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Abstract

We formulate argumentative relation clas-
sification (support vs. attack) as a text-
plausibility ranking task. To this aim,
we propose a simple reconstruction trick
which enables us to build minimal pairs of
plausible and implausible texts by simulat-
ing natural contexts in which two argumen-
tative units are likely or unlikely to appear.
We show that this method is competitive
with previous work albeit it is considerably
simpler. In a recently introduced content-
based version of the task, where contextual
discourse clues are hidden, the approach
offers a performance increase of more than
10% macro F1. With respect to the scarce
attack-class, the method achieves a large in-
crease in precision while the incurred loss
in recall is small or even nonexistent.

1 Introduction

Argumentative relation classification (ARC) is ded-
icated to determining the class of the relation which
may hold between two arguments or elementary
argumentative units, EAUs1. For instance, consider
the following premises given the topic or conclu-
sion (0) “Overall, marijuana is detrimental to your
health.”:

(1) Use of marijuana causes chronic bronchitis
and airflow obstruction.

(2) Cannabis does not need to be smoked to receive
its potential health benefits.

In this case, (1) has a positive stance towards
the conclusion (0); in contrast to (2), which has a
negative stance towards the conclusion. Addition-
ally, but not less importantly, we can say that (2)

1Here, we use the term elementary argumentative units to
denote clauses or small clause-complexes – e.g., (0), (1) or
(2)) – which can be ‘instantiated’ in an argumentative debate.
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Figure 1: A small argumentation graph contain-
ing two general types of relations: premise-topic
relations (class: negative/positive) and premise-
premise relations (class: supports/attacks).

weakens (1) – it casts doubt about its generality by
hinting at cannabis application methods which do
not involve combustion or inhalation. In this work,
we summarize all relations which aim at under-
mining or weakening another argument or premise
(‘undercut’, ‘rebuttal’, etc.) as attack.2 The EAUs
from our example and their connecting relations
are outlined in the graph in Figure 1.

In a rhetorically structured argumentative text3,
(1) and (2) may appear in configurations such as
On the one hand (1), on the other (2); (1), however,
(2), etc. Under these circumstances, discourse con-
text can predict argumentative relations very well.
However, when moving from such ‘closed scenario’
to a more ‘open-world setting’, e.g., where EAUs
have been mined from heterogeneous documents,
we need to determine relations based on their con-
tent. In this paper, we show that our method works
well in both scenarios. In fact, it is in the more
general and more difficult content-based setting,
where our method provides the most benefits over
previous work.

Systems which have learned to predict general
argumentative relations have a decisive advantage
when compared to systems that have ‘only’ learned
to predict argumentative stances: in an argumenta-

2For a more ‘in-depth’ view and discussion of argumen-
tative relations we refer the reader to, e.g., Pollock (1995),
Walton (2009) and Besnard and Hunter (2014).

3E.g., an argumentative essay.
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tive debate, often a debater does not choose to bring
forth any argument which supports their stance on
the topic. Instead, or additionally, they may choose
to select an argument which also attacks the oppo-
nent’s most recent argument. Therefore, we need
not only knowledge about the stances of arguments
towards topics, but also about relations to other ar-
guments. Our experiments show that our approach
is a step towards this goal.

The remainder of this paper is structured as fol-
lows: After discussing related work in Section 2,
we propose a simple reconstruction trick which al-
lows us to embed an argumentative source-target
pair in a relational discourse context yielding a
plausible and implausible text variant (Section 3).
In Section 4, we conduct experiments and abla-
tion studies using (i) a standard task setup, where
systems are allowed to see EAUs in their docu-
ment context and (ii) a more difficult ‘content-
focused’ task setup where systems are only allowed
to see the spans of the EAU clauses. The code for
this paper is available at https://gitlab.cl.
uni-heidelberg.de/opitz/pr4arc

2 Related work

In this section, we first provide an overview of the
data, and the data issues people are confronted with
when developing argumentative relation classifica-
tion (ARC) systems. We proceed with an overview
of existing ARC approaches and conclude by touch-
ing on other related tasks.

