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ABSTRACT

Global climate models (GCMs) contain imprecisely defined parameters that account, approximately, for

subgrid-scale physical processes. The response of a GCM to perturbations in its parameters, which is crucial

for quantifying uncertainties in simulations of climate change, can—in principle—be assessed by simulating

the GCM many times. In practice, however, such ‘‘perturbed physics’’ ensembles are small because GCMs

are so expensive to simulate. Statistical tools can help in two ways. First, they can be used to combine

ensembles from different but related experiments, increasing the effective number of simulations. Second,

they can be used to describe the GCM’s response in ways that cannot be extracted directly from the en-

semble(s). The authors combine two experiments to learn about the response of the Hadley Centre Slab

Climate Model version 3 (HadSM3) climate sensitivity to 31 model parameters. A Bayesian statistical

framework is used in which expert judgments are required to quantify the relationship between the two

experiments; these judgments are validated by detailed diagnostics. The authors identify the entrainment

rate coefficient of the convection scheme as the most important single parameter and find that this interacts

strongly with three of the large-scale-cloud parameters.

1. Introduction

The Hadley Centre Slab Climate Model version 3

(HadSM3) comprises the Hadley Centre Atmospheric

Model version 3 (HadAM3) atmospheric general cir-

culation model (Pope et al. 2000) coupled to a simple

nondynamic mixed layer ocean, a standard setup for the

simulation of the equilibrium-temperature response to

doubled CO2 (termed climate sensitivity). HadSM3 is

one of a number of such climate models, developed at

different institutions worldwide and used to investigate

global and regional characteristics of the response of

climate processes to increases in greenhouse gases. These

models contain different choices of horizontal and ver-

tical resolution, different numerical integration schemes,

and different parameterizations of subgrid-scale pro-

cesses. Therefore, they simulate global climate sensi-

tivity differently (Webb et al. 2006). Results from such a

multimodel ensemble provide insights into these feed-

back processes; for example, analysis of the latest gen-

eration of models suggests that feedbacks associated

with low cloud provide the largest contribution to un-

certainty in climate sensitivity (Bony and Dufresne

2005; Webb et al. 2006). However, detailed analysis is

limited by the small number of ensemble members and

their status as an ‘‘ensemble of opportunity,’’ lacking a

systematic approach to the sampling of modeling un-

certainties (Tebaldi and Knutti 2007).

An alternative approach is that of the ‘‘perturbed

physics’’ ensemble (PPE), in which simulations are

designed to sample variations in parameters controlling
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the simulation of key climate processes within a single

model. To date, most published PPE studies have fo-

cused on HadSM3 and the third climate configuration of

the Met Office Unified Model (HadCM3), the related

configuration in which HadAM3 is coupled to a three-

dimensional dynamic ocean component (see, e.g., Murphy

et al. 2004; Stainforth et al. 2005; Collins et al. 2006;

Harris et al. 2006; and further references below). The

advantage of the perturbed physics approach is that it

supports a more systematic exploration of modeling

uncertainties, in which variations in simulated responses

can be traced back to particular processes. Their limi-

tation is that they do not explore ‘‘structural’’ model-

ing uncertainties, such as the choice of resolution or

alternative approaches for parameterizing subgrid-scale

processes. However, results indicate that the spread of

global- and large-scale regional climate responses is

similar to that found in multimodel ensembles (Collins

et al. 2006; Webb et al. 2006), suggesting that both ap-

proaches provide a useful means of exploring the range

of simulated climate responses in the current generation

of climate models.

In the case of PPEs, the basic approach involves de-

fining a space x of possible model variants by asking

experts to specify prior distributions for poorly con-

strained parameters controlling key climate system

processes. Then an ensemble of simulations is run to

span or sample that space. The results are used to un-

derstand and quantify simulated responses (Webb et al.

2006) or to construct probabilistic estimates of the re-

sponse using Bayesian techniques in which locations in

x are weighted according to their relative likelihood,

quantified through comparison of simulations of his-

torical climate against a set of observations. Murphy

et al. (2004) give an early example of this type of ap-

proach. Rougier (2007) describes a more comprehensive

Bayesian framework, including the effects of structural

differences between the model used for the PPE and the

real world, which cannot be resolved by varying the

parameters. Murphy et al. (2007) describe a method for

applying this statistical framework in practice, with the

aim of providing probabilistic predictions of twenty-

first-century climate.

This paper focuses on one particular response:

HadSM3’s climate sensitivity, the equilibrium change

in globally averaged surface temperature following a

doubling of the atmospheric concentration of CO2. This

represents a standard benchmark for the response of

climate to increases in greenhouse gases. Thus, HadSM3

can be thought of as a function that maps the parameter

vector x into a climate sensitivity value g(x). In our PPE,

we have a collection of inputs x 5 {x1, . . . , xn} and a

corresponding collection of outputs, y 5 {g(x1), . . . , g(xn)}.

A Bayesian statistical framework, termed an emula-

tor, allows us to predict g(x) at any x, based on the

ensemble and on our judgments about the model.

Crucially, this prediction takes the form of a distribu-

tion, comprising not just a point estimate, such as the

mean, but also a measure of uncertainty, such as the

standard deviation. This uncertainty has two parts. First,

there is the irreducible uncertainty from the model’s

internal variability. Second, there is the uncertainty that

arises from not having evaluated the model at or near x,

termed code uncertainty (O’Hagan 2006). Constructing

emulators is part of the statistical field of computer

experiments (see, e.g., Koehler and Owen 1996; Santner

et al. 2003). The Bayesian treatment of emulators was

initiated by Currin et al. (1991) and continues to de-

velop: current practice is reviewed in O’Hagan (2006).

The use of statistical emulators in climate prediction,

taking account of our uncertainty about the model

parameters, is discussed in Rougier and Sexton (2007).

‘‘Nonstatistical emulators’’ are also possible and have

recently appeared in climate science (see, e.g., Knutti

et al. 2006; Sanderson et al. 2008a, using neural net-

works); more widely, these are sometimes known as

surrogates.

In this paper, we construct an emulator for HadSM3’s

climate sensitivity as a function of 31 model parameters.

This would seem an impossible task given that our en-

semble contains only 281 simulations. But because we

quantify our uncertainty, we can show (below) that a

large amount of information about HadSM3 can be

extracted. Partly, this is because many of the parameters

are not important determinants of climate sensitivity

(we would not expect this to be true for other types of

model output). But also, we use additional information

and expert judgments to augment our ensemble. The

additional information comes from a second ensemble

of HadSM3 simulations, and the expert judgment con-

cerns the relationship between the two ensembles. As

our judgments are subjective, we pay close attention to

diagnostic information, in which we contrast our sta-

tistical predictions with model simulations.

