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1. Introduction

Dual polar schemes are well-known association schemes [1,2]. Applying the matrix method, Wan
et al. [5] computed all parameters of dual polar schemes; Wang et al. [4,8,9] determined all subcon-
stituents of dual polar graphs. As a generalization of bilinear forms schemes, Wang et al. [ 7] constructed
association schemes in attenuated spaces, and computed their parameters. As a generalization of dual
polar schemes, Guo et al. [3] constructed association schemes in singular classical spaces. In this paper,
we continue this research, and consider the similar problems in singular pseudo-symplectic spaces.
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Let F4 be a finite field with q elements, where q is a power of 2. Let E denote the subspace of

[Ffl"“*’ generated by e3,15.41, 204542, - - - » €20+5+1, Where e; is the row vector in Fé”*”’ whose ith
coordinate is 1 and all other coordinates are 0.
Let
0o I® @, if T =0,
O] ift =
Ssz:1 = I 0 , where A = ), ifr =1,
- A 0 1y o
o® 1 o1) HrTES

For § =1 or 2, the singular pseudo-symplectic group of degree 2v + § 4- 1 over [y, denoted by
Psyy4s41,2v+5(Fg), consists of all nonsingular matrices T over Fq satisfying TS, 5. Tt = Svs:1- The
vector space Fé”*‘”’ together with the right multiplication action of Psyy, 5112145 (Fg) is called the
(2v + 8 + I)-dimensional singular pseudo-symplectic space over Fq. If | = 0, PS3y 4541, 2045 (Fq) is the
pseudo-symplectic group, and [F§”+5+l is the pseudo-symplectic space.

For an m-dimensional subspace P of [Fé”"’“’, we use the same letter P to denote the m x (2v +
& + I) matrix of rank m whose rows span the subspace P and call the matrix P a matrix representation
of the subspace P. An m-dimensional subspace P in the (2v 4 § 4 [)-dimensional singular pseudo-
symplectic space is a subspace of type (m,2s + t,s,¢&,k), where 1 = 0,1 0r 2,¢ = 0or 1, if dim(P N
E) = kand PS, 5. (P! is cogredient to Ss,z: m—2s— and P does not or does contain a vector of the form

{(0,0,...,0,1,X2V+2,...,XZU_H_H), @f(S = 1,
0,0,...,0,1,0,X2p43, - - -, X2p4241), ifd =2,

corresponding to the cases ¢ = 0 or 1, respectively. In particular, subspaces of type (v + ¢,0,0, ¢, 0)
are called maximal totally isotropic subspaces.

Let X = mM(m,2s + t,s,&,k; 2v 4+ 8 4+ [,2v + §) denote the set of all subspaces of type (m, 2s +
T,s, &, k) of [FL2]”+‘3+’. By [6, Theorem 4.18], X is an orbit under the action of P, 4 s 11,2045 ([Fq). Hence X
forms an association scheme according to all the orbits of the action of Psy, 4 51,2045 (Fg) onX x X (see
[1]). In this paper, we determine all these orbits, and compute all the parameters of these association
schemes.

This paperis organized as follows. In Section 2, we construct association schemes based on maximal
isotropic subspaces in pseudo-symplectic spaces, and compute their parameters. In Section 3, we
discuss the corresponding problem in singular pseudo-symplectic spaces.

2. Thecasel =0

In this section we study the association schemes based on maximal isotropic subspaces in pseudo-
symplectic spaces, and compute their parameters.
LetX = M(v 4+ ¢,0,0,&; 2v + §), where § = 1,0r § = 2 and &€ = 1. Define
Ri={F,Q)eX xX|dim(P' NQ)=v+86§—1—i).
Then the configuration (X, {Ri}o <i <) forms a symmetric association scheme isomorphic to the asso-

ciation scheme in [5, Chapter 7, Theorem 8].
Now we consider the case § = 2and & = 0.

