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We introduce an object-based method to automatically classify topography from SRTM data. The new meth-
od relies on the concept of decomposing land-surface complexity into more homogeneous domains. An ele-
vation layer is automatically segmented and classified at three scale levels that represent domains of
complexity by using self-adaptive, data-driven techniques. For each domain, scales in the data are detected
with the help of local variance and segmentation is performed at these appropriate scales. Objects resulting
from segmentation are partitioned into sub-domains based on thresholds given by the mean values of eleva-
tion and standard deviation of elevation respectively. Results resemble reasonably patterns of existing global
and regional classifications, displaying a level of detail close to manually drawn maps. Statistical evaluation
indicates that most of classes satisfy the regionalization requirements of maximizing internal homogeneity
while minimizing external homogeneity. Most objects have boundaries matching natural discontinuities at
regional level. The method is simple and fully automated. The input data consist of only one layer, which
does not need any pre-processing. Both segmentation and classification rely on only two parameters: eleva-
tion and standard deviation of elevation. The methodology is implemented as a customized process for the
eCognition® software, available as online download. The results are embedded in a web application with
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functionalities of visualization and download.
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1. Introduction

Landforms are ‘natural objects that partition the Earth's surface
into fundamental spatial entities, which define boundary conditions
for processes operative in the fields of geomorphology, hydrology,
ecology, pedology and others’ (MacMillan and Shary, 2009). There-
fore, the research interest in designing classification systems of land-
forms at various scales (MacMillan and Shary, 2009) is not surprising
as the demand for subdivisions of the surface into manageable objects
even grows (Evans, 2011). While early approaches relied on field sur-
veys, manual processing of topographic maps or drawing boundaries
on aerial photographs, digital classifications have greatly benefited
from developments in remote sensing in terms of processing tech-
niques and increasing quality of remotely sensed digital elevation
models (DEMs). The Shuttle Radar Topography Mission (SRTM) dem-
onstrated the power of synthetic aperture radar (SAR) interferometry
to create a global DEM; it marked a milestone in the field of remote
sensing (Farr et al., 2007; Shortridge and Messina, 2011) opening
new avenues for applications in Earth Sciences.

SRTM DEMs offer new possibilities for landform classifications at
regional and global scales, which were previously hindered by the un-
even quality of the available data. Physiographic classifications at
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global scale are particularly important as they provide standardized
datasets that enable consistent and comparative analyses of the
Earth's surface. Land form information contained within global data-
sets has the potential of fostering new insights into the land surface
analysis (Hammond, 1964), which might be helpful in improving
terrain-based environmental modeling through investigations on
the areal covariation of properties. However, SRTM data are still rath-
er under-used from this perspective, though it has been released for
almost one decade. Iwahashi and Pike (2007) produced the only land-
form classification at global scale on SRTM data. This is a data-driven
approach consisting in an unsupervised nested-means algorithm and
a three part geometric signature; slope gradient, local convexity, and
surface texture were used as descriptors of the land-surface proper-
ties. Individual cells were allocated to classes by using the mean of
each variable as the dividing threshold in nested twofold-
partitioned maps. The resulting classes resemble existing maps in
various regions, including Fenneman's physical divisions (Fenneman
and Johnson, 1946) and Hammond's terrain types (Hammond, 1954).

Object-based image analysis (OBIA) has gained prominence in the
field of remote sensing during the last decade, being credited with the
potential of overcoming weaknesses associated with the per pixel
analysis, as for instance neglecting geometric and contextual informa-
tion (Blaschke, 2010). OBIA has proved effective in landform classifi-
cation from DEMs (Dragut and Blaschke, 2006; van Asselen and
Seijmonsbergen, 2006) as it better satisfies the object conceptual
model of landforms compared to the traditional per cell methods
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(Dragut and Eisank, 2011). As part of OBIA, the multiresolution seg-
mentation (MRS) algorithm has been found the most sensitive to
morphological discontinuities in DEMs (van Niekerk, 2010). The abil-
ity of capturing morphological discontinuities is an important asset in
designing natural spatial entities (landforms or topographic regions)
that maximize internal homogeneity while minimizing external ho-
mogeneity. Though the number of OBIA applications in analysis of
DEMs has increased in the last five years, an object-based methodol-
ogy applicable at global scale is still missing.

