Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/camwa)

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

A new third-order family of nonlinear solvers for multiple roots

Jafar Biazar, Behzad Ghanbari [∗](#page-0-0)

Department of Mathematics, Faculty of Sciences, University of Guilan, P.C. 41938, Rasht, Iran

a r t i c l e i n f o

A B S T R A C T

Article history: Received 24 November 2009 Received in revised form 10 March 2010 Accepted 11 March 2010

Keywords: Newton's method Multiple roots Nonlinear equations Iterative methods Root finding

1. Introduction

The design of iterative formulae for solving such equations is very important and interesting tasks in applied mathematics and other disciplines. In this paper, iterative methods for finding a multiple root α of a nonlinear equation $f(x) = 0$ of multiplicity *m*, i.e. $f^{(j)}(\alpha) = 0$, $j = 0, 1, ..., m - 1$ and $f^{(m)}(\alpha) \neq 0$, have been considered.

It is well known that Newton's method is the most widely used (second-order) method for solving such equations, giving by

$$
x_{n+1} = x_n - m \frac{f(x_n)}{f'(x_n)}.
$$
 (1)

In this paper, a new family of third-order methods for finding multiple roots of nonlinear equations has been introduced. This family requires one-function and two-derivative evaluation per iteration. The family contains several known third-order methods, as special cases. Some examples are presented to show the performance of the presented family.

Crown Copyright © 2010 Published by Elsevier Ltd. All rights reserved.

To improve the quadratic order of Newton's method, several methods including many multiple-root-finding methods of different orders are presented. For example, we refer the readers to [\[1–8\]](#page-3-0) and the references therein.

Our new approach is based on third-order Euler–Chebyshev's method for finding multiple roots [\[1\]](#page-3-0)

$$
x_{n+1} = x_n - \frac{m(3-m)}{2} \frac{f(x_n)}{f'(x_n)} - \frac{m^2}{2} \frac{f(x_n)^2 f''(x_n)}{f'(x_n)^3}
$$
(2)

and the third-order Halley method [\[2\]](#page-3-1)

$$
x_{n+1} = x_n - \frac{f(x_n)}{\frac{m+1}{2m}f'(x_n) - \frac{f(x_n)f''(x_n)}{2f'(x_n)}}.
$$
\n(3)

This paper is organized as follows: In Section [2,](#page-1-0) we consider a general iterative scheme, analyze it to present a family of third-order methods. Section [3](#page-3-2) is devoted to numerical comparisons between the results obtained in this work and some known iterative methods. Finally, conclusions are stated in the last section.

∗ Corresponding author.

E-mail addresses: [biazar@guilan.ac.ir,](mailto:biazar@guilan.ac.ir) jafar.biazar@gmail.com (J. Biazar), b.ghanbary@yahoo.com (B. Ghanbari).

^{0898-1221/\$ –} see front matter Crown Copyright © 2010 Published by Elsevier Ltd. All rights reserved. [doi:10.1016/j.camwa.2010.03.016](http://dx.doi.org/10.1016/j.camwa.2010.03.016)

2. Development of methods and convergence analysis

To derive a third order method, the following iterative scheme, motivated by [\(2\)](#page-0-1) and [\(3\),](#page-0-2) is suggested

$$
x_{n+1} = x_n - \frac{Af(x_n)f^{2}(x_n)f''(x_n) + Bf'^{4}(x_n) + Cf^{2}(x_n)f''^{2}(x_n)}{f'(x_n)^{3}f''(x_n) + Df(x_n)f'(x_n)f''^{2}(x_n)}
$$
\n
$$
(4)
$$

 \overline{a}

where *A*, *B*, *C* and *D* are parameters to be determined such that the iterative method defined by [\(4\)](#page-1-1) has the order of convergence three. It can be easily seen that when $A = \frac{m(3-m)}{2}$, $B = 0$, $C = \frac{m^2}{2}$ and $D = 0$, Eq. [\(4\)](#page-1-1) reduces to Euler–Chebyshev's third-order method defined by [\(2\).](#page-0-1)

For the family of methods defined by [\(4\),](#page-1-1) we have the following analysis of convergence.