Theorem 2.1. Let X = M(v,0,0,0; 2v + 2). For any two elements of X

2w 11 w11
P= (P 2 0), Q= (¢ w o),

define (P',Q’) € Riq) ifand only if dim(P' N Q') + a = dim(P] N Q;) = v — i. Then the configuration

X = (X, {Riia)}o<i<v—a, 0<a<1) forms a symmetric association scheme of class 2v, and with parameters

v and nq given by (1) and (2); intersection numbers pg%)) w0 ’s given by (5) and (6).
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Proof. Similar to [3, Lemma 2.1], each R(;q) is an orbit of Psy,12(Fg) on X X X, and X is a symmetric
association scheme. Now we compute its parameters. Pick

(v—i,i) (v—i)
) A,) ;{0 I 0 0
Py =™ o), Q1—< o 0 0 o
By [6, Theorem 4.14]

v
v=|M(»00,0;2v+2)=q"[]@+D. (1)
t=1

For P’ = (P}, 0"?) € X, niq is the number of subspaces
v 1 1
U/: (U; ut 0) eX

satisfying (P’,U’) € R(i,q)- Then U{ is a maximal totally isotropic subspace in [Fé” intersecting P ata
(v — i)-dimensional subspace. By [5, Chapter 7, Theorem 8], there are q"(‘”’l)/2 [:)] choices for Uj. By
the transitivity of Psy,2(Fg), the number of u is independent of the choice of Uj. Pick U; = Q. Then
U’ has the unique matrix representation of the form

i v—i i v—=i 1 1

0 I 0 0 u 0\w—i

00 I 0 uo)i°
which implies that

» » v . v
iy = (@7 — 1) /2 [1] and nggy = g2 [1] . (2)

Next, we compute the intersection numbers pg"%)) w0)" By the transitivity of Psy,,2(Fg) on R(p),
we pick P’ = (P;, 0"?) and Q" = (Q{, 0"?). Then (P’,Q’) € R(i), and pg"%)) (o) i the number of
subspaces

v 1 1
S'= (5] w 0)eX
satisfying (P',S’) € R(spy and (5',Q’) € Ru0). By [5, Chapter 7, Theorem 8], there are
= > p@

a+y=i, f+p=v—i
a+p=u, p+p+y=s

choices for S}, where
v—i]
"5 11 @ -

pla) = qL%J (L& ]+1)+pit+ 22D t=y+1

5] a—p '
[MT@—-1TIl@—-1
t=1 t=1

By the transitivity of Psp, 15 ([Fg), the number of w is independent of the choice of S;.By [5, Chapter 7,
Lemma 7] we may pick

B 0
I 0@ o 0 <0 o> 0 0 O
si=|o o 1 o#» 0 o o o[, (3)
0 0 0 0 0 1 o0 o
0 0 0 0 0 o o [®
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where
0 1®
1® 0 , ifu=2p+1,
0
B= 0 =1 (4)
o [» (p—-1) .
(1(”) ) or |1 0 0 , if u=2p.
1

Since dim(P; N Qq N'S}) = B, we obtain
dim((P; N'S)) + (Q; N'S))) = dim(P; NS}) +dim(Q; NS)) —B=v+p—s—u+i
and the number of vectors w is "~ (VtP—s—utD) — gstu=i=p ¢ follows that

0 o
Py = > @ p@). (5)
a+y=i, f+p=v—i
ato=u, utpty=s

For a = 0 or 1, we claim that
soi (@) (i.a) @ - ) i _ @0 (i.a) 6
T Psy = Pisoy o) T Pisoy w1y 4 —T)IPsy = P51y wo) T Pisa) wi): (6)
Pick P’ = (P}, 0"?),Q" = (Q}, 0?)),and let S’ = (S}, w', 0) € X such that
dim(P; + S7) = dim(P’ +5') = v + s and dim(Q; +S}) = v + u.

