a combined
data set of previously-used corpora, we
use both data- and theory-driven feature
sets, and determine the best-performing
features. Our model achieves an accuracy
of 82%, and the best-performing feature set
contains features from all the theoretical
groups, while all groups alone perform
significantly above the random baseline.

1 Introduction

An important concept in the field of educational
systems is Automatic Text Scoring (ATS), which
automates the process of scoring texts by using
NLP techniques. A special case of ATS is
Automatic Proficiency Assessment (APA), which
aims at scoring texts written by language learners
according to a proficiency scale; in Europe, this is
defined by the Common European Framework of
Reference for Languages (CEFR). With the help of
APA, educators can more easily find appropriate
reading materials and students can get immediate
feedback on their performance. Furthermore,
perhaps we can also get closer to a more practical
definition of the CEFR levels by way of linguistic
feature extraction.

In the scope of this project, we have developed
an APA system that classifies diverse German texts
written by language learners into levels A, B and
C of the CEFR. Level A (elementary), includes

CEFR levels A1 and A2, Level B (intermediate),
consists of levels B1 and B2 and level C (advanced)
is composed of levels C1 and C2. We implement
a wide range of linguistic features, which are
described in Section 3.

2 Related Work

The earliest large-scale APA systems for German
have been developed in the work of Hancke (2013)
(see also Hancke, Vajjala and Meurers (2012)).
She implements lexical, morphological, syntactic
and language model features, building on work
from different languages as well as different but
highly related fields, such as Second Language
Acquisition and Readability Assessment. Her
feature sets are theoretically well-motivated and
exhaustive. One aspect of her work that we think
can be improved concerns the size and imbalance
of the data set, the MERLIN (Wisniewski et al.,
2011). While we also include it in our study, we
overcome some of the problems by using a larger
and balanced data set. Hancke achieved 72.5%
accuracy working on 5 classes, A1–C1, and our
overall goal is to build on and expand her research
with new analyses.

As for other authors who work on German
readability, Vajjala (2013) tests readability features
on German text books in her PhD thesis, using
the readability features developed by Hancke et al.
(2012). Lavalley and Kay (2014) use children’s
writing as their data and work with embellishment
clues (adjectives and adverbs) as features. Nietzio
et al. (2012) work with texts written for mentally
challenged people, and use sentence length and
complexity features. Brück and Hartrumpf (2007)
work with legal texts and semantic features. Zesch
et al. (2015) use English and German texts to
test which features are independent of the specific
writing tasks or prompts. One very recent piece
of work is by Weiss and Meurers (2018), who use
media texts for children and adults with the goal
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of implementing a linguistically broad readability
model for German. Their features are from the
fields of lexicon, syntax, morphology, discourse,
language use and human processing.

Among studies of texts written by learners of
other languages, the majority – as can be expected
– has focused on English. Yannakouadis (2011)
works on grading texts written by learners of
English with lexical features, part of speech (POS)
tags, syntax features, length features and error rate.
Treffers et al. (2018) study the correlation between
lexical diversity and CEFR levels. Briscoe et al.
(2010) analyze machine learning methods better
suited for the task, using n-grams, parse rules, word
length and error measures. It is also important
to consider the possible end users of this line of
research, namely educators, students, and readers.
With that in mind, Chen and Meurers (2016)
provide a publicly available platform for automatic
complexity feature extraction and visualization.

3 Methods

3.1 Overview

In our work, we have implemented a wide range
of features based on Hancke’s thesis (2013), but
using a bigger data set (see Section 4). While one
of our goals is to develop a classification system,
what we think is even more important is a thorough
discussion of the performance of the feature space,
and see how it relates to Hancke (2013), which
is the only other piece of work discussing similar
features in a similar setting.

We work with texts written by learners of
German and implement a supervised classification
model according to the CEFR categories A, B
and C as labels. In order to train the model, we
have experimented with different machine learning
algorithms, such as Decision Trees, Logistic
Regression and Support Vector Machines (SVM)
with different configurations. We have decided to
use a Linear SVM as it performed best given our
data set. This was an expected outcome, as SVMs
perform well in various classification settings,
both inside and outside NLP. Other researchers in
the field of automatic readability and proficiency
assessment also found them to give the best
results (Hancke, 2013; Pilán et al., 2016; Zesch et
al., 2015; Weiss and Meurers, 2018)

We have used the implementation of scikit-learn
(Pedregosa et al., 2011) with its default settings.
Since SVMs are sensitive to the distribution of

the data, we have balanced our data set. We end
up working with 612 texts for each level, so our
data set consists of 1836 texts altogether. When
we present accuracy scores, they are based on a
10-fold cross-validation.

