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1. Introduction

Many phenomena in physics and engineering are described by nonlinear partial differential equations (PDEs). When we
want to understand the physical mechanism of phenomena in nature, described by nonlinear PDEs, exact solution for the
nonlinear PDEs have been explored. Thus the methods for finding exact solutions for the governing equations have to be
developed. To study exact solutions of nonlinear PDEs has become one of the most important topics in mathematical physics.
For instances the nonlinear wave phenomena observed in fluid dynamics, plasma, and optical fiber are often modeled by the
bell shaped sech solutions and the kink shaped tanh solutions. The availability of these exact solutions for those nonlinear
equations can greatly facilitate the verification of numerical solvers on the stability analysis of the solutions.

Nonlinear differential equations have many wide array of application of many fields, which describe the motion of
the isolated waves, localized in a small part of space, such as in physics, in which applications extend over magnetofluid
dynamics, water surface gravity waves, electromagnetic radiation reactions, and ion acoustic waves in plasmas, biology,
chemistry, and several other fields.

Looking for exact solitary wave solutions to nonlinear evolution equations has long been a major concern for both
mathematicians and physicists. These solutions may describe various phenomena in physics and other fields, such as solitons
and propagation with a finite speed, and thus they may give more insight into the physical aspects of the problems.

In order to obtain the periodic wave and soliton solutions of nonlinear evolution equations, a number of methods have
been proposed, such as the homogenous balance method [ 1-9], the hyperbolic function expansion method [10,11], the sine-
cosine method [12], the nonlinear transformation method [13-15] and the trial function method [16,17]. These methods,
however, can only lead to the shock or solitary wave solutions, or the periodic wave solutions in terms of the elementary
functions can not be used to derive the generalized periodic solutions.

In this paper we used the Jacobi elliptic functions to obtain the solitary wave solutions that were found by the previous
methods.
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2. Summary of the method

This method can be summarized as follows: for a given system of nonlinear evolution equation, say, in three variables
F(u, v, w, g, vy, we, Uy, Vx, W, Ust, Vs, Wxes - --) =0,
G(u, v, w, Ug, Vr, We, Uy, Vx, Wy, Uxe, Vs, Wxe, - --) = 0,
K(u, v, w, ug, ve, we, Uy, Vx, Wy, Ust, Vxt> Wyt -+ ) = 0. (1)
We seek the following wave traveling solutions:
ux, ) =u(@), v, t)=vl), wkit)=w(), ¢=kx+iy+vt+d, (2)

which are important physical significance, and k and A are constants to be determined. Then system (1) reduce to a system
of nonlinear ordinary equations.

FO(U, v, w, U{, Ve, w;, U{:, v“, w;:, .. ) = 0,

GQ(U, v, w, U§, Ve, w;, U{z, Uz:;, U){z, .. ) = 0,

Ko(u,l), w,u;,v;,w{,u;{,U“,w“,...) =0. (3)

Taking the following transformation

n

u@) =Y af'(@),

i=0
(@) =Y bfi(Q),
i=0

n

w(@) =Y af'¢) 4)

i=0

inwhichag; i =0,1,2,...,n),b;(i=0,1,2,...,n)andc; (i = 0,1, 2,...,n) are real constants to be determined. The
balancing number n is a positive integer which can be determined by balancing the highest order derivative terms with the
highest power nonlinear terms in Eq. (3) and f (¢) expresses the solutions of the following new anzata [18]

b
f/(s“):\/T+af2(§)+§f4(§)+%f6(€). (5)

Where r, a, b and c are real parameters and the prime means the derivative with respect to ¢.

We substitute anzatz Eqs. (5) and (4) into Eq. (3) and with computerized symbolic computation, we obtain a set of
algebraic equations forr, a, b, , c, k, A, a; and b;.

Inserting each solutions of this set of algebraic equations into (4) and the solutions of Eq. (5) and setting { = kx + At,
then we obtain the exact traveling wave solutions of Eq. (1).