Theorem 1. Let $\alpha \in I$ be a multiple root of multiplicity m of a sufficiently differentiable function $f : I \to \mathcal{R}$ on an open interval *I which contains x*⁰ *as a close initial approximation to* α*. In the case of*

$$
A = \frac{m^2(Dm + m + 2D + 1) - 4Cm - 3Dm + 4C}{2m}
$$
\n(5)

and

$$
B = -\frac{(m-1)^2(m^2D + m^2 + Dm - 2C)}{2m^2}
$$
\n(6)

the family of methods defined by [\(4\)](#page-1-1)*, has third-order convergence.*

Proof. Using Taylor expansion of $f(x)$ about α , we have

$$
f(x_n) = \frac{f^{(m)}(\alpha)}{m!} e_n^m \left[1 + \overline{C}_1 e_n + \overline{C}_2 e_n^2 + \overline{C}_3 e_n^3 + O(e_n^4) \right],\tag{7}
$$

$$
f^{2}(x_{n}) = \frac{f^{(m)}(\alpha)^{2}}{(m!)^{2}} e_{n}^{2m} \left[1 + 2 \overline{C}_{1} e_{n} + \left[\overline{C}_{1}^{2} + 2 \overline{C}_{2} \right] e_{n}^{2} + \left[2 \overline{C}_{3} + 2 \overline{C}_{1} \overline{C}_{2} \right] e_{n}^{3} + O(e_{n}^{4}) \right],
$$
\n(8)

$$
f'(x_n) = \frac{f^{(m)}(\alpha)}{(m-1)!} e_n^{m-1} \left[1 + \overline{D}_1 e_n + \overline{D}_2 e_n^2 + \overline{D}_3 e_n^3 + O(e_n^4) \right],
$$
\n(9)

$$
f''(x_n) = \frac{f^{(m)}(\alpha)}{(m-2)!} e_n^{m-2} \left[1 + \overline{S}_1 e_n^2 + \overline{S}_2 e_n^2 + \overline{S}_3 e_n^3 + O(e_n^4) \right],
$$
\n(10)

$$
f'(x_n)^2 = \frac{f^{(m)}(\alpha)^2}{(m-1)!^2} e_n^{2m-2} \left[1 + 2\overline{D}_1 e_n + \left(2\overline{D}_2 + \overline{D}_1^2 \right) e_n^2 + (2\overline{D}_3 + 2\overline{D}_1 \overline{D}_2) e_n^3 + O(e_n^4) \right],
$$
\n(11)

$$
f'(x_n)^4 = \frac{f^{(m)}(\alpha)^4}{(m-1)!^4} e_n^{4m-4} \Bigg[1 + 4\overline{D}_1 e_n + \left(4\overline{D}_2 + 6\overline{D}_1^2\right) e_n^2 + \left(12\overline{D}_1 \overline{D}_2 + 4\overline{D}_3 + 4\overline{D}_1^3\right) e_n^3 + O(e_n^4) \Bigg],
$$
\n(12)

$$
f''(x_n)^2 = \frac{f^{(m)}(\alpha)^2}{(m-2)!^2} e_n^{2m-4} \left[1 + 2\overline{S}_1 e_n^2 + \left(2\overline{S}_2 + \overline{S}_1^2 \right) e_n^2 + (2\overline{S}_3 + 2\overline{S}_1 \overline{S}_2) e_n^3 + O(e_n^4) \right],
$$
\n(13)

where $e_n = x_n - \alpha$ and

$$
\overline{C}_j = \frac{(m)!}{(m+j)!} \frac{f^{(m+j)}(\alpha)}{f^{(m)}(\alpha)}, \qquad \overline{D}_j = \frac{(m-1)!}{(m+j-1)!} \frac{f^{(m+j)}(\alpha)}{f^{(m)}(\alpha)} \quad \text{and} \quad \overline{S}_j = \frac{(m-2)!}{(m+j-2)!} \frac{f^{(m+j)}(\alpha)}{f^{(m)}(\alpha)}.
$$