The main objective of our research is developing an object-based
method to automatically classify topography from SRTM data at
broader scales into landform types (MacMillan and Shary, 2009) or
topographic regions (Iwahashi and Pike, 2007). This method should
have the following characteristics: 1) simplicity; 2) versatility; and
3) multi-scale character. Simplicity consists in avoiding data pre-
processing, derivation of additional input layers (e.g. slope and curva-
ture.), and parameterization, i.e. deciding which combination of input
variables are suitable and how to weight their importance in classifi-
cation. The method was designed to process a single layer of elevation
values, which is the support for segmentation and calculation of stan-
dard deviation. Elevation and local relief are essential in classification
of topography at broad scales (Hammond, 1954; Wood and Snell,
1960). We replaced local relief with standard deviation of elevation,
which is a more stable measure of variation (Evans, 1998). Versatility
means that this general-purpose method should be easily customiz-
able for specific applications. Results were compared with existing
classifications at global (Iwahashi and Pike, 2007) and regional levels
(Fenneman and Johnson, 1946).

2. Methods

Building on our previous results (Dragut and Blaschke, 2006), we
used an MRS algorithm (Baatz and Schédpe, 2000) to partition a digital
elevation model (DEM) into homogeneous regions, which were fur-
ther classified in physiographic regions with the help of the nested-
means technique (Iwahashi and Pike, 2007). New algorithms were
designed to automate selection of scale parameters for land-surface
segmentation (Section 2.1) and to decompose the scene complexity
on three levels (Section 2.2). The whole procedure was implemented
as a ‘push-the-button’ solution using the eCognition Network Lan-
guage (CNL) within the eCognition Developer®, version 8.64.

As input we used the global dataset (more than 600 million cells)
of the SRTM DEM V4 (Reuter et al., 2007; Jarvis et al., 2008)
resampled to 1 km (http://srtm.csi.cgiar.org). The algorithm was ap-
plied to the elevation layer without any prior pre-processing.

2.1. Automated optimization of the scale parameter

MRS provides a region-growing algorithm that merges individual
pixels into image objects or regions based on the local homogeneity
criteria (Baatz and Schdpe, 2000). The degree of local homogeneity
to be used in the merging decision is set by a user-defined parameter
called scale parameter (SP). Dragut et al. (2010) introduced a method
that assist an objective decision on SP, based on the concept of local
variance (LV) graphs (Woodcock and Strahler, 1987). In brief, the
method consists in producing multiple segmentations of the same
dataset by a constantly increasing SP, calculating LV for each scale as
the average standard deviation (SD) of objects at the scene level, plot-
ting LV against SP, and interpreting the resulting variogram-like
graph. Similar to the variogram analysis, the LV graphs display ranges
that approximate sizes of support units (here replacing distance) at
which spatial autocorrelation between them tend to cease. Thus,
ranges mark the highest spatial independence of objects in the data-
set at a given scale (Dragut et al.,, 2011).

Here we replaced the interpretation of graphs with an automatic
procedure for selecting SP at a range (Fig. 1). For an input domain

(the first one being the whole extent of the SRTM data), segmentation
of the elevation layer is performed in a bottom-up approach, starting
from the minimum value of SP (minSP). At each upper scale, the SP
value increases with the increment I (similar to lag). Difference in
LV between each new level and the previous one is calculated in an it-
erative approach, until the value is equal to zero or negative. When
reaching this value, the previous level is selected; this is an approxi-
mation of the equivalent of sill on the LV graph.

For processing the global dataset, the value of 10 was set as minSP;
this was rather a technical constraint, as starting segmentation at an
SP value of 1 would have prohibitively increased the time of proces-
sing. The value of I was different for each level as detailed in the
next section. The shape criterion was weighted to zero; therefore
only elevation values were considered in segmentation, without
shape optimization.