In Eq. (4), if we assume f = tanh ¢, this is called the tanh-function method [19], f = sech ¢, this is called sech-function
method [20], f = sn¢, cn¢, cs¢, this is called Jacobi elliptic function method [21], we choose Eq. (5) because the solitary
wave f = sech ¢, the shock wave f = tanh ¢ and the periodic waves in terms of Jacobi elliptic functions f = sn¢, cn¢, cs¢
etc. are all the solutions of it for appropriate values of a, b, c and r.

The Jacobi elliptic functions sn¢ = sn(¢ | m), cn¢ = cn(¢ | m) and dn¢ = dn(¢ | m), m (0 < m < 1) is the modulus of
the elliptic function, are double periodic posses properties of triangular functions, namely

si() +en’(@) =1, dn* @) +mPsn* (@) =1, (cn(2) = —sn(¢)dn(Z),
(sn(2)) = cn@)dn(z), (@) = —m’sn(Z)cn(). (6)
When m — 0, the Jacobi elliptic function degenerate to the triangular functions,

sn(¢) — sin(¢), cn(¢) — cos(¢), dn(¢) — 1,
cs(¢) — cot(¢), ds(¢) — csc(¢). (7)

When m — 1, the Jacobi elliptic function degenerate to the hyperbolic functions,

sn(¢) — tanh(¢), cn(¢) — sech(¢), dn(¢) — sech(¢),
cs(¢) — csch(¢), ds(¢) — csch(¢). (8)
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3. The periodic wave and solitary wave solutions of the two component BKP hierarchy

We consider a system of the two component BKP hierarchy [22]
U — U — Uyyy — 6(Uxv + uvy + uyw + uwy) =0, vy = Uy, Wy = Uy. (9)

whichu = u(x,y, t),v = v(x,y, t) and w = w(x, y, t) are real and functions.

A good understanding of the traveling wave solutions of Eq. (9) which describe water waves, very helpful for coastal and
civil engineers to apply the nonlinear water model in harbor and coastal design. Therefore, the present work is motivated
by the desire to find periodic wave solutions with the use of the Jacobi elliptic function. This means that the method will led
to a deeper and more comprehensive understanding of the structure of the nonlinear PDEs. On the other hand, the periodic
solutions of nonlinear PDEs are useful for physicists in studying more complicated physical phenomena.

Long wave in shallow water is a subject of broad interests and has a long and colorful history. Physically, it has a rich
variety of phenomenological manifestation, especially the existence of wave permanent in form and robust in maintaining
their entities through mutual interaction and collision, as well as the remarkable property of exhibiting recurrences of
initial data when circumstances should prevail. These characteristics are due to the intimate interplay between the roles
of nonlinearity and dispersion.

Seeking for the traveling wave solutions of Eq. (9), we let

ux,y,t) =u(¢), vxyt)=vl), wyt)=w)
C=kx+ry+vt+d, (10)
where k, I, m and d are constants.
Substituting (10) into (9), then (9) is reduced to the following nonlinear ordinary differential equation
v’ — (2 + AHu” — 6(k@uv) + Auw)) =0, ' —ku'=0,  kw —iu' =0. (11)
11"

Balancing the highest order derivative terms with nonlinear terms u
simplified as follows

with uv’ gives leading order n = 4, so, Eq. (4) can be

4

u@) =Y _af'©), (12)
i=0
4

v(@) =Y bf(Q), (13)
i=0
4

w(@) =Y af'(@©). (14)

i=0

After the substitution of Eq. (12) with (5) into (11) and setting coefficients offi(g),fi\/r + af? + %f“ + 3f° to zero, we

can deduce the following set of equations with respect to unknowns ag, ai, a,, a3, a4, bg, b1, by, bs, by, co, €1, C2, C3, C4, k,
A v,a,b,c,r

—6kasr? — Kajar + v ayr — 6 A3asr? — 6 & aycor — 6 A ageyr — Adajar — 6 kaghqr — 6 kayber = 0,
—3k3a;br — 33 k*asar — 6 ka;bga — 18 A axcir — 6 kaghqa — 33 Aasar

+vaja — 18 kaghsr — 3 A3a1br — A3a;a® — 18 X ajcar — 6 A agcqia — Klaja?