Using our emulator, we are able to identify the main

parameters for determining climate sensitivity and to

investigate a complex interaction between four param-

eters controlling some key aspects of the parameteri-

zation of large-scale clouds and convection. In section 2

we describe the two experiments that generate our two

ensembles. Section 3 describes the process of building an

emulator for HadSM3’s climate sensitivity, using two

different PPEs. Section 4 uses the resulting emulator to

investigate the response to the model parameters, both

singly and in combination. Section 5 concludes with a

summary of our findings and a discussion of our approach.
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2. Two experiments on HadSM3

Two recent high-profile experiments have attempted

to quantify our uncertainty about the climate sensitivity

in a CO2 doubling experiment using HadSM3. This

section outlines these two experiments and the resulting

ensembles of simulations. Details of the two experi-

ments can be found in the original papers and their

supplementary information; here, we summarize those

aspects that are relevant for our statistical analysis.

a. The QUMP experiment

In the Quantifying Uncertainty in Model Predictions

(QUMP) experiment of Murphy et al. (2004), 31 model

parameters were identified as being potentially impor-

tant, out of a possible 100 or more candidates. These

31 model parameters will be referred to as variables, and

they are described in Table 1, which also gives the short

names by which they will be identified in this paper.

Thirteen of the variables are factors (i.e., variables that

take values in a discrete set). Most of the factors have

2 levels (e.g., switches that are either off or on), but two

have 3 levels (GWST and NFSL) and one has 4 levels

(FRF). Of the 18 continuous variables, 4 are contingent

on the setting of certain factors; for example, the value

of RHCV only affects climate sensitivity when RHC 5

off; these contingent variables are the reason that Murphy

et al. (2004) count 29 rather than 31 variables in their

description (they did not include CAPE and ANV).

We denote a particular choice for the values of the

variables as x. The climate sensitivity at x was computed

in a three-phase experiment. The first phase was a 25-yr

calibration simulation in which sea surface tempera-

tures (SSTs) are continuously restored to prescribed

values from a historical climatology. The heat fluxes

required to achieve this were averaged to provide ‘‘heat

convergence’’ fields intended to represent the effects of

ocean heat transport (not simulated explicitly in the

mixed layer ocean of HadSM3) and to offset errors in

simulated atmosphere–ocean fluxes. These heat con-

vergences (which vary with position and season, but not

from year to year) were then prescribed in phases two

and three, consisting of a control simulation with pre-

industrial CO2 and a simulation with doubled CO2, both

run to equilibrium. The heat convergences should en-

sure that multiyear averages of SSTs in the control

simulations remain close to observed climatology, sub-

ject to the assumption that internal climate variability

in SSTs (suppressed during the first phase, but not in

phases two and three) does not give rise to nonlinear

feedbacks, which could cause SSTs to drift.

Climate sensitivity, or g(x), was defined as the dif-

ference in global mean temperature between the second

and third phases. The selection of the 31 variables in the

original experiment targeted the areas of model physics

thought to be influential for a wide range of global and

regional aspects of historical climate, and of the forced

response to external changes in radiative forcing. The

initial simulations in the ensemble consisted of single-

parameter perturbations augmented by a small number

of multiparameter perturbations. Since that initial ex-

periment, we have access to a further 231 simulations,

all multiparameter perturbations. The first 128 of these

are described in Webb et al. (2006) and were chosen to

span a wide range of climate sensitivities, subject to the

additional constraints of achieving credible simulations

of present-day climate and sampling the parameter

space as widely as possible. Additional simulations were

chosen to populate regions of the parameter space

thought likely to be influenced by important interac-

tions. These can be added directly to the original en-

semble for a total of 297 simulations.

A small minority of these simulations produced control-

period SSTs significantly cooler than the historical values

used to deduce the heat convergence fields. The cooling

results from the absence of a dynamical representation of

ocean heat transport in HadSM3 [excluded to make the

simulations of climate sensitivity computationally feasible

and because changes in ocean circulation are not likely to

be a major determinant of climate sensitivity (e.g., Senior

and Mitchell 2000; Boer and Yu 2003)]. We find 16 model

variants in which global mean SST in the control simu-

lation cools in this way (‘‘drifters’’). The absence of in-

teractive ocean heat transport in HadSM3 therefore

prevents us from being able to obtain credible estimates

of climate sensitivity by direct simulation in these 16 ex-

periments, so we exclude them from our analysis. The 281

simulations that remain provide estimates of sensitivity

free from nonphysical side effects of the experimental

design. This is demonstrated, for example, by the close

relationship between the equilibrium surface warming

found in 17 of these simulations and the transient climate

response obtained using corresponding parameter set-

tings in simulations with a dynamical three-dimensional

ocean component (Collins et al. 2006; Harris et al. 2006).

We rely on the 281 reliable simulations to supply esti-

mates of climate sensitivity over the whole model pa-

rameter space, including around those 16 locations for

which cooling HadAM3 simulations were excluded.

b. The CPNET experiment

Here we focus on the differences between QUMP

and the Climateprediction.net (CPNET) experiment of

Stainforth et al. (2005). This experiment varied six

of the continuous variables, used in the parameteriza-

tion of large-scale clouds and convection. The ensemble
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comprises a factorial design with five variables at 3

levels (VF1, CT, CW, RHCV, and ENT; RHC was al-

ways off) and one variable at 2 levels (CFS). All the

other variables in Table 1 are set to the value used in the

standard published version of HadAM3. Hereafter,

these are referred to as the standard values, although

note that a number of these values are set to an extreme

of the expert-specified ranges (Murphy et al. 2004, sup-

plementary information). This reflects the practice of

tuning climate model parameters to improve the overall

simulation of a range of climate variables by adjusting

error balances between different physical processes. Each

choice for the variables in the CPNET experiment was

simulated with a number of different initial conditions,

TABLE 1. Description of the QUMP variables. Comparable to Murphy et al. (2004, supplementary information, their Table 2). Each

parameter controls a key aspect of one of the schemes for the parameterization of subgrid-scale processes in HadSM3 (large-scale cloud,

convection, sea ice, etc.). Values in parentheses indicate low, intermediate, and high values of continuous variables. Values not in

parentheses indicate levels of discrete variables, or factors.

Parameter/property Values Label Only when

Large-scale cloud

Vf1 (m s21) (0.5, 1,* 2) VF1**

Ct (31024 s21) (0.5, 1,* 4) CT**

Cw (land; 31024 kg m23) (1, 2,* 10) CW**

Flow-dependent Rhcrit Off,* on RHC

Rhcrit (0.6, 0.7,* 0.9) RHCV** RHC off

Cloud fraction at saturation (%) (0.5,* 0.7, 0.8) CFS**

Vertical gradient of cloud water Off,* on VGCW

Convection

Entrainment rate coefficient (0.6, 3,* 9) ENT**

CAPE closure Off,* on CAPE

CAPE closure time scale (h) (1, 2, 4) CAPEV CAPE on

Convective anvils Off,* on ANV

Convective anvils, shape (1, 2, 3) ANVS ANV on

Convective anvils, updraft (0.1, 0.5, 1) ANVU ANV on

Sea ice

Sea ice albedo (at 08C) (0.50,* 0.57, 0.65) SIA

Ocean-ice diffusion (31024 m2 s21) (0.25, 1.00, 3.75*) DID

Radiation

Ice particle size (mm) (25, 30,* 40) IPS

Nonspherical ice particles Off,* on NSIP

Shortwave water vapor continuum absorption Off,* on SWV

Sulfur cycle Off,* on SCYC

Dynamics

Order of diffusion operator 4, 6* ODD

Diffusion e-folding time (h) (6, 12,* 24) DDTS

Starting level, gravity wave drag 3,* 4, 5 GWST

Surface gravity wave wavelength (3104 m) (1, 1.5, 2*) GWWL

Land surface

Surface–canopy energy exchange Off,* on SCEE

Forest-roughness lengths 1,* 2, 3, 4 FRF

Dependence of stomatal conductance on CO2 Off, on* STOM

Number of forest soil levels for

evapotranspiration (grass)

1, 2, 3* NFSL

Boundary layer

Charnock constant (31023) (12,* 16, 20) CHAR

Free convective roughness length over

sea (31024 m)

(2, 13,* 50) FCRL

Boundary layer flux profile, G0 (5, 10,* 20) BLFP

Asymptotic neutral mixing length, l (31022) (5, 15,* 50) ANML

* The standard setting.