By the transitivity of Ps,42(Fq), the number of vectors w is independent of the choice of Sj. Pick S
as (3). Then the number of vectors w is ¢°, which implies that

i (1,0) (i,0)
TPsu = Piso) wo) T Piso) ui)-
Since
(i0) (i0) (i,0) (i,0)
Pisoy o) T Pisoy ) T Pisit) oy T Pisit)y )y = »

we obtain (q" — qs)p;u = p?s?)) wo) T p?sq)) w1 Similarly, (6) also holds fora = 1. [J

For brevity, by (6) we may assume that

(i.a) .
Pspywe) = > p(e; a,b,c).
a+y=i,f+p=v—i
a+p=u, u+p+y=s

3. Thecase!l > 0

In this section we study the association schemes based on maximal totally isotropic subspaces in
singular pseudo-symplectic spaces, and compute their parameters.
LetX = M(v +¢€,0,0,¢,0; 2v+ 8§ 4+ 1,2v 4 §).1f6 = 1and € = 0, then for any two elements of
X
2v 1 1 2v 1

I
P=(Pp 0 P) a= ( 0Q")

define (P,Q) € Rjj—i if and only if dim(P N Q) = v — j,dim(P; N Q;) = v — i. Then the configu-
ration (X, {R(ij—i)}o<i<v, 0<j—i<min{v—iJ}) forms a symmetric association scheme isomorphic to the
association scheme in [3, Theorem 1.1].

Now we consider the case § = 2and ¢ = 1.
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Theorem 3.1. Let X = M(v +1,0,0,1,0; 2v + 2 + [, 2v + 2). For any two elements of X

2v 1 1 2v 1 1 1
p— (P OOP 0= Q 00 Q"
010PR) 010 Q)
define (P,Q) € Rij—) if and only if dim(P N Q) = v + 1 — j, dim(P; N Q;) = v — i. Then the config-
uration X = (X, {Rij—i)}o<i<v, 0<j—i<min{v+1—i1}) forms a symmetric association scheme with param-
eters d, v and n(;j_;) given by (7), (8) and (9); intersection numbers pglsf:s)) (wy—u) 's given by (14) and
(15).

o =

Proof. Similar to [3, Lemma 2.1], each R(;j_; is an orbit of Psyy 24 2v42(Fg) on X x X, and X is a
symmetric association scheme. Now we compute its parameters.

By the definition of R(;j_; we have that 0<i<v,0<v+1—i—(v+1—j)<v+1—iand
0<v+1+j— (v+1+1i)<LItfollows that this scheme has

d= -1 ~|—Xv:(1 + min{v + 1 —1i,1}) (7)
i=0

classes. By [6, Theorem 4.20],

v
v=q""'T] + 1. (8)
i=1
Pick
o=th =g 0 00
OE0) A

P/=<IO Oo (1) 8), Q=] o 0 o o0vD 1 o
0 o D 0 0 0

ForP = (P/, 0D, n(j—i is the number of subspaces

42 1

U= ( U’ U”) ex
satisfying (P, U) € R, j—i). Then U’ is a subspace of type (v + 1,0,0,1) in [Fé"‘Irz intersecting P’ at a
subspace of type (v + 1 — i,0,0,1) in F2"*2, By [5, Chapter 7, Theorem 8] there are ¢'(*+1)/2 [‘,’] choices

for U'. By the transitivity of Psy,42-41, 20+2(Fq), we may take U’ = Q’. Then U has the unique matrix
representation of the form

1 1
0 A] v—i
0 A |1

0 A3 /i

i v—i v—i

0 I
0 0
0 0

where rank @;) =j —i. By [5, Chapter 1, Theorem 5], there are

— oo ~
coo
o= o=

. I
NG =& 041 =) ) =g [PELE] T o
t=l— (i) 1

choices for A1, Ay, which implies that

. l
ili(i i—i)(j—i— vi[v+1—i
nj—iy = ¢' DA WZ[,—H i ] [T @-. 9)
t=l—(j—i)+1
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Now we compute the intersection numbers. By the transitivity of Psyy 241 2042 (Fg) on R(ij—i), we
may choose two fixed maximal totally isotropic subspaces P = (P’, 0"D) and Q = (Q/, Q”), where

, (16D Uitz
Q _( 0 0 :

Then (P,Q) € Rj—i),and pgls"t__ls)) (wv—1) is the number of subspaces

2v+2 1
S= (S $§)ex

satisfying (P,S) € R(s—s) and (S, Q) € Rqv—u). By [5, Chapter 7, Theorem 8] there are p;u choices for
S’. By the transitivity of Psy 4241, 2v+2(Fg), the number of matrices S” is independent of the choice of