2.2. Multi-scale decomposition of complexity

The multiresolution segmentation algorithm minimizes the average
heterogeneity of image objects weighted by their size (Baatz and
Schdpe, 2000). When applied to DEMs, particularly those with large ex-
tents and contrasting topography, the same SP value tends to overseg-
ment rough areas, while under-segmenting smooth ones; the weight
on objects size would not compensate the high level of heterogeneity.
We addressed this issue by decomposing land-surface complexity into
increasingly homogeneous domains, structured on three levels
(Fig. 2), with the help of segmentation combined with the nested
means approach (Iwahashi and Pike, 2007).

The input SRTM was segmented with the optimum SP value (Fig. 1)
and resulting objects were partitioned into two domains, ‘High’ and
‘Low’, based on a threshold given by mean elevation of objects at the
level of scene. Each domain was further segmented with optimized SP
values and partitioned based on a threshold given by the mean SD of el-
evation. The same procedure of segmentation is applied to each domain
of the second level to produce the objects at the third level (Fig. 2).

Optimization of SP was performed using different values of incre-
ment for each of the three levels to replace selection of multi-scale
levels through human interpretation of the LV graphs by an automated
procedure. In previous work (Dragut et al,, 2010, 2011) we showed that
prominent peaks on the LV graph indicated the scales where the data
are organized in meaningful pattern. Smoothing the LV graph by in-
creasing the increment is a solution for automation. To illustrate this
procedure, we present the LV graphs resulting from segmentation of
the DEM at the extent of the Austrian territory (Fig. 3). The LV graph
obtained by increasing SP by an increment of 1 (Fig. 3C) depicts the
smallest variations of the LV values. The first step in this graph occurred
atan SPvalue of 80 (the LV value at SP= 81 was lower or equal to the LV
value at SP=80), which coincides with a marked change in the LV
curve. Performing the same analysis with increments of 10 (Fig. 3B)
and 100 (Fig. 3A) leads to the smoothing of details so that two promi-
nent peaks in Fig. 3C are approximated by equivalents of sill at SP values
of 181 (Fig. 3B) and 901 (Fig. 3A), respectively. These equivalents of sill
can be identified automatically as explained in Section 2.1.

Scale is intimately related to the complexity of scene so that small
and large objects can coexist in the same level. Segmentation with a
single SP value would over-segment larger objects or under-
segment the smaller ones. To account for this issue, domains at each
level as in Fig. 2 were segmented twice, with consecutively smaller
increments. Objects produced with SP values detected using larger in-
crements (therefore larger sized) were separated into two groups:
those with both mean and maximum elevations lower than the
mean elevation of the domain or with both mean and minimum ele-
vations higher than the mean elevation of the domain were retained,
while all others were exported to separate maps and further seg-
mented with smaller increments. The former category includes
‘pure’ objects that do not include any cell lower or higher than the
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Fig. 1. Workflow to automate the optimization of the scale parameter for land-surface segmentation. The domain of interest is repeatedly segmented by starting at the lowest pos-
sible value of SP (minSP) and by constantly increasing SP by an user-specified interval (I). The process stops when the local variance value of the actual level (LV,,) is equal or lower
than the value of the previous level (LV,, _ ). The level n—1 is then selected as the optimal scale for segmentation.

characteristic elevation of the class, while the latter one includes large
objects spanning across heterogeneous areas. Thus, the global DEM
was segmented with increments of 100 and 10 respectively to pro-
duce the two domains in Level 1; the same increments were used to
segment each of these two domains; the four domains in Level 2
were segmented with increments of 10 and 1 respectively to produce
the image objects in Level 3.

To avoid the ‘island effect’ in segmentation, i.e. biasing the size of
objects towards numerous small islands, areas smaller than the min-
imum mapping unit (MMU) relative to each level were not consid-
ered in segmentation. The MMU values were selected as a function
of the DEM resolution (1 km) (FAO, 2003) as follows: 400 km? for
Level 1 (estimating scales in range 1:10,000,000 to 1:20,000,000),
100 km? for Level 2 (1:3,000,000 to 1:10,000,000), and 4 km? for
Level 3 (1:1,000,000 to 1:3,000,000).

