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a b s t r a c t

In this paper, a new family of third-order methods for finding multiple roots of nonlinear
equations has been introduced. This family requires one-function and two-derivative
evaluation per iteration. The family contains several known third-ordermethods, as special
cases. Some examples are presented to show the performance of the presented family.

Crown Copyright© 2010 Published by Elsevier Ltd. All rights reserved.

1. Introduction

The design of iterative formulae for solving such equations is very important and interesting tasks in appliedmathematics
and other disciplines. In this paper, iterative methods for finding a multiple root α of a nonlinear equation f (x) = 0 of
multiplicitym, i.e. f (j)(α) = 0, j = 0, 1, . . . ,m− 1 and f (m)(α) 6= 0, have been considered.
It is well known that Newton’s method is themost widely used (second-order) method for solving such equations, giving

by

xn+1 = xn −m
f (xn)
f ′(xn)

. (1)

To improve the quadratic order of Newton’s method, several methods including many multiple-root-finding methods of
different orders are presented. For example, we refer the readers to [1–8] and the references therein.
Our new approach is based on third-order Euler–Chebyshev’s method for finding multiple roots [1]

xn+1 = xn −
m(3−m)

2
f (xn)
f ′(xn)

−
m2

2
f (xn)2f ′′(xn)
f ′(xn)3

(2)

and the third-order Halley method [2]

xn+1 = xn −
f (xn)

m+1
2m f

′(xn)−
f (xn)f ′′(xn)
2f ′(xn)

. (3)

This paper is organized as follows: In Section 2, we consider a general iterative scheme, analyze it to present a family of
third-order methods. Section 3 is devoted to numerical comparisons between the results obtained in this work and some
known iterative methods. Finally, conclusions are stated in the last section.
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2. Development of methods and convergence analysis

To derive a third order method, the following iterative scheme, motivated by (2) and (3), is suggested

xn+1 = xn −
Af (xn)f ′2(xn)f ′′(xn)+ Bf ′4(xn)+ Cf 2(xn)f ′′2(xn)

f ′(xn)3f ′′(xn)+ Df (xn)f ′(xn)f ′′2(xn)
(4)

where A, B, C and D are parameters to be determined such that the iterative method defined by (4) has the order of
convergence three. It can be easily seen that when A = m(3−m)

2 , B = 0, C = m2
2 and D = 0, Eq. (4) reduces to

Euler–Chebyshev’s third-order method defined by (2).
For the family of methods defined by (4), we have the following analysis of convergence.

Theorem 1. Let α ∈ I be a multiple root of multiplicity m of a sufficiently differentiable function f : I → < on an open interval
I which contains x0 as a close initial approximation to α. In the case of

A =
m2(Dm+m+ 2D+ 1)− 4Cm− 3Dm+ 4C

2m
(5)

and

B = −
(m− 1)2(m2D+m2 + Dm− 2 C)

2m2
(6)

the family of methods defined by (4), has third-order convergence.

Proof. Using Taylor expansion of f (x) about α, we have

f (xn) =
f (m)(α)
m!

emn
[
1+ C1en + C2e2n + C3e

3
n + O(e

4
n)
]
, (7)

f 2(xn) =
f (m)(α)2

(m!)2
e2mn

[
1+ 2C1en +

[
C
2
1 + 2C2

]
e2n +

[
2C3 + 2C1C2

]
e3n + O(e

4
n)
]
, (8)

f ′(xn) =
f (m)(α)
(m− 1)!

em−1n

[
1+ D1en + D2e2n + D3e

3
n + O(e

4
n)
]
, (9)

f ′′(xn) =
f (m)(α)
(m− 2)!

em−2n

[
1+ S1e2n + S2e

2
n + S3e

3
n + O(e

4
n)
]
, (10)

f ′(xn)2 =
f (m)(α)2

(m− 1)!2
e2m−2n

[
1+ 2D1en +

(
2D2 + D

2
1

)
e2n + (2D3 + 2D1D2)e

3
n + O(e

4
n)
]
, (11)

f ′(xn)4 =
f (m)(α)4

(m− 1)!4
e4m−4n

[
1+ 4D1en +

(
4D2 + 6D

2
1

)
e2n +

(
12D1D2 + 4D3 + 4D

3
1

)
e3n + O(e

4
n)

]
, (12)

f ′′(xn)2 =
f (m)(α)2

(m− 2)!2
e2m−4n

[
1+ 2S1e2n +

(
2S2 + S

2
1

)
e2n + (2S3 + 2S1S2)e

3
n + O(e

4
n)
]
, (13)

where en = xn − α and

C j =
(m)!