** Variables also used in CPNET.

1 JULY 2009 R O U G I E R E T A L . 3543



introducing a structured source of uncertainty that is not

present in the QUMP experiment. On analyzing the

CPNET ensemble, we find that the choice of initial

condition does not appear to be predictively important

for climate sensitivity and so we pool the simulations

across the initial conditions; a similar approach was used

in the Stainforth et al. (2005) experiment, in which dif-

ferent initial conditions for the same x were averaged.

The CPNET experiment adopted a public resource

distributed computing (PRDC) approach, performing

thousands of simulations using spare cycles on volun-

teers’ home and office computers. Within this approach,

it was not feasible to integrate HadSM3 to equilibrium

twice. Instead, three phases of 15 yr each were used. The

third phase, in particular, was too short to establish

equilibrium, and so in Stainforth et al. (2005) an expo-

nential curve was fitted to global mean temperature in

this phase and then extrapolated to its horizontal as-

ymptote to give a point value for climate sensitivity.

In our sample from the CPNET experiment, we have

a total of 35 3 21 5 486 distinguishable simulations (in

terms of the x values) and 2377 simulations overall

(accounting for variations in the initial conditions). Many

of these produced unstable or nonphysical responses,

particularly cooling (as described in section 2a). We

choose to omit these from the CPNET ensemble in the

same way as Stainforth et al. (2005).

The following summarizes the differences between

the two experiments:

1) Our CPNET ensemble varies 6 parameters, whereas

QUMP varies 31.

2) CPNET explores initial condition uncertainty,

whereas QUMP does not. (This is not thought to be

important for climate sensitivity but may be for other

variables.)

3) CPNET uses a 15-yr calibration phase, whereas

QUMP uses a 25-yr calibration phase.

4) CPNET does exactly 15 yr each of preindustrial and

doubled CO2 phases, whereas QUMP runs both of

these phases to equilibrium.

Both the third and fourth differences will affect the

operational definition of climate sensitivity. The fourth

difference is the most important because it means that

in CPNET the climate sensitivity has to be extrapolated

from the simulations, rather than being computed di-

rectly. Comparing these two experiments, we judge

there to be sufficient differences in that it is not possible

to combine the two ensembles directly (or indirectly by

reweighting one or the other); in fact, they are two

different but related experiments. In other words, the

relationship between the CPNET climate sensitivity

and the six CPNET variables is not simply a noisier

version of the QUMP relationship with the same vari-

ables but it is actually a different relationship, affected

by the transient behavior of the HadSM3 model. This

informs our statistical modeling choices in section 3c.

c. Outline of our approach

The two experiments outlined in this section have

different but complementary strengths. The QUMP

experiment has a conventional definition for climate

sensitivity and includes a large number of variables. The

CPNET experiment, on the other hand, has a more

detailed analysis over six of the most important varia-

bles [the CPNET project has subsequently explored

many more variables, allowing for a more extensive

analysis in the future, but we restrict ourselves here to the

ensemble in Stainforth et al. (2005)]. Our intention is to

combine the ensembles from these two experiments into

an emulator for QUMP climate sensitivity defined over

the full set of 31 variables. It is difficult to draw any firm

conclusions about the similarity of the two definitions

over the whole of the parameter space, given the limited

amount of data we have from the QUMP experiment.

But it is our judgment that it would be best (i.e., con-

servative) to treat them as not only operationally dif-

ferent but also potentially practically different.

As already described, an emulator is a probability

distribution function for g(x). There are many ways of

specifying such a function. In a Bayesian statistical ap-

proach we probabilistically condition our beliefs about

g(�) on the simulations in the ensemble. Therefore a

Bayesian emulator combines two sources of informa-

tion: prior judgments about g(�) and data from simula-

tions in the ensemble (y; X), in which X is the ‘‘design

matrix’’ of parameter values and y the resulting vector

of climate sensitivities. The main stages of our approach

are summarized in Fig. 1. Each of the two experiments

requires a different emulator because of the different

definitions of climate sensitivity. For the CPNET emu-

lator, we have plentiful information from the CPNET

ensemble, which comprises 421 simulations in a six-

dimensional space. Therefore, we start with only vague

prior information, because we are content to let the in-

formation from the ensemble dominate. For the QUMP

emulator, on the other hand, we have only limited in-

formation in the ensemble (281 simulations in a 31-

dimensional space). Therefore we combine this with

detailed prior information taken from the CPNET em-

ulator and our judgment concerning the similarity of the

CPNET and QUMP definitions of climate sensitivity.

Figure 1 also shows two diagnostic loops: wherever we

have data, we can investigate the propriety of our choices

and, to a limited extent, we can modify those choices.

These are discussed in more detail in sections 3d and 3e.
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Kennedy and O’Hagan (2000) have proposed a dif-

ferent approach designed to combine ensembles from

the same model solved at different resolutions. However,

it is not easily applicable here, because of the complex-

ities of the model parameters, as discussed in section 3a.

Finally, it may be helpful to compare our approach

with a similar treatment by Sanderson et al. (2008a).

In this paper, an emulator is constructed for CPNET

climate sensitivity from a more recent, much larger

ensemble (6096 simulations); 11 parameters were var-

ied independently, of which the original CPNET 6 pa-

rameters are a subset. A neural network is used rather

than a statistical model, with uncertainty estimates

derived from bootstrap resampling. This approach

would not be effective for emulating QUMP climate

sensitivity because it relies on a large ensemble for

both training the neural network and for uncertainty

estimation. One interesting feature of the Sanderson

et al. (2008a) emulator is the treatment of the 2-level

factors as continuous on the interval [0, 1], even though

only the values 0 and 1 are attainable in the model. By

contrast, we have treated all of the factors as factors

(i.e., as discrete quantities without numerically equivalent

values); in other words, we do not make the additional

assertion that interpolated values of the switches also give

rise to physically meaningful outcomes. We also ensure

that combinations of factors and continuous variables

operate correctly; for example, RHCV only affects climate

sensitivity when RHC 5 off (see Table 1). Sanderson

et al. (2008a) do not have to tackle this issue because

the parameter space of their experiment is simpler. But

there is no reason why it should not be implemented in

a neural network with a suitable reorganization of the

input layer.

3. Emulating HadSM3’s climate sensitivity

In this section we describe our approach for emulat-

ing HadSM3’s climate sensitivity, as outlined in Fig. 1.

Section 3a outlines a simple emulation framework, based

on the Bayesian treatment of the Gaussian linear model.