Argumentative relation data For general argu-
mentative relations, not many data sets have been
developed. One of the largest data sets consists of
402 argumentative student essays and is henceforth
denoted by ESSAY (Stab and Gurevych, 2014; Stab
and Gurevych, 2017). It has been annotated, i.a.,
with EAU clauses and more than 3,000 relations
which hold among them. By ESSAY-CONTENT,
we denote a version of ESSAY from which dis-
course context is stripped and systems can only
access the spans of EAU clauses (Opitz and Frank,
2019b). This setup is more difficult since systems
have to learn to model the content of two EAUs in
order to successfully predict their relation. ESSAY

and ESSAY-CONTENT will be more extensively de-
scribed in Section 4.1, where we also show that our
method is efficient across both setups.

Another data set which is annotated with in-
depth argumentative annotations is the Microtext
corpus covering a variety of political debates in

Germany (Peldszus and Stede, 2016). While it has
been annotated with a more fine-grained set of re-
lations (e.g., rebutting attack, undercutting attack,
linked support, example support) it is rather small
in size (the recently extended version (Skeppstedt
et al., 2018) contains about 700 relation tuples).
Similar to ESSAY-CONTENT, a variant of the Mi-
crotext corpus exists where argumentative units
are detached from discourse context (Wachsmuth
et al., 2018). We believe that systems that have
learned to predict argumentative relations based on
the content of argumentative units have advantages
over systems which focus too much on contextual
discourse clues. For example, content-focused sys-
tems can better be expected to solve large-scale
cross-document tasks where EAUs are mined from
many heterogeneous documents. Our reconstruc-
tion trick provides one step towards this goal: it
exploits potential discourse configurations without
depending on seeing the true discourse context.

A key reason for the data scarcity of annotated
general argumentative relations is that creating
high-quality data for ‘premise-premise’ relations is
a challenging task. Perhaps, it is more challenging
than creating data for argumentative stance detec-
tion since topics or conclusions are often ‘a-priori’
well understood (e.g., Cannabis should be legal-
ized) and always occur as the stance-relation target.
In that sense, it may be easier and quicker to tell
if an argument supports a conclusion compared
to deciding whether an argument supports another
argument.

ARC systems A linear SVM classifier that is
trained on a diverse set of features provides compet-
itive performance on ESSAY (Stab and Gurevych,
2017). A subsequent joint global graph optimiza-
tion step, similarly to (Peldszus and Stede, 2015;
Hou and Jochim, 2017), yields no further improve-
ment for classifying the relations in this data. The
SVM classifier incorporates features extracted from
the EAU spans as well as their context (e.g., leading
or trailing words). On ESSAY-CONTENT, where
systems only see the EAU clause spans, the perfor-
mance of the SVM suffers a loss of more than 10 pp.
macro F1 (Opitz and Frank, 2019b) – an analysis
indicates that the SVM focuses immoderately on
features extracted from the EAU context and tends
to neglect their actual content. This underpins the
need for argumentative relation classification sys-
tems with deeper understanding of argumentation,
i.e., systems that base their prediction on the actual
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content of two EAUs – the method we present in
this paper aims at this.

The first neural approach for ARC (Cocarascu
and Toni, 2017) proposes a neural network with a
Siamese structure (Koch et al., 2015; Mueller and
Thyagarajan, 2016; Cocarascu and Toni, 2017).
By means of a shared weight space it projects
source and target EAU to a joint distributional vec-
tor space. Finally, it classifies the vector offset
using a softmax-function. The authors conduct ex-
periments on a data set which comprises texts about
movies, technology and politics.

A similar model has been adopted recently
where (symbolic) knowledge from large back-
ground knowledge-graphs is injected into the
Siamese model by concatenating highly abstracted
multi-hop knowledge paths to the source-target off-
set (Kobbe et al., 2019). Although there are con-
sistent gains observed by including the knowledge,
the gains appear to be relatively small. In this as-
pect, we believe that incorporating knowledge of
the right form could make it possible to further
enhance the system we propose in this paper. How-
ever, as of now, it is an active topic of discussion
whether (symbolic) background knowledge may
help in automatic argumentation and, even more
so, which (form of) knowledge would be needed.

Computational argument mining and analysis
Argumentation is ubiquitous and argumentative
structures can be recovered from a broad spectrum
of texts. For example, they can be recovered from
online dialogue (Swanson et al., 2015; Budzyn-
ska et al., 2014) and scientific research articles
(Lauscher et al., 2018a; Lauscher et al., 2018b),
where, e.g., researchers may directly or indirectly
convey arguments for why some method is better
than another. By now, there exists a substantial
body of research publications covering a variety of
argument analysis topics. For a general overview,
we refer the reader to Lippi and Torroni (2016) and
Peldszus and Stede (2013).