2.3. Classification scheme

Classification is structured on three levels (Fig. 4). At each level,
thresholds are automatically set up as means of elevation and its SD
(Fig. 4). Mean values at scene levels are computed based on object
values, which represent averages of cell values within each object. Al-
though this is an unsupervised classification, classes were labeled
according to a simplified version of Hammond's (1954) scheme. An
alternative would be using purely morphometric descriptors as in
Iwahashi and Pike (2007). We preferred labeling the outputs

following a simplified version of Hammond's scheme to increase
comprehensibility of the classification.

The objects at the first level were divided into classes ‘High’ and
‘Low’ by the mean elevation of objects. At the second level, classes
‘Mountains’, ‘Tablelands and High Hills’, ‘Low Hills’, and ‘Plains’
were separated by the mean SD value of objects corresponding to
each domain in Level 1. The objects of the third level were classified
into eight classes using mean elevations as thresholds (classes ‘High
Mountains’, ‘Low Mountains’, ‘High Plains’, and ‘Low Plains’) and the
mean SD value of elevation (classes ‘High Hills’, ‘Tablelands’, ‘Rough
Low Hills’, and ‘Smooth Low Hills’).

2.4. Evaluation

As classification was designed for general purposes, standard
methods of assessment (e.g. confusion matrix) would have not been ap-
propriate for evaluating the results. For the present study we followed
an evaluation strategy that was twofold. On the one hand a quantitative
assessment was performed based on a recently introduced innovative
approach. On the other hand an online evaluation system was set up
to acquire qualitative feedback from potential users.

2.4.1. Statistical assessment

In the field of OBIA it is common to assess segmentations in terms of
region uniformity and region contrast. Optimal results should basically
fulfill the two conditions of (1) maximizing intra-object homogeneity
and (2) maximizing inter-object heterogeneity. To some degree the
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Fig. 2. Multi-scale decomposition of land-surface complexity into increasingly homogeneous domains. The hierarchy of three levels is obtained by applying the nested means ap-
proach to optimized terrain segmentation scales. The whole system is self-adaptive and can easily be used on DEMs with higher resolutions.

same principles also apply to class regions, where each region is consid-
ered a merge of adjacent objects belonging to the same class.

Two standard statistical indices, the intra-object variance (v) and
the Moran's I spatial autocorrelation index (I), were calculated. Global
Moran's I value gives an indication of the overall external separability
of spatial objects, whereas mean variance measures the degree of in-
ternal homogeneity of spatial objects. Espindola et al. (2006) success-
fully utilized a combination of those measures to identify optimal
region-growing segmentations in a multi-scale analysis. Recently, it
has been shown that classification accuracies are highest for optimal
segmentations (Gao et al., 2011).

The mean intra-object variance was calculated using the following
equation:

_ i aiv;

v
n
i=1i

(1

where v; is the variance of the cell values within object i, and q; is the
area of object i. The mean intra-object variance v is calculated as area
weighted average, where more weight is put on larger objects, thus re-
ducing the effects of possible instabilities induced by small objects. In-
terpretation of v is straightforward: the higher the value, the greater
is the overall objects' heterogeneity; the lower the value, the more ho-
mogeneous objects are in terms of the measured property. Commonly,
a direct relationship between the mean size of objects and the
intra-object variance exists: if objects are large, v is high and vice
versa.
Moran's I is formulated as:

[ 2w (0i—Y) =)

(B 0i=Y)%) (i 2o wy)
where n is the total number of objects, y; is the mean value of object i,
y is the mean value of the scene, and wj; is weight that measures the
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Fig. 3. Smoothing the LV graph by increasing the increment in the iterative bottom-up segmentation from 1 (C), to 10 (B) and 100 (A). As small variations on the graphs are suc-
cessively smoothed from C to A, the equivalents of sill (shown by dashed vertical lines) occur at increasing values of SP (80 in C, 181 in B, and 901 in A). The equivalents of sill in
smoothed graphs (B and A) approximate prominent peaks on the graph obtained with an increment of 1 (C), as indicated by the two arrows.

spatial adjacency of objects i and j. The value of wj;is 1 if objects i and j
are adjacent; otherwise w;;=0. Values of Moran's I range from —1 to
+ 1. Indices close to zero and negative values indicate that differences
in the mean values of neighboring objects are generally high. Thus,
the overall spatial heterogeneity is high (dispersed pattern), which
is desirable in OBIA. High positive values are obtained if object values
are spatially homogeneous (clustered pattern).
Statistics were derived for the following three domains:

- Objects per level: All objects of an optimal segmentation level were
considered for the statistics. Thus, we obtained level-specific

measures for inter- and intra-object heterogeneity. Optimal seg-
mentation should be a compromise between the two.