We use two different kinds of feature groups:
data- and theory-driven. We have made this
distinction because of the different approaches
inherent in each. Namely, our theory-driven
features are hand-engineered; we are checking for
specific linguistic units or ratios we have theorized
to predict proficiency. As for data-driven features,
we are looking at the data as a whole, analyzing
what we find by a given feature extraction
method, without any concrete hypotheses. Our
data-driven features are n-grams, parse rules,
and grammatical tags, while our theory-driven
features can be categorized into traditional, lexical,
frequency, morphological, syntactic, and error
measure sets. While this distinction is our own
contribution, the specific features in the groups
are mostly re-implementations of the features
from Hancke’s thesis (2013). The following is a
general description of the sets, pointing out some
important differences from her work.

3.2 Theory-driven Feature Sets

• Traditional Features predate advanced
machine learning techniques. They are based
on surface-level features, such as the average
number of characters per word. While Hancke
(2013) only works with text length, and the
average number of words and syllables, we
experiment with a wide range of traditional
formulae, such as the Flesch reading-ease
score or the SMOG score.

• Lexical Features measure the range and
variety of vocabulary used in a text by a
writer. A traditional measure is the type-token
ratio (TTR). As the TTR is sensitive to text
length, various mathematical corrections of
the original formula have been proposed,
such as the root TTR, corrected TTR, log
TTR, Uber Index and Yules K. More recent
attempts to account for this problem include
for instance the hypergeometric distribution
diversity (HD-D) (McCarthy and Jarvis, 2007)
and the measure of textual lexical diversity
(MTLD) (McCarthy and Jarvis, 2010). It is an
interesting counterpoint to mention the work
of Treffers-Daller et al. (2018), who claim that
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basic measures explain more variance in the
CEFR levels of language learners’ texts than
the HD-D and MTLD, provided text length
is kept constant across texts. Other lexical
features are lexical density, measuring the
ratio of lexical words to all words and lexical
variation with respect to specific syntactic
categories.

• Frequency features are based on the general
idea that words that are more common in one
language are acquired more easily and earlier
by language learners. However, research
also shows that especially L2 language
learners often start with infrequent, more
specific words (Crossley et al., 2011). We
used a list with the number of occurrences
of words in movie subtitles compiled by
Brysbaert et al.(2011) to calculate the mean
log( f requency) and the standard deviation of
the log( f requency). The list was selected as
subtitles are a common and easily available
means of portraying everyday language.
Hancke (2013) does not explain the choice
of her binning method, so we chose equal
width binning with 14 bins to determine
whether words in certain frequency bands are
characteristic of a specific level of text.

• Morphological Features are often realized
through use of several linguistic features
such as gender, case markers, verb tense
markers, prefixes and suffixes. German is
considered to be a morphologically rich
language due to its three genders (masculine,
feminine, neuter), four cases (nominative,
genitive, dative, accusative), verb prefixes
(both separable, such as auf-, and inseparable,
such as ver-), and word compounding. In
order to extract morphological features from
the data set, we used the RFTagger (Schmid
and Laws, 2008). For compound word
detection, the CharSplit module for German
was implemented (Tuggener, 2016).

• Syntactic Features measure the complexity
of the dependency and parse tree structure of
the text, based on Hancke (2013). She adapts
these from various sources and fields and also
adds some German-specific concepts to the
feature set, such as the number of infinitival
phrases with zu, or the ratio of passive
constructions. For parse tree complexity,

examples include the length of production
units measured by average length of sentences
and clauses, the number of clauses per
sentence, or ratios of dependent clauses,
coordinating conjunctions, and complex
nominals per clause and sentence. In addition,
we have also included the ratio of separated
verb prefixes. As for dependency features,
a representative feature is for instance the
maximum and average number of words
between a head and a dependent in a text.

• Error Measures As we are dealing with
data written by learners of the language, we
have implemented a spell check that also
counts the number of misspelled and corrected
words. We use this number to calculate the
ratio of misspelled words and total number
of words. Implicitly the error measures are
part of some of our other feature groups as
well, for instance the RFTagger uses the tag
FM (’foreign word’) for words it does not
recognize as German, and in our application,
many of those would actually be misspelled
words.