Section 3b details the choices we make within this

framework to emulate CPNET’s measure of climate

sensitivity. Section 3c describes how we quantify our

judgments about the relationship between the CPNET

and QUMP experiments in terms of the relationship

between the CPNET and QUMP emulators. Section 3d

introduces the QUMP ensemble, which is used to

generate diagnostic information about the statistical

choices we have made, before being assimilated into

the QUMP emulator in section 3e. In section 4, we will

use the QUMP emulator to investigate the response of

HadSM3 to its 31 variables.

a. A general Bayesian emulator

We describe here a simple Bayesian treatment of the

emulator. The emulator is written

g(x) 5 h(x)Tb 1 u(x), (1)

in which g(x) is the climate sensitivity of HadSM3 or

some monotonic transformation of the same, termed the

response; h(�) is a known vector-valued function of the

variables, collectively termed the regressors (k in total);

b is an unknown k vector of (regression) coefficients; and

FIG. 1. The main stages of our approach for combining information from the CPNET and

QUMP ensembles into an emulator for QUMP climate sensitivity. Starting with vague prior

beliefs, we create the CPNET emulator using the CPNET ensemble. Then, we use our judg-

ments about the similarities of the CPNET and QUMP experiments to construct a QUMP prior

emulator. Finally, we update this emulator with the QUMP ensemble to construct the QUMP

emulator.
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u(x) is a scalar stochastic process, termed the residual.

Within the regressors, we would expect to include non-

linear functions of the variables, such as x2
i or xi 3 xj. We

must use our judgment, in conjunction with the data

where possible, to make choices for the transformation of

g(�) and the components of h(�): statistical model choice

is a subtle balancing act between fidelity, efficiency, and

‘‘interpretability’’—much the same is true of building

climate models. The challenge becomes greater as the

number of components in x goes up, because the range of

possible terms for inclusion among the regressors be-

comes much larger and it becomes difficult to contrast

alternative choices in terms of standard diagnostics like

residual behavior.

For our given choice for the response and the regres-

sors, we make the following additional choices: First, u(x)

has zero mean and a constant unknown variance s2;

second, u(x) and u(x9) are uncorrelated when x 6¼ x9; and

third, b, u(x), and s2 have a normal-inverse-gamma

(NIG) distribution, which may be summarized as

bvu(x)js2, (2a)

bjs2 ; Nk(m, s2V), (2b)

u(x)js2 ; N1(0, s2), and (2c)

s2 ; IG(a, d), (2d)

where v denotes probabilistically independent, | de-

notes conditional upon, Nk(�) denotes the k-dimensional

Gaussian distribution, and IG(�) denotes the scalar inverse

gamma distribution; we must specify the collection {a, d,

m, V}, termed the hyperparameters. With these distribu-

tional choices, the emulator for g(x) has a Student’s t dis-

tribution in which both the mean and the scale will depend

on x. We have outlined here the standard Bayesian treat-

ment of the Gaussian linear model; full details may be

found in O’Hagan and Forster (2004, chapter 11).

At this point our statistical choices have been made

for tractability and transparency. The NIG approach is a

standard framework for emulation [see, e.g., Rougier

(2008b) for a full description and Rougier et al. (2008,

manuscript submitted to Technometrics) for an exam-

ple]; however, it has some undesirable features (see,

e.g., O’Hagan and Forster 2004, sections 11.43–11.70).

But we have made one unusual choice, which is to treat

the residual as having zero correlation length {i.e., to set

Cov[u(x), u(x9)] 5 0 for x 6¼ x9}. The residual accounts

for internal variability, for which a zero (or near-zero)

correlation length is quite appropriate. However, it also

accounts for systematic effects excluded from the re-

gressors, and these have a positive correlation length

(Rougier 2008a). Overall, therefore, we have under-

stated the correlation length of the residual: the impli-

cations are discussed further in section 4. We have a

compelling reason for making this choice, which is that

statisticians have yet to develop flexible covariance

structures for u(x) that can be specified over a collection

of both continuous variables and factors. This is an ac-

tive area of research (see, e.g., Han et al. 2009; Qian

et al. 2008). An alternative approach would be to build a

different emulator over the continuous variables for

each factor combination; however, our ensembles are

not large enough to allow this, because there are 13

factors giving rise to 210 3 32 3 41 5 36 864 factor

combinations. Another alternative would be to treat the

factors as though they were continuous, as done in

Sanderson et al. (2008a), but we prefer to leave them as

‘‘switches’’ and avoid an additional assertion about the

model (as already discussed at the end of section 2c).

As long as the residual does not play a large part in

the emulator, our understatement of the residual cor-

relation length is unlikely to be predicatively important.

In our emulators of QUMP climate sensitivity, we find

that the regression R2 is at least 90% and typically more

than 95%, depending on the precise choices we make

for the transformation of the response and the regres-

sors. The corresponding R2 values for CPNET are lower

(70%–90%), but we are less concerned about the re-

sidual behavior in the CPNET emulator because the

CPNET ensemble is less intensively used. In the light

of this choice, we place strong reliance on diagnostics

(discussed in sections 3d and 3e).

To summarize this section, the challenge of building

an emulator for g(�) using the ensemble (y; X) has been

restructured to (i) choosing a transformation for climate

sensitivity and a collection of regressors h(�), and, con-

ditional on these choices, (ii) specifying the hyper-

parameters {a, d, m, V} in the NIG prior for {b, u(x), s2}.

b. Building the CPNET emulator

As explained in section 2c and illustrated in Fig. 1, we

are going to simplify the construction of our CPNET

emulator by adopting vague prior beliefs, which, in

terms of the framework from section 3a, are vague prior

beliefs about {b, u(x), s2}, as summarized in the hy-

perparameters {a, d, m, V}. The standard noninformative

prior has a 5 0; d 5 2k, where k is the number of re-

gressor functions in h(�); m 5 0; and V21 5 0 (O’Hagan

and Forster 2004, sections 11.17–11.19). In this case, the

posterior distribution for b|s2 has the usual ordinary–

least squares (OLS) form, although the interpretation is

a little different, being Bayesian rather than Frequent-

ist. When we refer to, for example, a 95% CI, we are

referring to a 95% credible interval, an interval defined

by the 2.5th and 97.5th percentiles of the distribution

(O’Hagan and Forster 2004, section 2.51).
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With this prior, we deploy exactly the same tech-

niques that would be used in a standard analysis to fit an

OLS regression (see, e.g., Draper and Smith 1998). In

particular, we choose the transformation of y and the

regressors together and use the residuals for diagnostic

information. The QUMP authors, who explicitly con-

structed an emulator for their analysis, chose the trans-

formation 1/y, based on their view that this function

would be likely to have a simpler additive structure in

terms of the variables (Sanderson et al. 2008b make the

same choice). This would only be a reasonable trans-

formation if negative values for climate sensitivity were

judged highly unlikely at any x, because otherwise it

would introduce an extreme discontinuity at zero. We

subscribe to this view but will investigate a wider range

of possible power transformations, including the loga-

rithm, using the Box–Cox approach (see, e.g., Draper

and Smith 1998, section 13.2).