S’. Pick
(@) B 0
I 0 0 0 <o o) 0 0 0 0 O
, o 0 I 00 0 0 0 0 0 O
S=lo o o0 o 0 o o o 1 ol (10)
0 0 0 0 0 ™ o 0 o0 o0
0 0 0 0 0 o I®» o0 o0
where B is given by (4). Write
Al\s—p—vV
A lv—B—s
"o A3 :8
S =1al1
As |y
As/ p

Since dim(P’ N Q' N'S’) = B + 1, there are the following two cases to be considered.
Case 1: j —i< B + 1. Then (P,S) € R(st—s) and (S,Q) € Rqyv—y) if and only if Ay, A3, A4 and As
satisfy

Ay
rank [As | =t —s (11)
Aq

rank ((23) B A7) =v—u (12)

As

and

where

1G=D U—il+i=))
A7 = oB+1+i—ij—i) 0 :

Since dim(P’ N Q' NS’) = B+ 1andAzisa (v — B — s) x I matrix, we have
max{t —s — (v — B —5),0} <O = rank (22) <min{t —s, 8 + 1}.

Similarly, since As is a ¥ x | matrix, max{v — u — y,0} <& <min{v — u, 8 + 1}, where

& = rank <<23> —A7> . (13)

By [3, Proposition 2.4] there are N{{;((,B + 1) x I) choices of (gi) with rank 6 satisfying (13). Once the
(’zi) is chosen, by [7, Lemma 2.4] there are q(”’s’ﬁ)eN(t —s—0; (v—s—pB) x (I —0)) choices of
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Aj satisfying (11), and there are qysN(v —u—§&;y x (I —&)) choices of A5 satisfying (12). Therefore
there are

min{t—s,f+1} min{v—u,B+1} o
i = > Yoo PN B+ D x D2
6 = max{t—s—(v—B—s),0} £ = max{v—u—y, 0}
choicesforA,, As,As,As,where 2 = N(t —s—0; (v—s—B) x I—0)Nv—u—§&;y x (I-§&)).
Since A; and Ag may be any (s — p — y) x land p x I matrices over [y, respectively, there are q(s_y)l
choices for Aq, Ag. It follows that there are aj_fq(s_”)’ choices of S” for a fixed S’; and so
(ij—0)
p(s,t—s) (u,v—u)
min{t—s,8+1} min{v—u,+1} o
= > > > g*p(@INy £ (B+1) x ) 2,(14)

a+y=i,f+p=v—i H=max{t—s—(v—pB—s),0} E=max{v—u—y,0}
a+p=u, u+p+y=s

where A = (s — y)I4+ (v —s — B)0 + y&.
Case2:j —i> B + 1.Similar to Case 1, there are azg+1¢ 7! choices of S” for a fixed §'. Hence
(ij—i)
p(s,t—s) (u,v—u)
min{t—s,8+1} min{v—u,8+1}

> 3 > N B+ xne. O (15)

a+y=i,f+p=v—i §=max{t—s—(v—pB—s),0} E=max{v—u—y,0}
a+p=u, p+p+y=s

Next we consider the case § = 2 and e = 0.

Theorem 3.2. Let X = M(v,0,0,0,0; 2v + 2 + 1, 2v + 2). For any two elements of X
2v 1 1 1 2v 1 1 l
P = (P; Zt 0 P//), Q — (Q{ Wt 0 Q//),
define (P,Q) € R(jqj—i—q) if and only if
dim(P; N Q) = dim((P; zZ)N(@Q w')) +a=v—i, dim(PNQ)=v —j.
Then the configuration X = (X, {R(igj—i—a)}o<i<v—a 0<a<1, 0<j—i—a<min{v—i—ql}) fOrms a symmetric
association scheme with parameters d, v and n q j—i—q) given by (16), (17) and (18); intersection numbers

Pt hev—u—c) S 8iven by (22), (23), (28), (29). (34), (35).

Proof. Similar to [3, Lemma 2.1], each R(j g j—i—q) is an orbit of Psy, 124 12v42(Fg) on X X X, and x is a
symmetric association scheme. Now we compute its parameters.