Using Eqs. [\(7\)–\(13\):](#page-1-2)

$$
f(x_n)^2 f'(x_n)^2 = \frac{f^{(m)}(\alpha)^4}{m!^2 (m-1)!^2} e_n^{4m-2} \Bigg[1 + (2\overline{D}_1 + 2\overline{C}_1)e_n + (2\overline{D}_2 + \overline{D}_1^2 + 4\overline{C}_1\overline{D}_1 + 2\overline{C}_2 + \overline{C}_1^2)e_n^2
$$

$$
\times (4\overline{C}_2\overline{D}_1 + 2\overline{D}_1\overline{C}_1^2 + 2\overline{D}_3 + 2\overline{D}_1\overline{D}_2 + 2\overline{C}_3 + 2\overline{C}_1\overline{C}_2 + 4\overline{C}_1\overline{D}_2 + 2\overline{C}_1\overline{D}_1^2)e_n^3 + O(e_n^4) \Bigg]
$$

$$
f(x_n) f'(x_n)^2 f''(x_n) = \frac{f^{(m)}(\alpha)^4}{m!(m-2)!(m-1)!^2} e_n^{4m-2} \Bigg[1 + (2\overline{D}_1 + \overline{C}_1 + \overline{S}_1)e_n + (2\overline{D}_2 + \overline{D}_1^2 + 2\overline{S}_1\overline{D}_1 + 2\overline{C}_1\overline{D}_2 + \overline{S}_2 + \overline{S}_1\overline{C}_1 + \overline{C}_2)e_n^2 + (2\overline{S}_2\overline{D}_1 + 2\overline{D}_1\overline{C}_1\overline{S}_1 + 2\overline{C}_2\overline{D}_1 + 2\overline{D}_3 + \overline{C}_1\overline{D}_2 + \overline{S}_1\overline{D}_2 + \overline{S}_1\overline{D}_2 + \overline{S}_1\overline{D}_2 + \overline{S}_1\overline{D}_2 + \overline{S}_1\overline{D}_2^2 + \overline{C}_1\overline{D}_1^2)e_n^3 + O(e_n^4) \Bigg]
$$

J. Biazar, B. Ghanbari / Computers and Mathematics with Applications 59 (2010) 3315–3319 3317

$$
f'(x_n)^3 f''(x_n) = \frac{f^{(m)}(\alpha)^4}{(m-2)!(m-1)!^3} e_n^{4m-2} \Bigg[1 + (3\overline{D}_1 + \overline{S}_1)e_n + (3\overline{D}_2 + 3\overline{D}_1^2 + 3\overline{C}_1\overline{D}_1 + \overline{S}_2)e_n^2 + (3\overline{D}_1\overline{S}_2 + 6\overline{D}_1\overline{D}_2 + 3\overline{D}_3 + \overline{D}_1^3 + \overline{S}_3 + 3\overline{D}_2\overline{S}_1 + 3\overline{D}_1^2\overline{S}_1)e_n^3 + O(e_n^4) \Bigg] f(x_n)f'(x_n)f''(x_n)^2 = \frac{f^{(m)}(\alpha)^4}{m!(m-1)!(m-2)!^2} e_n^{4m-2} \Bigg[1 + (2\overline{S}_1 + \overline{C}_1 + \overline{D}_1)e_n + (2\overline{S}_2 + \overline{S}_1^2 + 2\overline{S}_1\overline{D}_1 + 2\overline{C}_1\overline{S}_1 + \overline{D}_2 + \overline{D}_1\overline{C}_1 + \overline{C}_2)e_n^2 + (2\overline{D}_2\overline{S}_1 + 2\overline{D}_1\overline{C}_1\overline{S}_1 + 2\overline{C}_2\overline{S}_1 + 2\overline{S}_3 + 2\overline{S}_3 + 2\overline{C}_1\overline{S}_2 + \overline{C}_1\overline{S}_2^2 + \overline{C}_1\overline{
$$