Plausibility ranking Another task that can be
addressed as a text plausibility ranking task is the
resolution of difficult pronouns in the Winograd
Schema Challenge (Levesque et al., 2012; Opitz
and Frank, 2018). To resolve shell nouns and ab-
stract anaphora (e.g., ‘I like that’.) Marasović et al.
(2017) utilize syntactic patterns to gather plausible
candidate resolutions from a background corpus in
order to extend the scarce training data.

3 Context reconstruction and model

In this section, we first propose a simple reconstruc-
tion trick which allows us to build minimal pairs
of plausible and implausible argumentative texts.
Then, we describe a Siamese neural sequence rank-
ing model which addresses the task of ranking texts
according to their plausibility.

Constructing plausible and implausible argu-
mentative discourse contexts Consider two
EAU clauses a2 (source) and a1 (target) where we
need to decide whether a2 supports a1 or a2 attacks
a1. In the absence of contextual discourse clues4,
a system must learn to predict this relation by con-
sidering the semantic content of a1 and a2. We
approach this task by offering two alternative con-
text reconstructions and asking our model in what
context a1 and a2 are more likely to appear. More
precisely, our reconstruction trick is as follows:

(a) a1. Additionally, a2 .

(b) a1. Admittedly, a2.

where (a) signals that two argumentative units
likely stand in a support-relation and (b) sig-
nals the opposite (‘attack’). In our experiments
(Section 4), we also examine other possible dis-
course connectors for our reconstruction (e.g.,
moreover/however). From here, we ask our model
which of the two reconstructions leads to a more
plausible ‘reading’: (a) or (b)? E.g., consider the
cannabis-example from Section 1; applying our re-
construction trick yields the following implausible-
plausible minimal pair (r−,r+):

(3a) [r− Use of marijuana causes chronic bron-
chitis and airflow obstruction. Additionally,
cannabis does not need to be smoked to re-
ceive its potential health benefits.]

(3b) [r+ Use of marijuana causes chronic bron-
chitis and airflow obstruction. Admittedly,
cannabis does not need to be smoked to re-
ceive its potential health benefits.]

Clearly, (3b) constitutes a more plausible recon-
struction compared with (3a). Exactly this is what
we desire our model to learn: assessing the fine-
grained differences between two texts which differ

4To name just one situation: consider a cross-document
relation classification setup where a1 stems from a different
document than a2. Any specific textual discourse context
would not only be more or less unimportant, but also bears the
potential to confuse the system.
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Reading Encoder

 Use of marijuana causes chronic bronchitis  (...). 
 Additionally, cannabis does not need to be smoked (...).

Use of marijuana  causes chronic bronchitis (...). 
Admittedly, cannabis does not need to be smoked (...).

Plausibility Prediction

         score score

rank loss

Figure 2: Siamese model outline. Two competing
reading-reconstructions are fed through a Siamese
encoder (Reading Encoder). The vectors are then
mapped by means of a (Siamese) linear combina-
tion and a selu-activation onto two corresponding
plausibility scores (Plausibility Prediction). By
reducing the ranking loss, we force the model to
assign higher scores to more plausible readings.

in only one phrase. This phrase, however, deter-
mines whether the text in its entirety is implausible
or plausible.

3.1 Loss and model

Ranking loss We argue that a ranking approach
(which reading is more plausible?) is more suit-
able for addressing our problem compared with
a classification approach (plausible vs. implausi-
ble). The reason is that ranking allows for a more
relaxed and graded notion of textual plausibility:
we want the model to prefer one variant and not
to choose one variant. This is accomplished by
reducing the margin ranking loss on the training
data {(r+i ,r−i )}n

i=1:

Lθ =
1
n

n

∑
i=1

[
1− scoreθ (r+i )+ scoreθ (r−i )

]
, (1)

where score(·) is a plausibility prediction model
parameterized by θ . The plausibility-prediction
model which we use is described in detail in the
following paragraphs. Since Lθ is differentiable
with respect to the model’s parameters θ , we can
learn them with gradient descent.

Model overview We desire the score(·) function
to return a number p ∈ R reflecting the plausibility

of a text sequence made up of words w1, ...wn. In
our case, this function is instantiated with (i) a
Siamese reading encoder (Reading Encoder, Figure
2) and a Siamese plausibility prediction layer for
producing a plausibility score for any given text
(Plausibility Prediction, Figure 2). Now, we will
describe these two components more closely.