For the regressors, the QUMP authors chose linear

additive terms for the factors and piecewise linear terms

for the continuous variables. We will replace the piecewise

linear terms with quadratics—which requires the same

number of regression coefficients—as there is no com-

pelling reason to think that HadSM3 has a discontinuous

first derivative at the standard setting of its variables. We

also choose to take logarithms of some of the strictly

positive continuous variables, namely those for which the

intervals in Table 1 have strong positive skewness. The

variables transformed in this way are VF1, CT, CW,

ENT, DDTS, FCRL, BLFP, and ANML; only the first

four of these are relevant for the CPNET experiment.

We would like our emulator to include interactions

among the variables. In the initial QUMP ensemble it

was not possible to estimate interactions from the single-

parameter perturbations, but they were found to be

influential in CPNET. Our general strategy regarding

interactions is to treat variables within different param-

eterization schemes as noninteracting (these schemes are

shown in Table 1) but to include interactions between

variables within each scheme. Our starting point is to

include all two-way interactions in the five CPNET var-

iables in the ‘‘large-scale cloud’’ block, giving a total of

1 1 6 1 (6� 1)
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

linear and quad.

1 5 3 4/2
|fflfflfflffl{zfflfflfflffl}

two-way int.

5 22

regression coefficients. The 6 2 1 is for the quadratic

terms; we cannot estimate a quadratic for CFS because

it only has 2 levels in the CPNET ensemble. For the

same reason we cannot estimate cubic or higher effects

in any of the variables. A statistician wishing to under-

stand how the model response varies across parameter

space would not have recommended this type of design

for the CPNET experiment, or, indeed, recommended

single-parameter perturbations for the initial stage of

the QUMP experiment, although it must be borne in

mind that these types of ensemble studies attempt to

fulfill a number of different and not necessarily com-

patible objectives.

Based on this regression, the Box–Cox approach in-

dicates that log(y) is a good choice for the transforma-

tion of the response; the typical diagnostic for this ap-

proach is shown in Fig. 2. Note that log(y) is strongly

favored over 1/y, or climate feedback, which is one way

in which our emulator differs from other approaches.

We do not want to rule out the possibility of higher-

order interactions as well. There are too many of these to

include them all up to a given order, and so we use for-

ward stepwise regression based on the Akaike informa-

tion criterion (see, e.g., Draper and Smith 1998, chapter

15) to identify the most important terms among all pos-

sible two-, three-, and four-way interactions, including

interactions between ENT and the large-scale-cloud var-

iables. We do not have strong a priori views about the

presence or absence of interactions among these six vari-

ables and so this simple and fairly standard technique

seems adequate; had we stronger views we could have

adopted a Bayesian hierarchical approach (see, e.g.,

Chipman et al. 1997). We find 15 further interactions,

namely (in order of acceptance), RHCV:ENT, CT:ENT,

CW:ENT, CFS:ENT, CT:CW:ENT, CT:CW:CFS, CT:CW:

RHCV, CW:RHCV:ENT, CT:RHCV:ENT, CT:CFS:ENT,

VF1:ENT, VF1:RHCV:ENT, VF1:CW:ENT, VF1:CT:CW,

FIG. 2. Box–Cox plot to select an appropriate transformation for

the response: the high likelihood values are concentrated around

the logarithm rather than the reciprocal (the vertical dashed lines

indicate an approximate 95% confidence interval).
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and VF1:CT:ENT. We include these higher-order in-

teractions in h(�), but we do not include any others. This

gives a total of 37 regressor functions in h(�), including

the intercept.

To summarize the resulting emulator, there are some

influential two-way interactions (particularly involving

ENT), and the three-way interactions tend to be the

same size as the typical two-way interactions. Thus,

there is strong evidence for the importance of interac-

tions in determining HadSM3’s climate sensitivity,

supporting the conclusions—for CPNET—of Stainforth

et al. (2005) and Sanderson et al. (2008b).

c. Linking the two emulators

Having built an emulator for CPNET climate sensi-

tivity, we turn now to using this emulator as prior in-

formation for our emulator for QUMP climate sensi-

tivity: recollect that the operational definition of climate

sensitivity in the CPNET and QUMP experiments is

different. First, we must choose a collection of regres-

sors for the QUMP emulator: these will be a superset

of the regressors for the CPNET emulator, because

QUMP has 25 additional variables. Then, we must use

our judgment about the relationship between the CPNET

and QUMP experiments to map the CPNET emulator

hyperparameters {a0, d0, m0, V0} to the QUMP prior

hyperparameters {a, d, m, V}. In sections 3d and 3e, we

introduce the QUMP ensemble to generate diagnostics

for our statistical choices and to update the QUMP hy-

perparameters to their final values {a*, d*, m*, V*}.

1) THE REGRESSORS

For our QUMP-emulator regressors, we start with all

the regressors in the CPNET emulator (37 in number)

plus the missing quadratic term in CFS. We add all the

factors from the QUMP study and also the linear and

quadratic terms for the new continuous variables. We

would also like to include some additional two-way inter-

actions. As outlined in section 3b, we choose to include

all two-way interactions within each parameterization

scheme, but we do not include any interactions between

processes, barring those between ENT and the large-

scale-cloud variables from the CPNET emulator. Taken

together this gives

37 1 1 1 10 3 1 1 2 3 2 1 1 3 3
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

QUMP factors

1

12 3 2
|fflfflffl{zfflfflffl}

new cont. vars

1 10 1 12 1 1 1 6 1 9 1 17 1 6
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

new interactions

5 140

coefficients. Not all interactions are possible; for ex-

ample, RHC:RHCV is not possible because RHCV is

only effective when RHC is off. The physical process

‘‘dynamics’’ has 9 interactions because GWST is a

3-level factor; likewise ‘‘land surface’’ has 17 interactions

because FRF is a 4-level factor and NFSL is a 3-level

factor.

2) LINKING MATCHED COEFFICIENTS

When constructing our prior for the QUMP-emulator

coefficients we distinguish between matched coeffi-

cients and new coefficients. The matched coefficients

have a direct counterpart in the CPNET emulator. For

example, the coefficients on ENT and ENT 3 ENT in

the QUMP emulator match to corresponding coeffi-

cients in the CPNET emulator, but the coefficient on

IPS in the QUMP emulator is a new coefficient, because

IPS was not varied in the CPNET study, so that it does

not feature in the CPNET emulator.

We can express the extent to which we think that

CPNET climate sensitivity and QUMP climate sensi-

tivity are the same by specifying the degree to which

the matched QUMP-emulator coefficients are likely to

deviate from their counterparts in the CPNET emula-

tor. To quantify the relation between individual pairs

of matched coefficients we use the following general

framework:

bi � ci 5 (1 1 vi)(b0
i � ci) 1 (ry/ri)ni, (3)

where b0
i and bi are matched coefficients in the CPNET

and QUMP emulators, respectively. Our uncertainty

about bi is induced by our uncertainty about b0
i and by

the choices we make for the various terms on the right-

hand side of (3). Two of these terms are straightforward:

ry is the typical scale of the transformed response and

ri is the typical scale of the regressor (ranges in both

cases). These are included so that we can treat both

vi and ni as scale free, remembering that the units of

b0
i and bi are ‘‘response units per regressor units.’’ This

makes it reasonable to use the same choices to link up

all of the matched coefficients, if we so choose. The

third term, ci, is a centering term for the two coefficients;

for this application we will choose ci 5 0 for all coeffi-

cients but in other applications a nonzero value might

be preferred (see, e.g., Goldstein and Rougier 2009).