By the definition of R(jqj—i—q) we havethat0<i<v —a, a=00r,0<v —i—a— (v —j)<v —
i—aand0<v +j— (v + i+ a) <LItfollows that this scheme has

v
d = min{v, I} + Y 2(1 + min{v — i,1}) (16)
i=1
classes. By [6, Theorem 4.20],

v = qv(l+l) ]_[(qi +1). (17)

i=1
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Pick
V:QM Owwm»
0 @ o o 0@ 0 x 0
Q' =|ov7ed o | 0o o 0¥ o o0f,
0 o o 19 o 0 0 0

where x = 1 or empty according to a = 1 or 0, respectively. For P = (P/, O(”")), N(iaj—i—a) 1S the
number of subspaces

2v+2 |
U= (U U")ex

satisfying (P, U) € R(jqj—i—q). By Theorem 2.1, there are n; q) (see (2)) choices for U’. By the transitivity
of Pspy4241,2v42(Fq), we may take U’ = Q’.Then U has the unique matrix representation of the form

i a v—i—a i a v—i—a 1 1 |

0I O 00 O x 0 Aj\a

00 I 00 O O0O0A]|v—i—a,
00 O I 0 O OO0 A3
where rank A, = j — i — a. By [5, Chapter 1, Theorem 5], there are

1

. I
. . i—i—a)(—i—a— v—i—a
N(}—l—a;(v—l—a)xl)zq("a)("al)/z[j_i_a] I1 (-1
t=I—(j—i—a)+1
choices for A,, which implies that

. !
) PO Y—i—a
N(igj—i—a) = n(i,a)q(l+a)l+(/ i—a)(j—i—a—1)/2 [] i a] l_[ (qt —, (18)
t=I—(j—i—a)+1

where n(; ) is given by (2).

Now we compute the intersection numbers. By the transitivity of Ps, 4241, 2v42(Fg) on R(igj—i—a),
we may choose two fixed maximal totally isotropic subspaces P = (P, 0¢"9) and Q = (Q/, @),
where

0@ 0 0
Q” — 0 I(j—i—a) O(j—i—a,H—i—j)
0 0 0
Then (P,Q) € R(igj—i—a) and pE'S'LJ:S_f g) (ucw—u_c) 1S the number of subspaces

2v+2 1
S= (8 $§")ex

satisfying (P,S) € Rsp,r—s—b) and (5,Q) € R(ycv—u—c). By Theorem 2.1 there are pg%)) wo) choices for

S’. By the transitivity of Psy, 1241, 2042 (Fq), the number of matrices S” is independent of the choice of
S’. Then there are the following three cases to be considered:
Case 1: b = 0 and ¢ = a. Without loss of generality, we may pick S’ as (10). Write

AN\S—p—Yy
Ay lv—B—s
n_ |A3]a
5= A4 ,B—a
As |y

Ac/ p
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Since dim(P’ N Q' N'S’) = B — a, there are the following two cases to be considered:
Case11:j—i—a<p —a.Then (P,S) € Ris0,—s) and (5,Q) € Ry av—u—q) if and only if Ay, A3, Ay
and As satisfy

Az
rank [As | =t —s (19)

Agq
and
Ay — A7\
rank( As >_v—u—a, (20)
where
I(]’*i*a) O(ififa.l+i+a7j)
A7 = yBti-ii-i—a 0 :

Since dim(P’ N Q' NS") = B — a,A; and Az are (v — B — s) x land a x [ matrices, respectively, we
have

max{t —s— (v — B —s+a),0} <O = rank Ay <minf{t —s, 8 — a}.
Similarly, since As isa y x [ matrix, max{v —u —a — y,0} <& <min{v — u — a, 8 — a}, where

& =rank (A4 — Ay). (21)

By [3, Proposition 2.4] there are Njé:;*a((ﬂ — a) x 1) choices of A4 with rank 6 satisfying (21). Once
the A4 is chosen, by [7, Lemma 2.4] there are ¢ S A+ON({t —s —0; (v —s — B +a) x (I —0))
choices of A,, Az satisfying (19), and there are " N(v — u — a — &;y x (I — &)) choices of A5 satis-
fying (20). Therefore there are
min{t—s,f—a} min{v—u—a,f—a} o
Gj—ia = > > qUTSTPEOTYE N TN (B —a) x ) 2
f=max{t—s—(v—pB—s+a),0} E=max{v—u—a—y, 0}
choicesforAs, A3, As, As,where 2 = N(t —s — 0; (v —s — B+a)x(I—0)Nv—u—a—§&;y X
(I —§&)). Since A; and Ag may be any (s — p — y) x land p x I matrices over Fg, respectively, there
are ¢~ choices for Ay, Ag. It follows that there are &;_;_oq" ! choices of $” for a fixed S’; and so
j