3.3 Data-driven Feature Sets
• Parse Rule Features Following Hancke

(2013), Briscoe et al. (2010), and
Yannakoudakis et al. (2011), we build a
feature vector out of Parse Rule frequencies
for each text. An example would be ’NP ART
NN’ standing for a Noun Phrase consisting
only of an article and a noun.

• N-grams are a theoretically simple yet
powerful set of features to extract from
unstructured data, which are used in a wide
variety of NLP tasks, as the words used in a
text intuitively convey a lot of information
about its makeup. In the field of automatic
test scoring, Yannakoudakis et al. (2011)
and Briscoe et al. (2010) have worked with
them. While unigrams are powerful, they
are not capable of handling phrases, but it
is easy to improve them by adding bi- and
trigrams to the feature sphere. In this project,
we implemented word, lemma, character and
POS n-grams.

• Grammatical tags are extracted with the
RFTagger. Some examples are the type
of particles (answer, degree, negation,
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zu, separated verb particle) or the type
of conjunctions (comparative, coordinating,
subordinating with finite clause, subordinating
with infinitive). Note that Hancke (2013) does
not work with n-grams or grammatical tags.

4 Dataset

In order to overcome the limited availability of
appropriate data, we use a combined data set built
from five different sources: MERLIN (Wisniewski
et al., 2011), Falko (Reznicek et al., 2012), KanDeL
(Vyatkina, 2016), CLEG13 (Maden-Weinberger,
2013) and data from online sources for learners
of German.1 While all data sets contain different
annotations, for the purposes of this project, only
the CEFR level of the learner and the raw text
were considered. As for the reading materials, we
have decided to include them, as according to Pilán
et al. (2016), textbook data can be beneficial for
proficiency assessment in the event of a lack of data
from the same domain.

The MERLIN corpus consists of texts written
in an exam setting, which are assigned levels
A1-C2 of the CEFR by trained human examiners.
KanDeL is a collection of texts written by students
from the US, who are enrolled in a basic German
language program. The Falko corpus consists
of text summaries written by C1-C2 learners of
German and essays written by upper intermediate
and advanced learners in various international
institutions. Learners who scored more than 80
points on the C-test were hand-selected to form part
of our C-level instances. The CLEG13 texts are
essays, summaries and critical commentaries, and
were written by students from the UK and labelled
according to the year group of students into three
groups. In the first two, students are assumed to be
at levels B1 and B2, while the third consists of C1
learners.

See a summary of the combined data set in
Table 1.

We are aware that the labels A, B and C do not
necessarily signify the exact same level within the
subcorpora. We have studied the levels’ official
description (Council of Europe, 2001) and the
human-graded essays, and noticed that there can
be significant differences inside one level. Thus,
we believe that the categories are wide enough to

1german.net/reading/, lingua.com/german/reading/,
www.cornelsen.de/shop/capiadapter/download/get/

allow for the potential differences caused by the
non-uniform labeling methods.

5 Results and Discussion2

5.1 Theory-driven features

When calculating all our theory-based features,
we arrive at a total of 129. See Fig. 1 for a
PCA (Principal Component Analysis) graph of
the data set. PCA is a method for dimensionality
reduction of data by retaining as much variance
(information) as possible. It is easy to note that
while A and C are neatly separated, level B is
more interspersed throughout the graph. This
result is intuitively plausible: While it is easier
to give a casual definition for a beginner or an
advanced speaker, the intermediate level, by its
very definition, is a less well-defined category in
between the two.

Figure 1: PCA with our theory-driven features

Our results are not directly comparable to any of
the literature we have encountered, mostly due to
the different class labels used. Hancke (2013), our
main background literature, classifies according
to A1-C1 on the MERLIN data set. We have
re-implemented a large part of her best performing
features, which she calls Best34 (Hancke, 2013,
p. 56). She achieves 72.5% accuracy and we
achieve 69% in the same setting. Our assumption
is that the difference is due to the different spell
checker we use, as the MERLIN data is very noisy
compared to our other data sources. Hancke (2013)
uses Google Spell Check3, which was not publicly

2One can argue that there is a conceptual overlap between
the theory- and data-driven feature sets. However, the two
feature sets are kept distinct throughout the experiments so it
should not affect the results.