Reading encoder First, we use a contextual lan-
guage model5 to infer a sequence of word em-
beddings: e1, ...,en, which correspond to words
w1, ...wn. Here, we hope that already the contex-
tual language model provides statistical informa-
tion indicating whether a specific word sequence
may be considered as rather plausible or rather
implausible (‘inductive bias’). The sequence of
word embeddings e1, ...,en is further multiplied by
a sequence of positive indicator coefficient embed-
dings: e1 · c1, ...,en · cn.6 This allows the model
to learn to better distinguish between the source,
target and the connector text (we learn three cor-
responding indicator embeddings). The resulting
sequence is further processed by (ii) a Bi-LSTM
(Hochreiter and Schmidhuber, 1997) to construct
hidden states H = h1, ...,hn (we concatenate hid-
den states of forward and backward read) and (iii) a
four-headed scaled dot-product self-attention mech-
anism (Vaswani et al., 2017), where in our case we
use H = Q = K =V :

Heads(Q,K,V ) = [head1; ...,head4]W O

headi = Attention(QW Q
i ,KW K

i ,VWV
i )

Attention(Q,K,V ) = so f tmax(
QKT
√

dk
)V,

where W (·)
(·) are parameters of the model. Finally,

we compute a weighted average of the final se-
quence of hidden states to construct a vectorized
reading representation v (Felbo et al., 2017):

et = Heads(·)tW A at =
exp(et)

∑T
i=1 exp(ei)

v =
T

∑
i=1

aiHeads(·)i,

where Heads(·)t is the vector corresponding to
time step t computed by the previous scaled dot-

5We use BERT (Devlin et al., 2019) to infer the contextual
embeddings. In our ablation experiments, we also present
results based on ELMo embeddings (Peters et al., 2018)

6Similar to Opitz and Frank (2019a).
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abbreviation ‘support’ ‘attack’

A/A Additionally, Admittedly,
A/D I agree, I disagree,
M/H Moreover, However,
Y/N Yes, No,

Table 1: Argumentative discourse connector sen-
tence adverbials and the argumentative relation
class which they are likely to signal.

product attention step and v is a final vectorized
representation of the input reading.

Plausibility prediction At plausibility predic-
tion time, the vector representation v, which we
obtained by the previous step, is mapped to a sin-
gle score by means of a linear combination with a
weight vector. Lastly, a selu-function (Klambauer
et al., 2017) produces the desired plausibility-score:

p = selu(vT w). (2)

This score, computed once for each of the two
competing reconstructions, allows a comparison
with respect to their (predicted) plausibility. For
our ARC experiments, where we desire a final clas-
sification, we predict the argumentative relation
class by inspecting the discourse connector of the
reconstruction which obtains a higher plausibility
score. E.g., if score(EAU1,additionally,EAU2)≥
score(EAU1,admittedly,EAU2) we predict the ar-
gumentative ‘support’ relation – otherwise we pre-
dict the ‘attack’ relation.

4 Experiments

We begin this section by describing the experimen-
tal setup used to evaluate our neural plausibility
ranker. Next, we present our main results and fi-
nally perform several analyses and study the effects
of ablating model components.

4.1 Setup

Discourse links To construct plausible and im-
plausible texts, we experiment with eight different
discourse connectors which have the potential to
‘signal’ argumentative relation types. They make
up, in total, four minimal pairs (Table 1).

Data We use the student essay corpus v02 (Stab
and Gurevych, 2017) in two versions: ESSAY and
ESSAY-CONTENT. What is common to both is that

they contain data from the same 402 argumenta-
tive essays written by students about a variety of
topics. The essays have been annotated with, i.a.
spans of argumentative units and their relations
with each other (support vs. attack). Since only the
argumentative clauses have been annotated, we can
clean EAUs from their discourse context, which
yields ESSAY-CONTENT. For example, consider
EAU1. To add on this, EAU2. While in ESSAY, a
system is allowed to see EAU-surrounding tokens
(to add on this), in ESSAY-CONTENT, systems are
allowed to see only the spans of the EAUs to pre-
dict their relation (i.e., EAU1,EAU2). In the easy
case, to add on this may be enough to predict a
support relation with high confidence and accu-
racy without even seeing the content of the EAUs
– in the hard case, however, a system must learn
to assess the actual content of the premises. In
ESSAY-CONTENT, the performance of the feature-
based SVM described by Stab and Gurevych (2017)
drops by more than 23% macro F1 compared to the
standard setup (ESSAY) where shallow discourse
context is accessible (Opitz and Frank, 2019b).