(m+ j)!
f (m+j)(α)
f (m)(α)

, Dj =
(m− 1)!

(m+ j− 1)!
f (m+j)(α)
f (m)(α)

and S j =
(m− 2)!

(m+ j− 2)!
f (m+j)(α)
f (m)(α)

.

Using Eqs. (7)–(13):

f (xn)2f ′(xn)2 =
f (m)(α)4

m!2(m− 1)!2
e4m−2n

[
1+ (2D1 + 2C1)en + (2D2 + D

2
1 + 4C1D1 + 2C2 + C

2
1)e
2
n

× (4C2D1 + 2D1C
2
1 + 2D3 + 2D1D2 + 2C3 + 2C1C2 + 4C1D2 + 2C1D

2
1)e
3
n + O(e

4
n)

]
f (xn)f ′(xn)2f ′′(xn) =

f (m)(α)4

m!(m− 2)!(m− 1)!2
e4m−2n

[
1+ (2D1 + C1 + S1)en + (2D2 + D

2
1 + 2S1D1 + 2C1D2

+ S2 + S1C1 + C2)e2n + (2S2D1 + 2D1C1S1 + 2C2D1 + 2D3

+ 2D1D2 + S3 + C1S2 + C2S1 + C3 + 2S1D2 + S1D
2
1 + 2C1D2 + C1D

2
1)e
3
n + O(e

4
n)

]
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f ′(xn)3f ′′(xn) =
f (m)(α)4

(m− 2)!(m− 1)!3
e4m−2n

[
1+ (3D1 + S1)en + (3D2 + 3D

2
1 + 3C1D1 + S2)e

2
n

+ (3D1S2 + 6D1D2 + 3D3 + D
3
1 + S3 + 3D2S1 + 3D

2
1S1)e

3
n + O(e

4
n)

]
f (xn)f ′(xn)f ′′(xn)2 =

f (m)(α)4

m!(m− 1)!(m− 2)!2
e4m−2n

[
1+ (2S1 + C1 + D1)en + (2S2 + S

2
1 + 2S1D1

+ 2C1S1 + D2 + D1C1 + C2)e2n + (2D2S1 + 2D1C1S1 + 2C2S1 + 2S3

+ 2S1S2 + D3 + C1D2 + C2D1 + C3 + 2D1S2 + D1S
2
1 + 2C1S2 + C1S

2
1)e
3
n + O(e

4
n)

]
.

From (4) and some symbolic computational in Maple, we have

en+1 = K1e+n K2e
2
n + K3e

3
n + O(e

4
n), (14)

where

K1 = 1−
Bm2 + Cm2 + Am2 + C − 2Cm− Am

m(m− 1)(m− D+ Dm)
.

It can be easily shown that if, whenever

A = −
−m2(m− 1)+ C(m− 1)2 + Bm2 − Dm(m− 1)2

m(m− 1)
(15)

then K1 = 0. Substituting of (15) into K2, leads to

K2 =
−2Bm2 + 2C(m− 1)2 −m2(m− 1)2 + D(−m4 +m3 +m2 −m)

m(m2 − 1)
f (m+1)(α)
f (m)(α)

.

This can be vanished, for the following value of

B = −
(m− 1)2(m2D+m2 + Dm− 2C)

2m2
(16)

setting (16) in (15), yields to

A =
m2(Dm+m+ 2D+ 1)− 4Cm− 3Dm+ 4C

2m
.

This completes the proof. �

In our knowledge, the family (4), includes following known third-order methods as its particular cases.
Case 1: For C = D = 0, family (4) leads to the well-known Osada’s third-order method [6]

xn+1 = xn −
1
2
m(m+ 1)

f (xn)
f ′(xn)

+
1
2
(m− 1)2

f ′(xn)
f ′′(xn)

. (17)

Case 2: For C = m2
2 ,D = 0, family (4) leads to Euler–Chebyshev’s method (2).

Case 3: For C = 0,D = − m
m+1 , family (4) leads to the well-known Halley method (3).