From [\(4\)](#page-1-1) and some symbolic computational in Maple, we have

$$
e_{n+1} = K_1 e_n^+ K_2 e_n^2 + K_3 e_n^3 + O(e_n^4),\tag{14}
$$

where

$$
K_1 = 1 - \frac{Bm^2 + Cm^2 + Am^2 + C - 2Cm - Am}{m(m-1)(m-D+Dm)}.
$$

It can be easily shown that if, whenever

$$
A = -\frac{-m^2(m-1) + C(m-1)^2 + Bm^2 - Dm(m-1)^2}{m(m-1)}
$$
\n(15)

then $K_1 = 0$. Substituting of [\(15\)](#page-2-0) into K_2 , leads to

$$
K_2 = \frac{-2Bm^2 + 2C(m-1)^2 - m^2(m-1)^2 + D(-m^4 + m^3 + m^2 - m)}{m(m^2 - 1)} \frac{f^{(m+1)}(\alpha)}{f^{(m)}(\alpha)}
$$

This can be vanished, for the following value of

$$
B = -\frac{(m-1)^2(m^2D + m^2 + Dm - 2C)}{2m^2}
$$
\n(16)

.

setting [\(16\)](#page-2-1) in [\(15\),](#page-2-0) yields to

$$
A = \frac{m^2(Dm + m + 2D + 1) - 4Cm - 3Dm + 4C}{2m}.
$$

This completes the proof. \square

In our knowledge, the family [\(4\),](#page-1-1) includes following known third-order methods as its particular cases.

Case 1: For $C = D = 0$, family [\(4\)](#page-1-1) leads to the well-known Osada's third-order method [\[6\]](#page-4-0)

$$
x_{n+1} = x_n - \frac{1}{2}m(m+1)\frac{f(x_n)}{f'(x_n)} + \frac{1}{2}(m-1)^2\frac{f'(x_n)}{f''(x_n)}.
$$
\n(17)

Case 2: For $C = \frac{m^2}{2}$, $D = 0$, family [\(4\)](#page-1-1) leads to Euler–Chebyshev's method [\(2\).](#page-0-1)

Case 3: For $C = 0$, $D = -\frac{m}{m+1}$, family [\(4\)](#page-1-1) leads to the well-known Halley method [\(3\).](#page-0-2)

By setting $D=0$ in [\(4\)](#page-1-1) for those parameters satisfying conditions [\(5\)](#page-1-3) and [\(6\),](#page-1-4) the following one-parameter family of third order methods will be obtained

$$
x_{n+1} = x_n - \left[\frac{m^2(m+1) - 4C(m-1)}{2m} \frac{f(x_n)}{f'(x_n)} + \frac{(m-1)^2(-m^2+2C)}{2m^2} \frac{f'(x_n)}{f''(x_n)} + C \frac{f^2(x_n)f''(x_n)}{f'(x_n)^3} \right],
$$

which were obtained by Chun et al. [\[8\]](#page-4-1).

Case 4: For $C = \frac{m^2}{4}$, $D = 0$, family [\(4\)](#page-1-1) leads to a third-order method

$$
x_{n+1} = x_n - m \frac{f(x_n)}{f'(x_n)} + \frac{(m-1)^2}{4} \frac{f'(x_n)}{f''(x_n)} - \frac{m^2}{4} \frac{f(x_n)^2 f''(x_n)}{f'(x_n)^3}
$$
(18)

which were obtained by Chun et al. [\[8\]](#page-4-1).