Baselines We display the results of a competitive
feature based SVM. It requires, i.a., syntactic pars-
ing, constituency-tree sentiment annotation (Socher
et al., 2013) and discourse parsing (Lin et al., 2014)
as pre-processing steps (Stab and Gurevych, 2017;
Opitz and Frank, 2019b). In contrast, our method
does not depend on any pre-processing.

Model instantiation For each possible minimal
pair, we instantiate a different model based on the
pre-trained BERT model (the BERT model remains
fixed during optimization). More specifically, we
infer the word embeddings and average over the last
four layers to produce a sequence of vectors with
1024 dimensions. Forward and backward LSTM
have 256 neurons each. For development purposes
we split off 1149 examples from the training data.
The rank loss (Eq. 1) is minimized by performing
stochastic gradient descent with Adam (Kingma
and Ba, 2014)7. After each epoch, the model is
evaluated on the development data. Finally, we se-
lect the parameters from the epoch with maximum
F1 score on the development data.

In our tables, each model is denoted
ArgRankerdcs where dcs indicates which pair of
discourse connectors was used for reconstruc-

7The learning rate is set to 0.001, the mini-batch size to 64
and the maximum number of epochs to 25.
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System ESSAY ESSAY-CONTENT

majority baseline 47.8 47.8
SVM with features 68.0 57.3

ArgRankerA/A 67.2±1.0 58.6±1.4

ArgRankerA/D 69.2±2.4 59.2±0.7

ArgRankerM/H 68.8±1.7 63.8±2.1

ArgRankerY/N 67.3±0.8 58.3±1.8

ArgRankervote 70.9±0.7 60.7±1.7

Table 2: Macro F1 results. underlined: best re-
sult; bold: improves against SVM withstanding
standard deviation.

tion. ArgRankervote denotes a model where we
aggregate the predictions over the four different
minimal-pair single models (‘ensemble model’).
All results are averaged over five runs.

4.2 Results

Macro F1 results Table 2 lists the macro F1 re-
sults8 of our experiments.

On ESSAY, our method is competitive with the
SVM that relies on extensive pre-processing. On
ESSAY-CONTENT, where models are forced to
learn to assess the content of EAUs, our method
outperforms the feature-based SVM across all con-
figurations. The best performance on this data
is provided by ArgRankerM/H , which is trained
on Moreover-However reconstructions (+6.5 pp.
macro F1, relative improvement: 11%). Our ensem-
ble model ArgRankervote, which aggregates the pre-
dictions of the individual ArgRankers in a simple
vote, achieves an improvement of +3.4 pp. macro
F1 (relative improvement: 6%).

More detailed results Table 3 indicates that our
method offers other advantages besides raw macro
F1 gains. The very rare attack-class is detected
with a much greater precision compared with the
SVM. The difference can range from an improve-
ment of 5.6 pp. (ArgRankerY/N , relative improve-
ment: 28%) up to a maximum improvement of
31.4 pp. (ArgRankervote, relative improvement:
157%). With such a large increase in precision,
one might expect a drop in recall – however, this is
only the case to a very small extent. The greatest
drop in recall is incurred by ArgRankervote (-5.2
pp.) and thus can be said to lie in the shadow of
its precision gains (+31.4 pp.). Moreover, when

8Macro F1 in our case is defined as the unweighted mean
over the F1 scores for our two classes.

Attack Support
System Precision Recall Precision Recall

majority 0.00 0.00 8.0 100.0
SVM with features 20.0 22.9 93.0 91.8

ArgRankerA/A 31.0±5.9 18.2±2.1 92.9±0.1 96.2±1.1

ArgRankerA/D 28.0±4.4 22.8±3.2 93.1±0.2 94.5±1.6

ArgRankerM/H 39.9±9.4 30.0±6.8 93.8±0.6 95.5±2.4

ArgRankerY/N 25.6±5.8 23.7±5.1 93.1±0.3 93.0±3.3

ArgRankervote 51.4±7.3 17.7±3.4 93.0±0.2 98.4±0.7

Table 3: Precision and recall scores for each class
on ESSAY-CONTENT. underlined: best result;
bold: improves against SVM withstanding stan-
dard deviation.