The two Greek terms in (3), vi and ni, represent in-

dependent mean-zero uncertain quantities, for which

we must specify standard deviations. We will want to set

Sd(ni) small, so just for the moment we treat ni as zero.

In this case we have the following:

bi ’ (1 1 vi)b0
i , (4)

and Sd(vi) controls the probability that bi has a differ-

ent sign to b0
i Setting Sd(vi) small relative to 1 would be

akin to stating that bi and b0
i were very similar. For
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example, setting Sd(vi) 5 1/4 would state that a change

of sign in going from b0
i to bi was judged to be a four-

standard-deviation event; crudely, to have a probability

of less than 3% if vi is unimodal (Pukelsheim 1994), we

term this ‘‘very unlikely’’ (note that 3% is the largest

probability consistent with a unimodal distribution: for

a Gaussian distribution it would be a small fraction

of 1%). This is the value that we will choose for all

matched coefficients. The second Greek term, ni, is in-

cluded to ensure that bi can be uncertain even when b0
i

is zero or small. We judge that a small value is appro-

priate here and we choose Sd(ni) 5 1/20 for all matched

coefficients. With this value, it is very unlikely that re-

gressor i will explain more than one-fifth of the range

of the QUMP-emulator response in the case where

b0
i 5 0. It is not easy to choose values for these two

standard deviations (or the others below), and to some

extent we must be guided by diagnostics.

3) THE UNMATCHED COEFFICIENTS

The unmatched coefficients are QUMP-emulator re-

gression coefficients that do not appear in the CPNET

emulator. For these coefficients, we use a framework

similar to (3), namely,

bi 5 (ry/ri)ni. (5)

This is just a way of assigning an uncertainty to each

unmatched bi in terms of the scale-free quantity Sd(ni).

We have to decide how much of the response range we

believe these additional regressor terms can explain. Our

choice is Sd(ni) 5 1/16 for all the new coefficients, so that

it is very unlikely that a single regressor can explain more

than a quarter of the range of the response.

4) THE RESIDUAL

We judge that the residual variance for the QUMP

prior emulator will be less than that of the CPNET

emulator, because the recorded value of climate sensi-

tivity in the CPNET study includes an extra source of

uncertainty, namely, the asymptotic approximation to

the equilibrium value. Therefore, for s2 in the QUMP

prior emulator, we choose a mean value half of that

from the CPNET emulator, which can be inferred from

{a0, d0}, and choose a standard deviation equal to the

mean, to preserve a large amount of uncertainty. We

translate these two values into values for hyper-

parameters a and d by matching the mean and variance

of the inverse gamma distribution.

5) COMPLETING THE CALCULATION

Once we have computed {a, d}, we can use these two

values along with the values {a0, d0, m0, V0}, the

frameworks (3) and (5), and our choices for the stan-

dard deviations of the vi and ni to compute the hyper-

parameters m and V in the QUMP emulator, by

matching the mean and variance of the multivariate

Student’s t distribution.

d. Prior diagnostics

In constructing our QUMP prior emulator we have

used the CPNET ensemble in two ways. We have used it

indirectly, to select the transformation of the response

and to identify important interactions in the large-scale-

cloud parameters and the entrainment rate coefficient.

We have also used it directly to choose the prior

hyperparameters of the matched coefficients. In the

latter we have assigned specific values to quite impre-

cisely defined quantities. In an ideal world we would

arrive at such values through introspection, but in

practice it is impossible in a detailed analysis not to

incorporate some trial and error. For example, origi-

nally, we had larger values for Sd(vi) and Sd(ni), be-

cause at that stage we were screening out fewer of the

drifters. These choices were broadly satisfactory in

terms of the diagnostics described below. Now we have

decided to screen out more of the drifters (see sections

2a and 2b); we modify our choices, but we cannot escape

the knowledge of how our previous choices performed.

Statistical purists would regard this as a form of double

counting (the data influencing the prior), but a more

pragmatic view is that simple revisions of this kind,

taking care to avoid ‘‘overfitting,’’ tend to approximate

an informal type of higher-order learning that we have

chosen not to include in the formal analysis.

Our main diagnostic is to use our QUMP prior em-

ulator to predict the simulations in the QUMP ensem-

ble. Each individual prediction, taken marginally, has a

Student’s t distribution. In Fig. 3, we show all 281 pre-

dictions in terms of their median and 95% CI and the

actual value in each case. The predictions are ordered

by the median, which allows us to confirm that our as-

sessment of the hyperparameters has some predictive

power; that is, that our predictions are not insensitive

to the values for x. We can also confirm that there

is no apparent systematic misprediction with respect

to the response. This diagnostic suggests that we have

overstated uncertainty, as all 281 values are well within

the 95% CI that we predict. We could impose con-

straints on Var[g(x)] and use these to modify our sta-

tistical modeling of NIG hyperparameters such as V.

However, we are comfortable with the general princi-

ples we have adopted in setting the QUMP prior emu-

lator, and we prefer to leave things as they are, rather

than to invite the suspicion that we have in any way

overtuned our prior.
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Note that the cluster of similar simulations on the left

side of the bottom panel of Fig. 3 corresponds to the

simulations with single-variable perturbations in the un-

matched variables of the QUMP experiment. The CPNET

ensemble contains no information about these, and so,

according to our statistical choices, they are all pre-

dicted the same way. The reason that most of the dots in

this cluster are near the median is that most of the un-

matched QUMP variables are not important for climate

sensitivity (particularly the factors), and so varying

them makes little difference compared to the standard

value. Note, however, that variables that have only a

secondary impact on climate sensitivity can still have a

primary influence on other aspects of the simulated

climate response (see, e.g., Betts et al. 2007).

e. Posterior diagnostics

We also consider a second set of diagnostics, which

investigate the posterior predictive properties of the

QUMP emulator. One such diagnostic is broadly com-

parable with the univariate prior prediction given in

Fig. 3: the leave-one-out diagnostic (see, e.g., Rougier

et al. 2008, manuscript submitted to Technometrics). In

this case, we update the emulator with all but one sim-

ulation from the QUMP ensemble and then predict that

simulation. We can do this with all 281 simulations; the

result is shown in Fig. 4. Because 280 is almost the same

as 281, the width of the intervals in Fig. 4 is a good guide

to the amount of uncertainty we will have in our QUMP

emulator. By comparing the widths in Figs. 3 and 4, we

can quantify the contribution of the QUMP ensemble in

reducing our uncertainty about our chosen definition of

climate sensitivity in HadSM3. On the log scale, this

uncertainty has been reduced by more than 50%.

In all, 13 of the 281 actual values for log(climate

sensitivity) lie outside the 95% CI of the posterior

prediction. In terms of the binomial model, the proba-

bility of observing 13 or fewer successes out of 281 in-

dependent trials with p 5 0.05 is 0.46 (i.e., not unusual

and therefore supportive of our statistical modeling

choices); this is only suggestive, however, as our trials

are not independent because the predictions are corre-

lated across the ensemble members.