— 18 kasbor — 18 kaybir — 18 A agcsr — 18 A ascor + 3 v asr — 6 A a;cpa — 18 ka;bo,r = 0,
—12 2 aycqr — 8 Kayar — 12 kaghor — 8 A3ayar — 12 kaybor — 12 kaybir — 24 kaur?

—2423a4r* — 12 L aycor 4+ 2 v ayr — 12 A agcor = 0,

64 , 64 , ,
—16 kagbsc — 3 k’asc” — 16 A agcyc — 3 Aagc” =0,
—8 A aycoc — 8 A agcsC — 8 kashic — 48 A ascqaa — 18 A agcob — 18 A ascsb

4
— 8 A ascoc — 8 A ascic — 18 A aycsb + 3 v agc — 30 Kasb® — 12 A3aybc

256 256
—30A3a4b? — 12 KBaybc — =5 kKasac — 5 A3asac — 18 kasbsb — 8 kaybsc
— 8 A ajcsc — 8 kaghsc — 8 kaybyc — 18 kaybsb — 8 kagbgc — 48 kazbsa — 18 kasb,b = 0,
35 35
-3 22azc® — 14 A aqcsc — 3 kBasc? — 14 & ascac — 14 kasbsc — 14 kasbac = 0,

v axb — 24 X aycya — 6 kaybob — 24 kasbia — 24 A agcaa — 6 A agcab — 36 A agcyr
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— 36 A ascsr — 24 A agcoa — 24 A ascia — 36 A aycqr + 4 v aga — 64 k3a4a2 — 64 )»3a4a2
—16 A3ayab — 16 k*ayab — 6 kayb1b — 72 K2asbr — 16 k3ayer — 36 kasbsr — 72 A3aqbr
—16 A3aycr — 6 A aycob — 24 kaibsa — 24 A ayc3a — 6 A ayc1b — 24 kaghaa — 24 kayb,a
— 24 kagboa — 6 kagb,b — 36 kagb,r — 36 kaybar = 0,

—15 A aycsb +vasc —6 A aycic — 15 A aycab — 6 A agesc — 42 A agcsa — 42 A ascaa

7
— 15 A asc1b — 6 A ascoc — 15 A ascab — 6 kajbyc — 15 k3ash? — 15 A3ash? — > k3a;bc

— 6 kasboc — 44 k3asac — % A2a;bc — 42 kashga — 44 A3azac — 15 kaybsb — 15 kasbyb
—6 A ajcac — 6 kagbsc — 15 kaybsb — 6 kaybic — 15 kasb1b — 42 kazbza = 0,

—24 ) asc4b — 52 X3azbc — 12 kaybyc — 24 kaghsb — ? kKPayc? — 52 kPazbc — 13—6 Aayc?
— 12 A aycqc — 12 A agcyc — 12 kagbyc — 12 kasbsc — 12 A ascsc = 0,

—21 A agcsb — 10 kazb,c — 10 X ajcqc — 21 kagbsb — 21 A ascgb — 10 A agcic — 10 kaygbqc
- 52—5 kBasbc — 21 kazbsb — g Kayc? — 52—5 23asbc — 10 kaybsc — 10 kazbsc — 10 A aycsc

5
- = A3a1c2 — 10 A azcyc = 0,

—88 A3aqar — 12 kayboa — 12 A ajcia — 12 kaghya — 24 kagbor — 12 A aycoa — 24 A ascor
— 24 kaghar — 24 ) azcir — 24 X aycor — 12 KPaybr — 8 Kapa® — 8 A aya® — 88 K asar
— 12 kaibia — 24 X agcar + 4 v aqr — 12 A3aybr — 24 kaybor — 24 kashqr + 2 v axa
—24 A ajcsr — 12 A agca — 24 kabsr = 0,