SVM A/A A/D M/H Y/N voter no-disc
model
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Figure 3: Scores for different models using
BERT embeddings and SVM (left column) on
ESSAY-CONTENT. Reconstruction with More-
over/however offers the largest improvement. Non-
linguistically motivated connectors result in re-
duced performance (‘+’/‘-’: no-disc, right column).

we use the discourse connector minimal pairs A/D
and M/H, our model outperforms the SVM in the
attack-class both in precision and recall. Most no-
tably, when we instantiate our reconstructions with
Moreover/However, we see a large gain in preci-
sion (+19.9 pp., relative improvement: 99.5%) but
also an observable gain in recall (+7.1 pp., relative
improvement: 31.0%).

With regard to the majority class (support), we
make two observations: (i) precision-wise, all of
our models outperform or are on par with the SVM;
(ii) recall-wise, all of our models outperform the
SVM. The greatest gain in recall for support is
achieved by ArgRankervote (+6.6 pp.).

4.3 Ablation experiments and analysis

Linguistically motivated discourse reconstruc-
tion What is the outcome of instantiating the dis-
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model configuration

System basic ELMo -coeff. -att.

majority 47.8 - - -
SVM (Stab and Gurevych, 2017; Opitz and Frank, 2019b) 57.3 - - -

ArgRankerA/A 58.6±1.4 55.7±1.6 57.4±2.1 58.3±1.2

ArgRankerA/D 59.2±0.7 60.2±2.2 59.6±2.1 56.2±1.9

ArgRankerM/H 63.8±2.1 59.4±2.5 61.1±1.0 60.7±1.9

ArgRankerY/N 58.3±1.8 57.6±1.7 57.7±1.2 58.2±3.0

ArgRankervote 60.7±1.7 59.5±1.9 60.2±2.2 56.2

ArgRanker−discourse 57.3±0.4 63.6±1.3 57.3±2.8 54.5

Table 4: Ablation experiments: Macro F1 results on ESSAY-CONTENT. ArgRanker−discourse: a system
where we replace the natural discourse connectors with ‘linguistically meaningless’ placeholders (i.e.,
support: ‘+’, attack: ‘-’ instead of, e.g., support: ‘Moreover’, attack: ‘However’). ELMo: we use ELMo
instead of BERT; -coeff.: we abstain from learning source-target specific coefficients; -att.: we ablate the
self-attention and use the last states of the Bi-LSTM (concatenation of each read) for prediction.

course reconstructions with ‘meaningless’ connec-
tors? I.e., instead of instantiating the attack/support
context with linguistically motivated connectors,
such as, e.g., I agree/I disagree, we instantiate the
contexts with the meaningless tokens ‘+’ and ‘-’.
On one hand, this means that the new discourse
configuration is still discriminative (either support-
ing or attacking). On the other hand, however, the
discriminating reconstruction is not any more lin-
guistically motivated. Thus, we hypothesize that
the linguistically motivated reconstructions better
‘trigger’ the contextual BERT model into giving a
useful inductive bias about whether a certain read-
ing is plausible or not.

From Table 4 and Figure 3, we see that, indeed,
our model functions better when provided with lin-
guistically motivated reconstructions instead of the
non-linguistically motivated reconstruction (Figure
3: columns A/A, A/D, M/H, Y/N vs. bottom row
in Table 4 and right column in Figure 3). This
holds true across all model configurations and all
linguistically motivated discourse connector pairs.9

More specifically, we find that the More-
over/However reconstruction appears to offer the
most useful inductive bias (middle column, Fig-
ure 3). Our ArgRanker based on this reconstruction
outperforms all other configurations by more than
4 pp. macro F1 (compared with Agree/Disagree)
and more than 6 pp. macro F1 compared with the

9An exception constitutes the model based on ELMo em-
beddings, which appears to work better when provided with
the non-linguistically motivated connector pair.

non-linguistically motivated reconstruction. One
reason could be located in the fact that BERT was
trained, i.a., on the Wikipedia corpus: we com-
pute a simple word frequency statistic over this
corpus and see that the terms Moreover and How-
ever appear more frequently in this corpus (e.g.,
however: appr. 29,900,000 occurrences) than, e.g.,
Admittedly (appr. 17,000 occurrences). Also, by
manually inspecting a small amount of occurrences
in Wikipedia, we find that moreover and however
tend to occur in more ‘argumentative’ contexts, or,
at least, connect two discourse units in a contrasting
(however) or supporting (moreover) way. On the
other hand, e.g., I agree tends to occur in less argu-
mentative contexts, such as in I agree to the terms
of service. We believe that contextual language
models trained on interactive discourse texts (e.g.,
online discussion platforms) instead of encyclope-
dic texts would greatly help to provide our model
with better embeddings in the situations where we
want to compose plausible and implausible texts by
means of more ‘interactive’ connectors (I agree/I
disagree; Yes/No; etc.).