(aj—id) min{t—s,5—a} min{v—u—a,f—a}
iaj—i—a _
p(s,O,t—s) (u,av—u—a) — Z Z
a+y=i,f+p=v—i f=max{t—s—(v—BF—s+a),0} E=max{v—u—a—y,0}
a+p=u, p+p+y=s

p(e: 0,0,0)¢" Ny (B — ) x ) &2, (22)

where A = (v —s — B+ ) + y& + (s — y)L
Case 1.2:j — i — a > B — a. Similar to Case 1.1, there are &g_,q“ 7! choices of S” for a fixed S'.
Hence
(aj—id) min{t—s,5—a} min{v—u—a,f—a}
iaj—i—a _
p(s,O,t—s) (u,av—u—a) — Z Z Z
a+y=i,f+p=v—i f=max{t—s—(v—B—s+a),0} §=max{v—u—a—y,0}
a+p=u, u+p+y=s

p(a; a0, a)q;‘Ng;a((,B —a) x ) 2. (23)

Case 2: a = b = 0 and ¢ = 1. Without loss of generality, we may pick
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(o) B 0
I 0 0 0 (o o) 0 0 0O 0 O
s=]0 o 1 0¥” 0 o 0o o o0 of, (24)
0 0 0 0 0 ™ o o & o
0 0 0 0 0 o o I® o0 o
where B is given by (4), and e; = (1,0,...,0). Write
Al\s—p—vV
Alv—pB—s
1" A3 /3
S =1, 1
A5 )/—1
As P

Since dim(P’ N Q' N'S") = B, there are the following two cases to be considered:
Case2.1:j — i< B.Then (P,S) € Ris0¢—s)and (5,Q) € R 1,v—u—1) ifand only ifAy, A3 and As satisfy

A\
rank <A3> =t—s (25)
and
rank <A3A_5A7> =v—u-—1, (26)
where
10D oU—il+i—))
A7 =\ o(Bti-ii— 0 :

Since dim(P’ N Q' NS’) = B,Ayisa (v — B — s) x [ matrix, we have
max{t —s — (v — B —5),0} <6 = rank A3 <min{t — s, §}.
Similarly, since As isa (y — 1) x I matrix, max{v — u — y,0} <& <min{v — u — 1, 8}, where
& =rank(A3 — Ay). (27)

By [3, Proposition 2.4], there are Njé;i(ﬁ X 1) choices of A;3 with rank € satisfying (27). Once the As
is chosen, by [7, Lemma 2.4], there are ¢"S"PN(t —s —0; (v — s — B) x (I — 0)) choices of A,
satisfying (25), and there are q(y_])SN(v —u—1—-&;(y —1) x (I —&)) choices of A5 satisfying
(26). Therefore there are
min{t—s,0} min{v—u—1,8} o _
o= ¥ S DN )
f=max{t—s—(v—pB—s), 0} E=max{v—u—y,0}

choices for Ay, A3, As, where 2 = N(t —s — 0; (v —s — B x(U—0)Nv—-u—1—-§&(y—1)x
(1—&)).Since Ay, A4 and Ag may beany (s — p — y) x I, 1 x land p x | matrices over [Fg, respec-
tively, there are g~¥ V! choices for Ay, As, Ag. It follows that there are &j_,-q(s_y"’l)l choices of S” for
afixed S’; and so