Objects per class: Only objects of the same class were assessed. Re-
sults provided an indication of inter- and intra-object heterogeneity
per class. Ideally, spatial autocorrelation should be positive and var-
iance is relatively low.

Class regions per level: Initially, neighboring objects of the same
class were merged. Then, level-specific statistics were calculated
for the obtained class regions in order to measure inter-class sep-
arability, which preferably should be high (negative Moran's I or
values close to zero).
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Fig. 4. Classification scheme for partitioning the global dataset into eight classes, according to a simplified version of Hammond (1954). Mean values of elevation and standard de-
viation (SD) define thresholds to split subsequent domains into two, and finally to assign eight physiographic classes to L3 objects.

Moran's I values were derived with the open-source software tool
GeoDa (Anselin, 2005) for the two object properties: mean elevation
(Ime) and mean standard deviation of elevation (Iysp). Variance indices
were only calculated for Iz A general size constraint was set to exclude
objects smaller than four pixels from analysis. In addition, isolated ob-
jects, i.e. objects without direct neighbors, were not taken into account.

2.4.2. Qualitative assessment
In addition to the quantitative evaluation an online system was
implemented consisting of two components: a web application, where

we put the preliminary results of the finest-level classification, and a
questionnaire for acquiring feedback from potential users. A request for
participation along with a concise description of the method and web
service was distributed among known experts and relevant user groups
on the internet (e.g. Geomorphometry Society and Yahoo GMorph
Group). With the help of the web application, interested users could vi-
sually explore and evaluate results, and provide their personal views
via the online survey. Users were kindly asked to evaluate results with
respect to (1) thematic and spatial accuracy, (2) versatility and fruitful-
ness, and (3) general usefulness. The survey was open for four months.


image of Fig.�4

L. Dragut, C. Eisank / Geomorphology 141-142 (2012) 21-33 27

A

mountains
[ tablelands high hills
low hills

- plains

1,000 Km
L1

high mountains
| low mountains
[0 nigh hills
- tablelands
rough low hills 1,000 Km
smooth low hills
~ high plains
[

low plains
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3. Results

The global dataset was processed in more than 138 h on a personal
computer with a 2.66 GHz quad-core processor and 8 GB RAM. Results
were embedded within a web application that offers services for explor-
ing and downloading the data, available at the following address:
(http://zgis202.plus.sbg.ac.at/LandformClassification/default.aspx).

3.1. Classification results

Maps in Fig. 5 show the results of global classification at Level 1
(L1, A), Level 2 (L2, B), and Level 3 (L3, C). The three scale levels

reflect the correspondence between the size of objects, as controlled
by SP, and thematic resolution, which increases from L1 to L3. Classes
match recognizable topographic regions according to the three levels
of generalization and most of boundaries appear to follow major nat-
ural discontinuities at regional level. For a detailed visualization of the
results, the reader is encouraged to use either the web application or
the file in Appendix 1 (supplementary on-line material) for visualiza-
tion in Google Earth.

Summary statistics of variables used in classification are provided
in Table 1 (elevation) and Table 2 (standard deviation of elevation).
For each variable, Mean, SD, Min and Max values of objects are calcu-
lated and grouped by scale levels and classes. Spatial frequency of to-
pographic classes and the percentage of objects per class were added
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Table 1
Spatial frequency of topographic classes (% Area) and number of objects (% No of ob-
jects), and summary statistics of elevation, grouped by scale levels. Statistics (Mean,
SD, Min, and Max) are calculated at scene levels based on the average values of
objects.