3
—30 A aycsa + 3 vasbh — 30X ajcsa — 9 xaycib — 9 X agcsbh — 42 A agcsr — 42 X ascar
1 s, 87 4
—30 X agcia — 9 A ascob — 30 A azcya — 9 kaibyb + 3 vaic—3/2ka b — > k’azab

87 16
— 37 Kaser — 16/3 A3ayac — ) A3azab — 37 A3ascr — 3 kKayac — 30 ka;bsa

—30 ka3b2a -2 ka0b1c -2 kalboc —9A 1C2b -9 kaobgb —2X apC1C — 2A a;CoC
— 30 kaybsa — 9 kab1b — 42 kasbsr — 30 kagbia — 3/2 A3a1b? — 42 kagbsr — 9 kasbgb = 0,

2
3 Vv ayc — 12 X aycab — 4 kayboc — 12 A agcgb — 12 kazbib — 48 A ascar — 4 A agcyc
—36 A 4620 — 36 A a3c3a — 12 A agcob — 12 A ascib — 36 A aycqa + 2 v agh — 6 kayb?
56 56
—613a,h% — 3 Aaac — 3 kKayac — 4 kaibic — 72 Klager — 92 kKagab — 92 A3aqab

— 72 23a4cr — 4 A aycoc — 12 kaybsb — 12 A aycsb — 4 A aycqic — 12 kaghsb — 4 kagbyc
— 36 kasbsa — 12 kayb,b — 36 kay,bsa — 12 kagbob — 48 kasbsr — 36 kagb,a = 0,

Aby —ka; =0,

3Ab3—3kaz; =0,

2Aby —2ka, =0,

4Aby—4kay =0,

kcy —Aa; =0,

3kc3 —3iaz3 =0,

2kcy —2ha; =0,

4kcyg —4ra, =0.

Solving above algebraic equations, we obtain

4krta—kh v+ 6kr2co + 4 k*An a+ 6 k*A by
agp =
0 —6k3—6A3

1
, a2=—5AI<b, ap=a3=a4 =0,

1
b():bo, bzz—ikzb, b1:b3:b4:0

4405
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Fig. 1b. The periodic solution v of Eq. (17).

1
Co = Co, czz—ibkz, ci=c=c=0, r#0, c=0.

Hence the solution of Eq. (11) reads
4 kr*a — krv +6kr%co+4k*ra+6k*Aby 1

_ 2
u(¢) P 61 S kb FA(0),
1
V(&) =ho— 5 Kb f2(0),
1 2 g2
w(g) = co = 5 b (). (16)

Depending on a, b, ¢ and r in Eq. (5), we obtain multiple traveling wave solutions of Eq. (11).
Casel.a=—(1+m?), b=2m? r=1, c=0.
The solution of Eq. (5) reads f = sn(¢, m), so we get the periodic wave solution to Eq. (11)

4k ta—khv 46k 2co+4kira+6KkEAby, 1

_ _ 2
u(g) = 6 —63 5 A kbsn®(¢, m),

1
V(&) =bo— 3 k*b sn*(¢, m),

I
w(C) =co— > bAZ sn*(¢, m). (17)

Whose typical structure is shown in Fig. 1
Asm — 1, Eq. (17) degenerates to shock wave solution

4 kx*a — kh v + 6 kr2co + 4 k*A a+ 6 k*A by

u® —6k*—613

1 2
—3 A kb tanh“(¢),

v(¢) = by — % b tanh?(¢),
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Fig. 2b. The shock wave solution v of Eq. (18).

w(l) =co — % bA? tanh?(¢). (18)

Which is illustrated in Fig. 2.
Case2.a=2m*>—1,b=2,r=—-m*(1—m?), c =0.
The solution of Eq. (5) reads f = ds(¢, m), so we get the periodic wave solution to Eq. (11)
4k *a—kh v+ 6k 2co+4k*ha+6k*A by
—6k3—6A3

u(¢) = — S Akb (s, m),
1
v(§) =ho— 5 IZb ds® (¢, m),

w(?) :co—%bkz ds* (¢, m). (19)
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Fig. 2c. The shock wave solution w of Eq. (18).