3https://code.google.com/p/google-api-spelling-java/
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Level A Level B Level C
CLEG13 416 (172,876) 315(146,545)

FalkoSummaries 107 (40,787)
FalkoEssay 159 (84,519)
FalkoWHIG 92 (56,513)

KanDeL 185(29,635)
MERLIN 363(22,576) 624 (103,986)
Reading 64 (10,390) 41 (8,642)

Total 612(62,601) 1,081(285,504) 673(328,364)

Table 1: Number of texts (and tokens) in the subcorpora

Feature set Data Set Classes Acc.
Best34 MERLIN A1-C1 72.5

Best34 by us MERLIN A1-C1 69
Our best MERLIN A1-C1 70
Our best Combined A-C 82

Table 2: Results

available at the time of our project. Using our best
features on the same data in the same setting, we
achieve an accuracy of 70%. For a comparison, see
a list of our best features in Table 3 and Best34
in Hancke (2013, p. 56). Testing on our newly
created dataset, the model achieves a 82% accuracy,
and most importantly, it very rarely misclassifies
A for C, or vice versa. The verification of this
statement is shown in the confusion matrix in
Figure 2. The figure also shows that the model
makes the highest number of incorrect predictions
when classifying level B. See a more detailed error
analysis in section 5.3, and a summary of the results
in Table 2.

Figure 2: Confusion matrix presenting the
classification results on a test set.

As for the analysis of our feature groups, when
tested alone, traditional features, lexical features,
morphological features and syntactic features

achieve an accuracy above 70%, with morphology
being the best group. The reason for that might
be that German is a morphologically complex
language, and also that some of our morphology
features capture the complexity of other fields as
well. For instance the different verb forms, while
morphologically different, also represent syntactic
complexity. Even the spelling error features alone
achieve an accuracy that is significantly better than
the random baseline of 0.33.

When performing an iterative feature
elimination, we arrive at around 40 features
that perform approximately equally as well as
our whole feature set. Additional features do not
increase the classification accuracy significantly.
The 40 best consist of 5 traditional, 8 lexical, 2
frequency, 5 spelling error, 14 morphological and
6 syntactic features.

These features are similar to Hancke’s(2013)
best-performing group, with the main difference
being that she does not work with the traditional
readability features, and we are not using language
model features. See the features that performed
best in this project in Table 3.

It is interesting to note that all of our spelling
error features are in the best group, signaling that
analysis of the errors the writer makes is a good
direction for future additions to the feature set.
While working with the data, we have noticed that
the frequency of spelling errors noticeably changes
across corpora. Ideally, the setting in which the text
was written should also be taken into account, as
the MERLIN texts which contain the most spelling
errors were written in an exam setting, while other
corpora also include homework assignments.

Inside the syntax group, we can see that the
general complexity features perform well, e.g.,
average number of words between the head and
a dependent, average clause length, number of
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Group Features
Traditional SMOG, average number of characters per word, number of polysyllables, FOG
Lexical Lexical Diversity

Yule’s K, Uber Index, HDD, MTLD
Lexical Density and Variation
adverb variation, modifier variation, verb variation, corrected verb variation

Frequency bin 0, bin 6, mean frequency
Error spelling errors, spelling errors with correction, capitalization errors, umlaut

spelling errors, real spelling errors
Morphological number of articles, ratio of compound nouns to noun, number of 1st person tags,

number of past tense tags, ratio of nominative to nouns, number of nominatives,
ratio of -keit suffix to nouns, number of past participle verbs, ratio of participles
to verbs, number of singular tags, ratio of dative nouns to nouns, number of
second person tags, ratio of verbs per sentence, ratio of 1st person to finite verbs

Syntactic Dependency
average number of words between head and dependent, average number of
dependents per noun excluding modifiers
Parse Tree Complexity
average clause length, average number of dependent clauses per clause, average
number of non-terminals per sentence, average number of interrogative clauses
per sentence

Table 3: Best-performing features

non-terminals, or the ratio of dependent clauses
per clause. From the more specific features we can
see that NP complexity is relevant.

As for morphology, we can see that both
compounds and derivational features (nouns
ending with the suffix -keit), as well as inflections
appear in the best-performing features. Certain
verb forms, like past tense, participles, 1st and 2nd
person have a correlation with proficiency. The
inflection of nouns is also relevant, and the number
of datives and nominatives divides the data best.