By settingD = 0 in (4) for those parameters satisfying conditions (5) and (6), the following one-parameter family of third
order methods will be obtained

xn+1 = xn −
[
m2(m+ 1)− 4C(m− 1)

2m
f (xn)
f ′(xn)

+
(m− 1)2(−m2 + 2C)

2m2
f ′(xn)
f ′′(xn)

+ C
f 2(xn)f ′′(xn)
f ′(xn)3

]
,

which were obtained by Chun et al. [8].
Case 4: For C = m2

4 ,D = 0, family (4) leads to a third-order method

xn+1 = xn −m
f (xn)
f ′(xn)

+
(m− 1)2

4
f ′(xn)
f ′′(xn)

−
m2

4
f (xn)2f ′′(xn)
f ′(xn)3

(18)

which were obtained by Chun et al. [8].
Case 5: For C = m2,D = 0, family (4) leads to a third-order method

xn+1 = xn −
1
2
m(5− 3m)

f (xn)
f ′(xn)

−
1
2
(m− 1)2

f ′(xn)
f ′′(xn)

−m2
f (xn)2f ′′(xn)
f ′(xn)3

(19)

which was obtained by Chun et al. [8].
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Table 1
Comparison of various third-order multiple-root-finding methods and Newton’s method.

f (x) x0 NM ECM HM OM CM1 CM2 BGM

f1(x)
2 6 4 4 4 4 4 3
1 6 4 4 5 4 4 3

f2(x)
2.3 7 5 5 5 5 5 4
2 7 5 5 5 5 5 4

f3(x)
0 4 3 3 3 3 3 2
1 4 4 4 4 4 4 3

f4(x)
1.7 5 4 4 4 4 4 3
1 5 4 4 4 4 4 3

f5(x)
3 6 5 4 5 5 4 4
−1 10 23 11 24 26 32 4

f6(x)
−2 8 6 5 6 6 6 5
−1 6 4 3 5 4 4 3

f7(x)
1.7 6 4 4 5 5 4 3
2 5 4 4 4 4 4 3

For C = 0,D = − m(m+1)
m2+2m−3

, we introduce a new third-order method for multiple

xn+1 = xn −
f ′(xn)

(m+3)
2(m−1) f

′′(xn)− m(m+1)
2(m−1)2

f (xn)f ′′2(xn)
f ′(xn)

. (20)

Obviously, the number of function evaluations per iteration required in the methods defined by (20) is three. We consider
the definition of efficiency index [9] as r

√
p,where p is the order of the method and r is the number of function evaluations

per iteration required by the method. We have that the family of methods defined by (4) has the efficiency index equal to
3√3 ≈ 1.442, which is much better than the

√
2 ≈ 1.4241 of Newton’s method.

3. Numerical examples

In this section, some numerical test of some various multiple-root-finding methods as well as our new methods and
Newton’smethod are presented. ComparedmethodswereNewton’smethod (1) (NM), Euler–Chebyshev’smethod (2) (ECM),
Halley-likemethod (3) (HM), Osada’s method (17) (OM), the Chunmethods (18) (CM1) and (19) (CM2), and themethod (20)
(BGM) introduced in this contribution. All computations were done using MAPLE with 128 digit floating point arithmetics
(Digits := 128). Displayed in Table 1 are the number of iterations required such that |f (x)| < 10−32. The following functions
are used for the comparison and we display the approximate zeros x∗ found, up to the 28th decimal place.

f (x) m x∗
f1(x) = (x3 + 4x2 − 10)3 3 1.3652300134140968457608068290
f2(x) = (sin2(x)− x2 + 1)2 2 1.4044916482153412260350868178
f3(x) = (x2 − ex − 3x+ 2)5 5 0.2575302854398607604553673049
f4(x) = (cos(x)− x)3 3 0.7390851332151606416553120876
f5(x) = ((x− 1)3 − 1)6 6 2.0
f6(x) = (xex

2
−sin2(x)+3 cos(x)+5)4 4 1.2076478271309189270094167584

f7(x) = (sin(x)− x/2)2 2 1.8954942670339809471440357381

The results presented in Table 1 show that for the functions we tested, the new method introduced in this contribution
can be competitive to the known third-order methods and Newton’s method and converges faster than the other multiple-
root-finding methods.

4. Conclusion

In this paper a new third ordermethod for findingmultiple root of nonlinear equationswas obtained. This family contains
some known methods and a recently proposed family as its particular cases. Efficiently of this family were tested via some
numerical examples.
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