As m — 1, Eq. (20) degenerates to

4k ta — kx 6 kx?co +4k*ra—+6k*Ab 1
vt o+ + O _ ~ akbcsch(¢),
—6k3—63 2

u(g) =

1. 2
v(¢) = bo — Ek b esch™(¢),

— o — L pa? esch?
w() =cy— 3 b\ csch®(¢).
Case3.a=2—-m?, b=2,r=1—m?, c=0.
The solution of Eq. (5) reads f = cs(¢, m), so we get the periodic wave solution to Eq. (11)

4k ta — kx 6 kx?co +4k*ra+6k*Ab 1
vt ot + O _ _akbcsi(c, m),
—6k3—623 2

u@) =
v(¢) = b — % b es?(c. m),

w(l) =co — % bA? cs® (¢, m).

Asm — 0, Eq. (21) degenerates to
4kr*a — ki v+ 6k 2co + 4 k*h a+ 6 k2 by
u(¢) = ——
—6k3—6A1

- lk kb cot?(¢)
3 cot“(¢),
o(§) = by — 5 Kb or’(0)

w(Z) = ¢ —lbkz cot?(
== 0).

Asm — 1,Eq.(21) degenerates to

4 krta — kx 6 kr?co +4k*ra+6k*Ab 1
vt ot + O _ 2 akbesch?(0),
—6Kk3—6A3 2

u¢) =
v(¢) = by — % b csch?(¢),

1
w(C) =co— 2 bA2 csch?(¢).
Cased.a=2m?>—1, b= -2m*>, r=1—m?, c=0.
The solution of Eq. (5) reads f = cn(¢, m), so we get the periodic wave solution to Eq. (11)
_4kata—kiv +6kiico +4k*h a6 k*A b

—6k3—613

1 2
u(¢) - ikkbcn (¢, m),
1 2 2
v(¢) =bo — 3 kb cn” (¢, m),

w(C) =co— % bA? cn®(¢, m).

(20)

(21)

(22)

(23)

(24)
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Fig. 3a. The periodic wave solution u of Eq. (24).

Fig. 3c. The periodic wave solution w of Eq. (24).

As m — 1, Eq. (25) degenerates to the following solitary wave solution

4krta—kiv+6kr2co +4kiha+6kAby’
6Kk — 64

uz) = - % A kb sech?(¢),
1
v(¢) = by — o k%b sech?(¢),
w(f) =co — % b2 sech?(¢). (25)

The properties of these periodic and solitary solutions are shown in Figs. 3 and 4.
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Fig. 4c. The solitary wave solution w of Eq. (25).

Case5.a=2—-—m?>, b=-2, r=m*>—1, c=0.
Now the solution of Eq. (5) reads f = dn(¢, m). Thus we have another periodic wave solution to Eq. (11)

4kr%a — ki v+ 6k + 4k A a+6K2Aby 1
kita — ki v+ 6 ko + 4k*ra+ O~ akbdn*(z,m),
6K —6A 2

u() =
v(¢) = by — % b dn’(¢, m),

w(C) =c¢ —lbkz dn?( 26
=0~ 5 ¢, m). (26)

As m — 1, Eq. (26) degenerates to the following solitary wave solution as follows

_4kata—krv +6kiico +4k*h a6 k*A b
B —6k3 — 613

1 2
u(¢) —3 A kb sech”(¢),
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1 2 2
v(¢) = by — > k°b sech”(¢),

_ _ 1 2 2
w(¢) =co 5 b\ sech”(¢). (27)