(1,0j—1) _
p(s,O,t—s) (ulyv—u—-1) — Z
a+y=i,f+p=v—i f=max{t—s—(v—pB—s),0} E=max{v—u—y, 0}
a+p=u, u+p+y=s

p(er; 0,0,1)g Ny (B x 1) 2, (28)

min{t—s,8} min{v—u—1,8}

where A=W —s—B)O+( —1DE+(—y + 1L
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Case 2.2:j — i > B.Similar to Case 2.1, there are &gq(s_V‘H)l choices of S” for a fixed S’. Hence

min{t—s,B} min{v—u—1,8}

(i,04—1)
p(s,O,tfs) (u,1,v—u—1) = Z Z Z
a+y=i,f+p=v—i f=max{t—s—(v—p—s),0} E=max{v—u—y,0}
a+p=u, u+p+y=s

p(e; 0,0, DG NJ (B x 1) 2. (29)

Case 3: a = b = ¢ = 1. Without loss of generality, we may pick

B 0
[ 0@y o 0 (0 0) 0 0 O 0 o0
s={o o 1 o#» 0 0 0 o0 het of, (30)
0 0 0 0 0 ™ o0 o0 0
0 0 0 0 0 0 0 I® o o0

where B is given by (4),e; = (1,0,...,0) and 1 # h € F4\{0}. Write

AN\s—p—vV
A U—ﬂ—S
/" A3z 1
S =1 -1
As 14
As o

Since dim(P’ N Q"' N'S’) = B — 1, there are the following two cases to be considered:
Case3.1:j—i—1<pB — 1.Then (P,S) € R(s1,t—s—1) and (S,Q) € R(y,1,v—u—1) if and only if Ay, A4
and As satisfy

A\
ranl<<A4>—t—s—1 (31)
and
rank <A4A_5A7> =v—u—1, (32)
where
[G—=i=1) oU—i=1I+i+1-))
A7 =\ gB+iiij—i-1) 0 :

Since dim(P’ N Q' NS’) = B —1andAzisa (v — B — s) x [ matrix, we have
max{t —s—1— (v — B8 —5),0}<f =rank Ay <min{t —s — 1,8 — 1}.
Similarly, since As isa y x I matrix, max{v —u —y — 1,0} <& <min{v —u — 1, 8 — 1}, where
& =rank(A4 — A7). (33)

By [3, Proposition 2.4], there are Né)g*] ((B — 1) x 1) choices of A4 withrank 8 satisfying (33). Once the
A4 is chosen, by [7, Lemma 2.4], there are g SNt —s —1—6; (v —s — B) x (I — 80)) choices
of A, satisfying (31), and there are ¢*sN(v —u— 1 — &;y x (I — &)) choices of A5 satisfying (32).
Therefore there are

&j—i—1
min{t—s—1,—1} min{v—u—1,8—1} i
= 2 Y TN B - x D2
f=max{t—s—1—(v—pB—s),0} E=max{v—u—1—y,0} '
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choices for Ay, As, As, Where 2 = Nt—s—1—-6;v—s—8)x(I—0)Nv—u—1—-§&;y x
(I—§)).Since A, A3 and Ag may beany (s — p — y) x I, 1 x land p x I matrices over [g, respec-
tively, there are g®~7+V! choices for A;, Az, Ag. It follows that there are Gj—iz1 g7+ choices of S”
for a fixed S’; and so

min{t—s—1,6—1} min{v—u—1,—1}
(i1j—i—1) _
P(S‘M,S,]) (ul,vy—u—1) — Z Z
a+ty=i,f+p=v—i f=max{t—s—1—(v—pB—s),0} §=max{v—u—1—y,0}
a+p=u, u+p+y=s

pa: 1.1, DN (B - 1) x ) &, (34)

where A = w—s—pB0+yE+(G—y+1L
Case 3.2:j—i—1 > B — 1. Similar to Case 3.1, there are 02,3_151(5’7“)’ choices of S for a fixed
S’. Hence

(i 1jmie1) min{t—s—1,6—1} min{v—u—1,8—1}

i1j—i— _

p(s,l,tfsfl) (ulv—u—1) — Z Z Z
a+y=i,f+p=v—i f=max{t—s—1—(v—B—s),0} E=max{v—u—1—y,0}
a+p=u, u+p+y=s

- .
p(a; 1,1, )g" N (B — 1) x 1) 2. (35)
By above discussion, the proof of the theorem is completed. []

By the basic equalities of parameters of an association scheme, all the parameters of the scheme
may be derived.
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