Case 5: For $C = m^2$, $D = 0$, family [\(4\)](#page-1-1) leads to a third-order method

$$
x_{n+1} = x_n - \frac{1}{2}m(5 - 3m)\frac{f(x_n)}{f'(x_n)} - \frac{1}{2}(m-1)^2\frac{f'(x_n)}{f''(x_n)} - m^2\frac{f(x_n)^2f''(x_n)}{f'(x_n)^3}
$$
(19)

which was obtained by Chun et al. [\[8\]](#page-4-1).

Table 1

For $C = 0$, $D = -\frac{m(m+1)}{m^2+2m-3}$, we introduce a new third-order method for multiple

$$
x_{n+1} = x_n - \frac{f'(x_n)}{\frac{(m+3)}{2(m-1)}f''(x_n) - \frac{m(m+1)}{2(m-1)^2} \frac{f(x_n)f''(x_n)}{f'(x_n)}}.
$$
\n(20)

Obviously, the number of function evaluations per iteration required in the methods defined by [\(20\)](#page-3-3) is three. We consider the definition of efficiency index [\[9\]](#page-4-2) as $\sqrt[p]{p}$, where p is the order of the method and r is the number of function evaluations per iteration required by the method. We have that the family of methods defined by [\(4\)](#page-1-1) has the efficiency index equal to per iteration required by the method. We have that the family of methods defined $\sqrt[3]{3} \approx 1.442$, which is much better than the $\sqrt{2} \approx 1.4241$ of Newton's method.

3. Numerical examples

In this section, some numerical test of some various multiple-root-finding methods as well as our new methods and Newton's method are presented. Compared methods were Newton's method [\(1\)](#page-0-3)(NM), Euler–Chebyshev's method [\(2\)](#page-0-1)(ECM), Halley-like method [\(3\)](#page-0-2) (HM), Osada's method [\(17\)](#page-2-2) (OM), the Chun methods [\(18\)](#page-2-3) (CM1) and [\(19\)](#page-2-4) (CM2), and the method [\(20\)](#page-3-3) (BGM) introduced in this contribution. All computations were done using MAPLE with 128 digit floating point arithmetics (Digits := 128). Displayed in [Table 1](#page-3-4) are the number of iterations required such that |*f*(*x*)| < 10−³². The following functions are used for the comparison and we display the approximate zeros *x*∗ found, up to the 28th decimal place.

The results presented in [Table 1](#page-3-4) show that for the functions we tested, the new method introduced in this contribution can be competitive to the known third-order methods and Newton's method and converges faster than the other multipleroot-finding methods.

4. Conclusion

In this paper a new third order method for finding multiple root of nonlinear equations was obtained. This family contains some known methods and a recently proposed family as its particular cases. Efficiently of this family were tested via some numerical examples.

References

^[1] J.F. Traub, Iterative Methods for the Solution of Equations, Prentice Hall, NJ, 1964.

^[2] E. Hansen, M. Patrick, A family of root finding methods, Numer. Math. 27 (1977) 257–269.

- [3] H.D. Victory, B. Neta, A higher order method for multiple zeros of nonlinear functions, Int. J. Comput. Math. 12 (1983) 329–335.
-
- [4] C.C. Dong, A family of multipoint iterative functions for finding multiple roots, Int. J. Comput. Math. 21 (1987) 363–367.
[5] B. Neta, A.N. Johnson, High order nonlinear solver for multiple roots, Comput. Math. Appl
-
- [7] C. Chun, B. Neta, A third-order modification of Newton's method for multiple roots, Appl. Math. Comput. 211 (2009) 474–479.
- [8] C. Chun, H.J. Bae, B. Neta, New families of nonlinear third-order solvers for finding multiple roots, Comput. Math. Appl. 57 (2009) 1574–1582.
- [9] W. Gautschi, Numerical Analysis: An Introduction, Birkhäuser, 1997.