Case6.a:#, b=2 r=1 c=0.
The solution of Eq. (5) reads f = 5 ir;(,f(’g% . Thus the double periodic wave solution to Eq. (11)
4k a—krv+6k o +4k*rha+6k*Aby 1 sn?(z, m)
u(g) = — = Akb —>——
—6k3—6A3 2 (1 +dn(¢, m))?
1 2(¢,
v(¢) =by— = k2b Lm)z’
2 (1 £dn(g, m))
1 2(c,
w() =cy— = A2 M (28)
2 (1 £dn(z, m))2
Asm — 1, Eq. (28) degenerates to
4k fa—krv+6krco+4kiha+6kAby 1 tanh?(¢)
u(g) = — = Akb ——,
—6k3—-6A3 2 (1 £ sech(¢))?
1 tanh?(¢)
=by— - kKb ———|
V() =bo = 5 Kb e h0)?
1 tanh?(¢)
=c— b\ —>— 29
wl) == 5 b )2 (29)
Case7.a = ’"22’2, b= m; r= mTZ’ c=0.
: _ dn(g,m) . . L X
] ]Eclllgs) has solution f = IO IS from which we get the following double periodic wave solutions of
q.
© 4k ta—krv+6kico+4k*rha+6k*Aby 1 kb dn?(¢, m)
u) = — =Xk ,
¢ —6k3—-6A3 2 (m2 + 1)(sn(¢, m)1 £ dn(¢, m))?
1 dn?
w(Z) = by — = K?b n°(¢, m) ,
2 (m?+ D*(sn(¢, m)1+dn(g, m))?
1 dn?(¢,
w(¢) = — ~ b2 n(g, m) . (30)
2 (m? + 1)2(sn(¢, m)1 £ dn(¢, m))>
Asm — 1, Eq. (30) degenerates to
© 4k fa—krv+6krco+4kiha+6KkAby 1 sech?(¢)
ug) = — =Xk ,
¢ —6k3—-6A3 2 (tanh(¢) % sech(¢))?
1 sech?
v(¢) =by— = k’b ©) ,
2 (tanh(¢) £ sech(¢))?
1 sech?
w(¢) =cg — = b2 ©) ) (31)
2 (tanh(¢) £ sech(¢))?2
Case 8.a = ”‘22“, b=—-1r= —%, c=0.

Eq. (5) has the solution f = mcn(¢, m) £ dn(¢, m), from which we get the following double periodic wave solutions of
Eq. (11)
4k *a—kh v+ 6k 2co+4kha+6k*A by

u@) = 6k — 613

- % A kb (men(¢, m) £ dn(z, m))?,
v(¢) = by — % k*b (men(z, m) £ dn(¢, m))?,

w(Z) =co — % bA2 (men(z, m) £ dn(¢, m))>2. (32)
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Asm — 1, Eq. (32) degenerates to

4kr*a —khv +6krco + 4k A a+6k*Aby 1
) = LA VFO A FARAATOIAD 1, 4 (sech(c) + sech(2))?,
—6K5 — 613 2

v(Z) =bo — % kb (sech(¢) =+ sech(2))?,

w(g) =co — % bA? (sech(¢) = sech(¢))>.

(33)
241 21 21
Case9.a = "=, b= "5 ,r:'"4dzzc):O.
. n(¢,m
The solution of Eq (5) l‘eadsf = TEmsn(c,m) "

Thus we have another double periodic wave solutions of Eq. (11) in the form
2(¢) = 4krta—kiv+6kico+4k*ha+6kAby 1

dn(g, m)
—6k3—613 2 1+ msn(¢, m))?’
1 dn(¢, m)?
V() =by — = kb &’
2 (1 £ msn(g, m))?
1 dn(¢, m)?
=c— bt 34
W) =0 = 5 A s, m))? (34)
As m — 1, Eq. (34) degenerates to
© 4k *a—kiv+6k\2co+4k*ha+6kEAby 1 sech?(¢)
u =

—61k3 — 613 a
_ . 1., sech@)?
@) =bo = 5 Kb A anh @)

_ 1 ., sech(¢)?
W) == b )

2 (1= tanh(¢))?’