BERT vs. ELMo In our first experiment, we re-
place the BERT embeddings with ELMo embed-
dings – we want to ‘probe’ which of the two em-
bedding generators is better suited to rank argu-
mentative texts according to their plausibility. First,
we see that ELMo embeddings provide better per-
formance than the feature based baseline, with one
exception: ArgRankerA/A, where we reconstruct
contexts by inserting Additionally and Admittedly
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(b) Connector vs. source coefficients

0.85 0.90 0.95 1.00 1.05 1.10 1.15
tgt-embed-dim coef.

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

co
n-

em
be

d-
di

m
 c

oe
f.

(c) Connector vs. target coefficients

Figure 4: Investigation of the three contextual coefficient-embeddings which our model has learned. The
coefficients are initialized with ones and assume, during training, a Gaussian-like distribution. By all
appearances, the model uses some coefficients to ‘deflate’ the impact of an embedding dimension in, e.g.,
the text corresponding to the source EAU, while ‘inflating’ the impact of an embedding dimension in, e.g.,
the text corresponding to the target EAU (Figure 4a, regions on the upper left).

(Table 4, ELMo). Second, the ELMo embeddings
in most cases fall short in comparison to BERT
embeddings – again, however, with one exception:
ArgRanker−discourse, which does not use the linguis-
tically motivated reconstruction.

Indicator embedding coefficients Now, we
want to investigate if learning coefficients to better
distinguish between source and target has helped
our model. Recall, that the three coefficient indica-
tor embeddings correspond to source/target EAU
span and the discourse connector span and allow
the model to highlight certain word embedding in-
dices differently with respect to these three spans.
For most connector pairs, learning the coefficients
helps and their ablation leads to a performance
drop (Table 4, -coeff; e.g. ArgRankerM/H : -2.7 pp.
macro F1).

Finally, we plot the learnt coefficients of the
three different indicator embeddings against each
other to analyze their appearance after training. Fig-
ure 4 displays all values from all discourse connec-
tor parameterizations ·/· of ArgRanker·/·. More
specifically, we are interested in the following ques-
tion: Have we learned that certain contextual word
embedding indices are important to inflate (deflate)
with respect to the source or the target? From in-
specting Figure 4, we see that this appears to be
the case. For example, there is a set of embedding
indices where coefficients are used to magnify the
corresponding values in the target EAU and deflate
them in the source EAU (Figure 4a, top left re-
gion) – while for another set of embedding indices

the opposite is true (Figure 4a, bottom right). Fur-
thermore, the learnt coefficients have assumed a
normal-like distribution after training (distribution
plots on the sides of Figures 4a, 4b, 4c).

Self-attention Finally, we want to investigate the
effect of ablating the self-attention mechanisms
from our model. More precisely, we predict the
plausibility scores based on a concatenation of the
last state of forward and backward read of the Bi-
LSTM. Throughout all different discourse recon-
struction strategies, we see drops in performance
(Table 4, -att). However, while we see observ-
able drops in some cases (ArgRankervote: -4.5 pp.
macro F1), they are comparatively small in other
cases (ArgRankerY/N : -0.1 pp.).

5 Conclusion

We have treated argumentative relation classifica-
tion in a new light, as a task where we learn to rank
candidate texts according to their plausibility. To
this aim, we have proposed a simple reconstruction
trick which allows us to embed source and target
argumentative units into plausible and implausible
argumentative discourse contexts. In order to learn
to rank such texts according to their plausibility,
we have adapted a neural Siamese ranking model.
Our experiments on an established data set have
shown that the approach is competitive with previ-
ous work albeit it does not require pre-processing.
In the ‘content-based’ setting – which is more diffi-
cult because models cannot base their decisions on
shallow clues in the discourse context – the method
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outperforms previous work by a considerable mar-
gin. In particular with respect to the scarce class
attack we observed substantial improvements in
precision.
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