A sterner diagnostic is to consider the multivariate

behavior of a collection of predictions, taking this cor-

relation into account. For this purpose, we select every

third simulation and update using the others (‘‘leave 93

FIG. 3. Prior prediction diagnostic showing, for each simulation in the QUMP ensemble, the

prior median and 95% CI, along with the actual value of the response (dot). The evaluations are

ordered by the median.
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out’’). The joint distribution of all 93 prediction errors

after updating should be multivariate Student t—if

our statistical choices are reasonable—so that we can

transform the prediction errors to 93 uncorrelated stan-

dard Student t quantities. Figure 5 shows the result

as a quantile–quantile (QQ) plot and a histogram with

the standard Student t density overlaid. Here, it is clear

from the QQ plot, in particular, that there is some

misfitting, but the differences appear to be relatively

minor. These diagnostics appear to be broadly sup-

portive of our statistical choices.

4. Investigating main effects and interactions

As an illustration of the utility of our emulator, now

represented in terms of the updated hyperparameters

{a*, d*, m*, V*}, we investigate the response of HadSM3’s

climate sensitivity to the 31 variables.

a. Main effects

Figure 6 shows the effect of each continuous variable

in turn, with all of the other variables being set to their

standard values. At each specified value on the hori-

zontal axis, we show the median and two envelopes

showing the 50% and 95% CIs. Where we have them,

we have also shown the values from the corresponding

members of the QUMP ensemble as dots. A similar

figure for the factors is shown in Fig. 7.

As simple diagnostics, these two figures confirm that

our predictions are well calibrated (although this is not

as strict a test as leave one out, because the predicted

values are included in the emulator). They indicate that

the large-scale cloud parameters plus the entrainment

coefficient are the important variables (left column of

Fig. 6). In particular, climate sensitivity is highly sensitive

to low values of the entrainment rate coefficient (ENT).

Any analysis that accounts for uncertainty in the ‘‘cor-

rect’’ value of entrainment will be sensitive to the choice

of distribution; for example, uniform in ENT and uni-

form in the reciprocal of ENT on the full range given in

Table 1 will give quite different results (Rougier and

Sexton 2007), although our current work suggests that

the difference is diminished when ENT is calibrated us-

ing historical climate, which tends to rule out low values.

The main effects shown in these two figures can be

compared with the results in Sanderson et al. (2008a,

Fig. 6), bearing in mind that they are analyzing CPNET

climate sensitivity, not QUMP climate sensitivity, and

FIG. 4. Posterior prediction leave-one-out diagnostic showing, for each simulation in the

QUMP ensemble, the posterior median and 95% CI after updating with the other 280 evalu-

ations. The evaluations have the same ordering as in Fig. 3.
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use a different approach to emulation and uncertainty

estimation.

The main features of the comparison are

1) QUMP climate sensitivity appears to be systemati-

cally higher than CPNET climate sensitivity over the

full range of parameter values. The amount of the

difference varies but appears to be never less than

about 1/28C.

2) Our uncertainty about QUMP climate sensitivity is

systematically larger than Sanderson et al.’s (2008a)

uncertainty about CPNET climate sensitivity (s2 val-

ues of about 3/48C and 1/38C, respectively). This is

attributable in part to the much smaller number of

QUMP evaluations but also to our decision to treat

switches as factors, rather than as continuous varia-

bles (see immediately below).

3) The same main effects dominate, although the effect

of varying these dominant parameters seems to be

slightly more pronounced in QUMP than in CPNET.

The QUMP main effect in CT is concave, whereas it

is convex in CPNET.

One interesting feature of CPNET sensitivity is that

the main effects appear to be monotonic and have

quite simple shapes. This emerges as an inference from

Sanderson et al.’s (2008a) neural net emulator (which

has the flexibility to fit more complicated relationships)

but is a choice we impose on our QUMP emulator; al-

though, in a sense, it is an inference for us too, because

our emulator satisfies diagnostic checking.

At this point, we can clarify the practical implication

of having a correlation length of zero in the emulator

residual, u(x), discussed in section 3a. Ideally, our em-

ulator should interpolate the values in the ensemble to

within the uncertainty due to internal variability,

roughly 61/58C, but the uncertainty is typically 63/48C.

We cannot easily reduce this uncertainty by doing fur-

ther simulations of HadSM3, because it represents a

limitation of the statistical model, not of the data. Note,

however, that this uncertainty, although comparable in

size to the main effects of each variable, is much less

than the combined effect of several variables, as we now

illustrate.

b. Interactions

We examine the effect of interactions between the

large-scale-cloud variables and the entrainment rate in

determining HadSM3’s climate sensitivity. We look at

the response of climate sensitivity to ENT under dif-

ferent settings for RHC and RHCV, CT, and CW. The

result is shown in Fig. 8. This figure, in which we display

the response to a large set of carefully chosen combi-

nations of parameter values, can only be constructed

with an emulator, although broadly similar conclusions

can be drawn in other ways (Sanderson et al. 2008b).

Figure 8 shows the interaction between ENT, along

the horizontal axis, and CT and CW, shown in a four-

way layout of low and high values. The two panels vary

the setting of the switch RHC. The solid line in the left

panel is identical to the median line in the ENT panel of

Fig. 6. For clarity, observe that the dotted lines lie above

the dashed lines for each symbol style (CT’s main effect

is positive, as shown in Fig. 6), and the circles lie above

the triangles for each line style (CW’s main effect is

negative).

A detailed investigation of these interactions is be-

yond the scope of this paper, however they appear

qualitatively consistent with our understanding of the

main physical effects of the relevant variables, which we

now summarize. This summary illustrates that the avail-

ability of a skillful emulator, within the framework of a

perturbed physics ensemble in which particular climate

feedbacks can be traced back to specific variables, pro-

vides the potential to improve our understanding of how

detailed physical processes can combine to give rise to

different values of climate sensitivity.

First, consider the left panel, with RHC 5 on. The

effect of reducing ENT is to reduce mixing between air in

ascending convective plumes and the surrounding envi-

ronment, hence increasing the efficiency of convective

FIG. 5. Diagnostics from the joint prediction of every third

member of the QUMP ensemble, using the other members (i.e.,

leave 93 out). After transformation, each prediction error should

have a standard Student’s t distribution. (left) The QQ plot for the

prediction errors and (right) the histogram, with the Student’s t

density overlaid.
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moisture transport and precipitation. In the control

simulation with preindustrial CO2, for example, setting

ENT 5 0.6 (with all other variables kept at their standard

values) results in a global balance between precipitation

and evaporation being achieved with substantially lower

values of cloud and moisture throughout much of the

troposphere. In particular, relative humidity values in

ENT 5 0.6 are much lower in the tropics (Sanderson

FIG. 6. The effect on climate sensitivity of each of the continuous variables. All other variables are set to their

standard values. The line shows the median, the two envelopes show the pointwise 50% and 95% credible intervals.

The dots show actual values from the initial stage (single-parameter perturbations) of the QUMP experiment.
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et al. 2008b). The response to doubled CO2 in ENT 5

0.6 shows large increases in tropical relative humidity

between 300 and 850 hPa. This is accompanied by a

much weaker negative feedback in the clear-sky com-

ponent of longwave radiation (21.3 W m22 K21) than

is typically seen in other QUMP simulations or in sim-

ulations with other climate models (values generally

range from 21.7 to 22.0 W m22 K21; see Webb et al.