(35)
Case 10.a = m22+1, b= 1’2’"2, r= ]’4"’2, c=0.
The solution of Eq. (5) reads f = 11"551{({'"31)

. Thus we have another double periodic wave solutions of Eq. (11) in the form

© 4k a—khv 46k 2co+4k*ha+6Kkaby, 1 cn®(¢, m)
u = — _—
¢ —6k3—-6A3 2 (1 £sn(¢, m))?
1 cn(z, m)?
v(e) = by — + kb — eIV
2 (1+£sn(g, m))?
1 2
We) = cp — L ppz —HEM” (36)
2 (1£sn(g, m))?
Asm — 1, Eq. (36) degenerates to
w(e) = 4k *a—khv+6ki2co+4k*ha+6k*rby 1 sech?(¢)

kb T8
—6k3—613 2 (1 £ tanh(?))?
1 h(z)?

v(6) = by — + kb — e

2 (1% tanh(¢))?’

_ 1 ., sech(¢)?
wie) == 5 o )2

(37)
Case 11.a = # = % r=1c=o.
The solution of Eq. (5) reads f = ——1&m

e EmE Then we get another periodic wave solutions of Eq. (11) in the form
© 4krta—khv+6k 2o +4kiha+6kiAb, 1
u =

sn?(¢, m)
—6k3—613 2 (dn(z, m) £ msn(¢, m))?’
_ 1, sn(g, m)?
V() = bo = 5 Kb ) & msn(z, m)E”
2
w(C) =co— % ba2 s, m)

. (38)
(dn(¢, m) £ msn(z, m))?
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Asm — 1, Eq. (38) degenerates to

4k fa—krv+6krco+4k*ha+6Kk2Aby 1 tanh?(¢)
u(¢) = — — Akb ,
—6k3—-6A3 2 (sech(¢) £ sech(¢))?
1, tanh(¢)?
(&) =bo =5 Kb D) £ sech0))?
2
W(E) = ¢y — ~ ba2 tanh(¢) (39)

2 (sech(¢) % sech(¢))?”

Case12.a=0,b=2,r=0, c=0.
In this case, the solution of Eq. (5) reads f = g where G is a constant. Therefore, we get the rational solutions of Eq. (11)
in the form

4k)a— ki v+ 6k + 4k ha+6kAb 1 G\?

u@¢) = a v G+ a+t O kb (2)
—6Kk3 — 613 2
1 G\?2

—bo—=-kb (=),
v(¢) 0 2< <§>
© Dy (6 (40)
w =Cyp— — — .
¢ 03 c

4. Conclusion

There is no systemic way for solving Eq. (5). Nevertheless, this ansatz with four arbitrary parameters r, a, b and c is
reasonable since its solution can be expressed in terms of functions, such as the Jacobi elliptic function, that appear only
in the nonlinear problems. In addition, these functions go back, in some limiting cases, to sech ¢, tanh ¢ that describe the
solitary and shock wave propagation. The values of the constants a; (i = 0,1,2,...,n)and b; (i = 0,1, 2, ..., m) in (4)
depend crucially on the nature of differential equations whereas different types of their solutions can be classified in terms
of r, a, b and c as shown in cases 1-12.

In this work, making use of Jacobi elliptic functions, the periodic wave solutions and multiple soliton solutions for the
two component BKP hierarchy are obtained. Many different new forms of traveling wave solutions such as the periodic wave
solution, solitary wave solution or bell-shaped soliton solutions and shock wave solution or kink-shaped soliton solutions
are obtained. A kink is a solution with boundary values 0 and 27 at the left infinity and the right infinity respectively. Some
of the properties of them are shown graphically. This method can be applied to solve other systems of nonlinear differential
equations, we can obtain for more new solutions for Eq. (9) by using a transformed rational function method [23].
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