One can see that a lot of the features are
dependent on sentence length, e.g. the traditional
readability measures SMOG and FOG, number
of polysyllables or most of the lexical features.
The degree to which sentence length influences
the classification level is up for debate. While it
is true that it is theoretically possible to produce
a short but complex or a long but simple text, in
real life scenarios text length and complexity or
proficiency very often go hand in hand. Exploring
this correlation further is a direction for further
research.

5.2 Data-driven features

We have experimented with word, lemma,
character and POS n-grams. For words and

lemmas, instead of a simple count, a tf-idf (term
frequency-inverse document frequency) weighting
method is used, with the goal of scaling down the
effect of features that occur very frequently and are
thus not informative, for instance the. We set the
length of n-grams to 3 to avoid the problem of data
sparsity. We have iteratively experimented with the
number of features that gives the best accuracy.

According to, for instance, the findings of Zesch
et al. (2015), when analyzing the task-dependency
of features, n-grams are highly task-dependent.
Thus, as expected, our n-gram model performs
rather poorly when trained on one subdataset and
tested on another. See Fig. 3 to observe how closely
n-grams are related to the data set and specific tasks
that the learners were writing about: Words such
as Kansas show up since one corpus is written
by students from Kansas, as well as Feminismus
(’feminism’), as that was one of the essay topics.
Some features are more generalizable, for instance
ich (’I’) is an important feature for A level text,
which relates to the communicative skills needed
for beginner levels, i.e., they are expected to be
able to talk about their immediate surroundings.
In fact, all of the words support this observation.
Inside the negative coefficient group, we can see the
complementiser dass (’that’), showing a syntactic
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feature; low-level learners are likely to not use
dependent clauses.

Figure 3: Important word n-grams

POS-unigrams, while producing a low, 59%
accuracy, do present some interesting observations.
For level A, some of the most predictive features
are the presence of FM (foreign material), probably
due to misspellings, VFIN (finite verbs), or INT
(interjections). The VINF (infinitival verb) shows
up in the features for levels B and C, as they are part
of more complex verb structures, and the use of a
PROADV (pronominal adverb) or VPP (participle
verb) signals a level C.

See Table 4 for the accuracies of our different
n-gram features. Trained on a specific task, they
could achieve really high accuracy and we notice
interesting observations looking at their results,
however, they generalize poorly. Note that the
cross-dataset accuracy is binary.

N-gram #Feat. Accuracy Cross-data
Word 10,000 0.756 0.66

Lemma 5,000 0.748 0.63
Char. 20,000 0.881 0.55
POS 5,000 0.835 0.65

Table 4: Accuracy of n-gram features

The parse rules (PR) are extracted by the
Stanford Parser. In order to reduce computational
complexity and increase relevance, we have

excluded rules that appear fewer than 10 times
in the data set. With this we arrived at 1222
parse rules. The length of the parse rules can be
anything greater than or equal to two. We have
achieved the best accuracy with 200 PR features,
which was 0.766 +/- 0.056. See Table 5 for some
of the best-performing PR features and possible
interpretations. The best accuracy we have reached
is 77% with 500 PR features. We notice that
the data-driven features support and validate
our theoretical feature engineering. NP and PP
complexity seems to be important in classification,
as is the use of conjunctions and zu-infinitives.
The table is intended as an illustration of possible
interpretation of some rules with high importance.
For an exact understanding of the PR features, the
TIGER Treebank (Smith, 2003) can be consulted.

Interpretation Parse rules
NP complexity NP PIAT NN

NP ADJA NN
NP ART NN NP ART NN

PP complexity PP APPR ART ADJA NN
PP APPR NN

Conjunctions CNP NN KON NN
CAP ADJA KON ADJ

Adj. and adv. AVP ADV ADV
AP ADV ADJD

Zu-Infinitive VZ PTKZU VVINF

Table 5: Important Parse Rules and their
interpretation

Prediction using the 85 grammatical tags of
the RFTagger gave an accuracy of 79 (+/-4) %.
The tags name, masculine, full verb, noun and
coordinating conjunction are the best predictors for
level A; attributive adjectives, personal pronouns,
prepositions, and degree particles signal B level
texts the strongest, while C level texts are best
recognizable by colons, interrogatives, adverbs,
negations and definite articles, according to the
model. The presence of the word zu (in English
corresponding to ’for’, ’to’ or the intensifier ’too’)
is the clearest sign of a text not being A level. We
can conclude that in the case of this data-driven
feature set as well, many of the features the
system found to be important are the same as those
we manually created. Some additional features,
such as different kinds of articles, pronouns, or
particles can be added to the model for future
experimentation.
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5.3 Error analysis

In order to think about directions for improving our
classifier in the future, we have performed an error
analysis on incorrectly classified sentences.