Level/class % Area % No of Mean SD Min Max
objects

Level 1 100 100 321.72 45385 —218.04 5796.46
High 5835 2837 863.27 542.58 321.89 5796.46
Low 4165  71.63 10723 9395 —218.04 321.50

Level 2 100 100 42455 61466 —181.81 5545.89
Mountains 1649  13.68 1416.05 989.16 426.88 5545.89
Tablelands and 31.52 16.92 74525 41825 42478 5017.19
High Hills
Low Hills 954  26.55 24419 92,73 —181.81 423.61
Plains 4245  42.85 93.14 103.54 —4327 42267

Level 3 100 100 566.78 603.19 —223.09 6093.79
High Mountains 9.21 579 2193.03 885.88 144045 6093.79
Low Mountains 436 9.68 989.41 24453 567.11 1439.27
High Hills 7.85 10.24 988.93 450.85 566.87 5230.50
Tablelands 16.71 9.61 881.00 335.75 566.80 5137.78
Rough Low 266 1045 372.89 11550 —223.09 566.47
Hills
Smooth Low 6.52 14.91 290.68 136.60 —90.60 566.56
Hills
High Plains 27.52 17.33 336.90 91.89 193.14  566.77

to Table 1. Although slope gradient was not used in classification, its
summary statistics were calculated within each class, as this variable
is an important indicator of land-surface ruggedness. Slope was calcu-
lated for each grid cell within a standard 3 x3 moving window, and
values were summarized within each topographic class using zonal
statistics.

Objects classified as ‘High’ make almost 60% of the Earth's surface,
while counting only about one third of the total number of 4977 ob-
jects in L1 (Table 1). This imbalance is due to the large number of
small, low-elevation islands. Although islands smaller than 400 km?
were not considered in segmentation, they were taken into account
in classification as features on the Earth's surface; these islands repre-
sent 70.44% of the total number of objects in this level. As a result,
mean elevation of objects at L1 dropped to 321 m. This value sepa-
rates objects into two domains well differentiated in terms of eleva-
tion (Table 1). The ‘Low’ and ‘High’ classes visually correspond to
human perception on higher and lower areas at planetary level
(Fig. 5A). Moreover, they characterize surfaces of different roughness
as indicated by the statistics of standard deviation (Table 2) and slope
gradient (Table 3).

Table 2

Summary statistics of standard deviation, grouped by scale levels and topographic
classes. Statistics (Mean, SD, Min, and Max) are calculated at scene levels based on
the average values of objects.

Level/class Mean SD Min Max
Level 1 99.11 112.70 0.00 1482.64
High 215.44 132.05 0.00 1482.64
Low 53.03 57.82 0.00 328.73
Level 2 104.96 111.00 0.00 811.45
Mountains 320.01 101.52 199.14 811.45
Tablelands and High Hills 101.39 53.41 0.00 199.12
Low Hills 132.10 52.41 63.45 366.05
Plains 20.89 18.49 0.00 63.34
Level 3 95.83 88.19 0.00 826.87
High Mountains 289.03 96.14 162.02 826.87
Low Mountains 226.95 55.99 161.64 588.23
High Hills 126.37 19.63 92.64 161.49
Tablelands 56.67 23.27 0.00 92.53
Rough Low Hills 159.56 38.23 116.13 402.97
Smooth Low Hills 85.63 15.92 59.92 116.07
High Plains 28.08 15.81 0.00 59.91
Low Plains 20.27 15.95 0.00 59.92

Table 3

Summary statistics of slope gradient, grouped by scale levels and topographic classes.
Mean, SD, Min, and Max are calculated based on cells within each class (zonal
statistics).

Level/class Mean SD Min Max
Level 1

High 2.71 3.87 0.00 59.95
Low 0.56 1.14 0.00 35.43
Level 2

Mountains 6.17 529 0.00 59.95
Tablelands and High Hills 1.38 1.90 0.00 36.27
Low Hills 2.07 2.40 0.00 35.43
Plains 0.42 0.59 0.00 27.83
Level 3

High Mountains 6.75 5.73 0.00 59.95
Low Mountains 6.93 4.87 0.00 50.25
High Hills 2.96 2.71 0.00 36.27
Tablelands 0.93 1.19 0.00 2747
Rough Low Hills 4.66 3.59 0.00 39.34
Smooth Low Hills 217 2.05 0.00 31.58
High Plains 0.56 0.72 0.00 32.55
Low Plains 0.40 0.63 0.00 31.66