2006). The difference probably arises mainly from a

stronger contribution from water vapor to the clear-sky

feedback (Sanderson et al. 2008b) in ENT 5 0.6, com-

pared with typical simulated responses showing much

smaller changes in relative humidity (e.g., Soden

and Held 2006). If the clear-sky feedback in ENT 5 0.6

was altered to value more typical of other models,

the climate sensitivity would be reduced from 7.08 to

;48C.

In QUMP simulations, a major determinant of vari-

ations in climate sensitivity across parameter space (in

addition to the impact of ENT on clear-sky fluxes) arises

from variations in the contribution of a negative feed-

back associated with increases in the extent and thick-

ness of low cloud in regions characterized by stable

boundary layers (Webb et al. 2006). This feedback tends

to be more prevalent in model variants whose control

simulations contain relatively large amounts of low

cloud cover accompanied by relatively cool and moist

boundary layers. The effect of increasing CW and re-

ducing CT is to inhibit the conversion of cloud water

droplets to rain, and therefore favors these character-

istics, hence reducing climate sensitivity. We examined

a QUMP simulation with low CT, high CW, and low

ENT, finding that this did not show the large clear-sky

feedback discussed above, consistent with the lack of

sensitivity to ENT in the dashed-triangle curve of Fig. 8

(left panel). This suggests that the negative low-cloud

feedback in relatively stable regions is able to exert a

strong remote influence on surface temperature changes

in regions of tropical deep convection, limiting these to

a level small enough to avoid triggering the enhanced

FIG. 7. The effect on climate sensitivity of each of the factors. (left) Climate sensitivity

predicted at the standard settings. The other columns show the effect of changing one factor at a

time. The box shows the 50% CI, the whiskers show the 95% CI, and the central bar shows the

median. The dots show actual values from the initial stage of the QUMP experiment. The

vertical scale is the same as in Fig. 6.
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water vapor feedback seen in model variants with less

low cloud in their control simulations (the other curves

in Fig. 8, left panel). When CT and CW are perturbed to

high and low values, respectively, the negative low

cloud feedback tends to be weaker, hence increasing

climate sensitivity.

Now consider the effect of RHC; a simple comparison

of the two panels in Fig. 8 indicates that this effect is

small but not insubstantial. The impact of variables such

as CT and CW, which affect the model simulation once

cloud is present, is likely to be modulated by variables

that affect the ease with which cloud can be formed in

the first place. In this regard, a key variable is Rhcrit, the

threshold value of relative humidity for cloud formation

(see Table 1). When the switch RHC is off, Rhcrit takes

fixed values prescribed on each model level and we per-

turb the value used above the bottom 3 levels (RHCV).

Increasing RHCV reduces the amount of low cloud, and

we find that the effect of CT and CW on climate sensi-

tivity (at intermediate and high values of ENT) is smaller

for RHCV 5 0.9 (shown in Fig. 8, right panel) than

for lower values of RHCV 5 0.75 (not shown). When

RHC 5 on, the model determines Rhcrit dynamically,

based on the local variance of cloud water. This has the

effect of reducing Rhcrit during episodes of enhanced var-

iability, making it easier to form cloud during the passage

of simulated synoptic storms (Cusak et al. 1998). At high

values of ENT, the variation of climate sensitivity with CT

and CW when RHC 5 on is therefore larger than for

RHC 5 off and is in fact very similar to that found with

RHC 5 off and RHCV 5 0.75 (not shown).

5. Summary

We have constructed an emulator that allows us to

predict HadSM3’s climate sensitivity at any choice of

values for the 31 model parameters varied in the QUMP

experiment. This emulator is a statistical framework

FIG. 8. Interaction between the entrainment rate (ENT) and three large-scale-cloud variables.

Each line shows the median response of climate sensitivity to ENT. For the black line, the

variables CT and CW are at their standard settings; (left) the black line is identical to the ENT

line in Fig. 6. Four other lines are shown: line styles indicate values of CT and symbols indicate

values of CW. The shaded envelope indicates the pointwise 50% CI for each line (note that it is

50%, not 95%). (left) RHC is on; (right) RHC is off and RHCV 5 0.9.

1 JULY 2009 R O U G I E R E T A L . 3555



that allows us to quantify the uncertainty in our pre-

dictions, in conjunction with judgments about the

‘‘best’’ value of the parameters and the model discrep-

ancy (Rougier 2007; Rougier and Sexton 2007). Because

of the complexity of the model and, in particular, the

combination of both continuous and discrete parame-

ters, we are obliged to compromise in our statistical

framework, which leaves us with an irreducible uncer-

tainty of about 63/48C in our 95% CIs. This ‘‘noise,’’

however, is smaller than the ‘‘signal’’ coming from

varying the parameters and we are able to identify im-

portant sources of variation in the climate sensitivity of

HadSM3, which are the large-scale-cloud parameters

and the entrainment rate coefficient, and investigate the

interaction between these parameters, which is complex.

We constructed our emulator from two ensembles.

These came from the same underlying model but in dif-

ferent treatments. The first ensemble, from the CPNET

experiment, comprised a large number of relatively quick

simulations over just six of the model parameters. The

second ensemble, from the QUMP experiment, com-

prised a much smaller number of more time-consuming

simulations, over 31 model parameters. Simulating a

model in different configurations is a natural way to in-

crease the efficiency of an experiment, although more

typically the difference in configurations is in the reso-

lution of the solver (Craig et al. 1997; Kennedy and

O’Hagan 2000). Ideally, the two versions would be run

interactively and statistical tools would be used to

choose, sequentially, which version to run and at what

value of the model parameters to run it. In our case,

were we to run both experiments again, we might have

used the emulator from the CPNET ensemble to iden-

tify the presence of important high-order interactions

and then designed the QUMP ensemble to learn more

about these; this type of sequential approach is dis-

cussed further in Rougier and Sexton (2007).

Any such approach that uses the same model (or

similar models) in multiple configurations requires a

method for assimilating both ensembles into an infer-

ence. This will inevitably require judgments about how

similar the configurations are. We have chosen to make

our judgments explicit, adopting a Bayesian statistical

approach that obliges us to quantify that similarity in

terms of the relationship between the emulators for

each configuration. Our statistical framework links com-

mon coefficients in the two emulators, using a tractable

parametric relationship [Eq. (3)] that reduces the quan-

tification to specifying a handful of values. This relation-

ship reduces the burden on the expert but is undoubtedly

simplistic. It could easily be generalized, for example, by

applying a different relationship within each parame-

terization scheme.

Throughout the paper we have exercised our judg-

ment to create the best emulator that we can, subject to

various constraints such as transparency and tractabil-

ity; we favor these constraints because they allow our

approach to be more easily replicated. Where we make

choices, we have stated them clearly and backed them

up with diagnostic information. But we do not claim that

these choices are uniquely acceptable across the whole

spectrum of climate experts, and consequently our re-

sults are very much our results. There is no single best

emulator for HadSM3. We have provided a framework,

within which it is possible to work out a number of

different choices, and we have illustrated one particular

choice, namely, our own.
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