As we are dealing with a 3-way classification,
the biggest error the classifier can make is a miss
of two levels, e.g. classifying A instead of C.
Running a classification 10 times and observing
and analyzing these errors, we can state that the
number is very low, ranging between 0 and 3 at
each trial. An example sentence from one of these
texts is Dieser Film handelt die amerikanische
revolutionäre Zeiten während der frühen Monate
Jahres 1776 , die auch ihm seine Name gibt. (This
film is about the American Revolutionary Times
during the early months of 1776, which also gives
it its name.) The text is part of the KanDeL
data set, which includes both in-class assignments
and homework. Our assumption is that the text
was written as a homework assignment, so the
writer could put time and effort into performing
beyond their expected proficiency level. When
observing the feature values for the text compared
to the mean values for A texts, not only does it
surpass them in the surface-level categories, but
also in categories such as average number of words
between head and dependent. Another example
of misclassification is when there is not enough
information in the text, for instance the A level
text LIEBER JENS, GLÜCKWUNSCH (’DEAR
JENS, CONGRATULATIONS’) gets classified
as C by our classifier. Due to its length, the
relatively long term Glückwunsch or the high TTR
are possibly given too much weight as many of
the other features would be zero. Another text that
showed up multiple times in this non-exhaustive
experiment was a C-level text from the CLEG
data that was classified as A. On closer inspection,
comparing the feature values to the mean, the
problem is the surface-level features, like number
of syllables or SMOG. The implications of these
findings is that the traditional readability formulas
are not without their problems, which we are aware
of. However, excluding them completely from the
calculation is not the best option, as they show up
in the most distinctive features.

The question of errors by one level is more
complicated. We can conclude that texts from the
CLEG data set are mostly classified higher than
their label. This might be unintuitive as in the
case of CLEG, the labels are actually the level the

students are supposed to be at a certain academic
year, and not dependent on any test score or essay
grade. Working with the data, we have already
noticed that CLEG level B is closer to the level
C from other sources. Texts from the MERLIN
data are the most commonly misclassified in both
directions. We assume that level A texts often get
misclassified because of the lack of information
they contain. We also have to note that our classifier
at the moment does not take the flow or cohesion of
texts, or correct word choice, into account, which
would probably be vital when dealing with such
a short text; looking at the feature vector, we see
that such a text tricks our classifier in terms of
surface-level and lexical features which are highly
correlated with text length.

6 Conclusion

With the help of our classifier and the data set,
the writing level of language learners can be
found with a reasonably high accuracy. We
found that linguistic features correlate with CEFR
proficiency levels and can perform reasonably
well in a classification scenario. Moreover, with
our detailed description of the performance of
different features, we hope to have come closer to
a tool that helps educators obtain a more practical
list of what is expected from learners at certain
levels. In the case of German, our target language,
morphological features appear to be especially
important. Some syntactic and lexical features are
also given a high weight by the machine learning
algorithm.

By constructing a larger and more balanced
data set, we report 82% accuracy, a significant
improvement over our models performance on
just the MERLIN texts, which reached 70%.
For further investigation, the most important
factor is the data set itself. With enough
data, we can also try running the model on
the full CEFR scale from A1-C2, instead of the
three-level classification currently being performed.
Additional improvements to the data preprocessing
can also be incorporated into our current pipeline,
such as experimenting with different German spell
checkers and sentence boundary detection methods.
As for the feature groups, data from other fields,
such as semantic or pragmatic information, are not
included in the scope of this project; this additional
information would also be worth testing. In other
cases, a more fine-grained feature division could
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be helpful, for instance, analyzing different error
categories.

It is also important to note that the feature
sets, while tailored for German, are not
language-specific per se. The data-driven features
are all language-neutral and as for the theory-driven
ones, traditional, lexical, frequency, and error
measures are also not tied to the language of
the text. As German is a morphologically rich
language, it is unsurprising that morphological
features perform well for classification, which
may not be the case for other, morphologically
less rich languages. As for syntactic features,
most features are related to the dependency or
parse tree structure and thus, also language neutral.
However, a few features, such as the number of
passive constructions, or specific infinitival phases
we would not expect to contribute to the results
greatly in other languages. Testing cross-language
performance is a promising direction for future
research, as well.
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