As the degree of generalization decreases, the spatial frequency of
low-elevation classes (e.g. ‘Low Hills’ and ‘Plains’) increases by approx-
imately 10% at L2 as compared to L1 (Table 1). The basins of Congo and
Chad, the Upper Nile plains, and the hilly region in southeastern China
are the most obvious areas that changed from ‘High’ at L1 to ‘Low Hills’
and ‘Plains’ at L2 (Fig. 5B). The class ‘Low Hills’ shows the highest dis-
crepancy between the spatial frequency and the share in the number
of objects, which indicates that many small islands fall into this catego-
ry (Table 1). Statistics of elevation illustrate a logical vertical distribu-
tion of the four classes (Table 1). The class ‘Plains’ presents a large
variability of elevation values, which is explained by inclusion of isolat-
ed hills, as for instance the hills in southeastern Colombia. This is a rea-
sonable generalization of small-sized features, in line with the common
regionalization, i.e. in the given example hills are not considered sepa-
rately, but included within the Amazon region, one of the five natural
regions of Colombia. The minimum elevation occurs in the class ‘Low
Hills’, not as expected in ‘Plains’. However, this minimum is obtained
for the object that delineates the Dead Sea region, which is rougher
than plains at global level. Statistics of standard deviation (Table 2)
and slope gradient (Table 3) show that the four classes partition the
land surface variability properly.

Classification is further detailed at the third level (Fig. 5C). Spatial
frequencies are generally balanced with shares of objects, except for
the two categories of mountains and the two categories of hills
(Table 1). The class ‘High Mountains’ shares a large area compared
to the number of objects, while ‘Low Mountains’ shows a reverse
case. This is due to the normal spatial configuration, as ‘Low Moun-
tains’ appear scattered around more compact areas of ‘High Moun-
tains’. The two classes of hills present low spatial frequencies
despite relatively high shares in the number of objects due to larger
presence of islands. Statistics of elevation show a logical vertical dis-
tribution of the eight classes, except for ‘High Plains’ with higher
mean elevation than ‘Smooth Low Hills’ (Table 1). This means that
smooth surfaces at comparatively higher altitudes are classified as
plains (Fig. 5C). The Kazakh Uplands represent such an example.
We consider such situations to be consistent with the rationales of
the classification system, given that separation between hills and
plains was done based on land-surface variability.

3.2. Evaluation based on Moran's I and variability

The summary statistics of Moran's I and variability are shown in
Table 4.
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Table 4
Results of the statistical evaluation.

Domain Class Object count Ive Ivsp Intra-object variance

Objects per level Level 1 (L1) All 1253 0.387 0.295 219,926.82

Level 2 (L2) All 3202 0.759 0.581 22,893.24

Level 3 (L3) All 21,807 0.795 0.647 14,573.10

Class regions per Level L1 All 330 —0.608 —0.404 527,403.77

L2 All 974 0.235 —0.163 213,453.96

L3 All 8459 0.585 0.283 96,184.95

Objects per class L1 High 967 0.271 0.258 366,075.34

Low 286 —0.647 —0.493 14,619.09

L2 Mountains 849 0.671 0.298 108,608.36

Tablelands and High Hills 1091 0.807 0.496 9826.49

Low hills 529 —0.517 —0.109 14,214.26

Plains 733 0.736 0.062 1254.06

L3 High Mountains 1472 0.658 0.321 98,280.41

Low Mountains 2433 —0.437 0.339 52,494.00

Tablelands 2433 0.897 0.385 3229.25

High Hills 2597 0.791 0.081 15,474.42

Rough Low Hills 1953 —0.507 0.061 24,446.25

Smooth Low Hills 3137 0.043 —0.067 7100.63

High Plains 4299 0.55 0.629 865.77

Low Plains 3483 0.447 0.362 511.47

3.2.1. Objects per level

Indices of spatial autocorrelation are all valued positive, indicating
that the spatial separability between adjacent objects is relatively
low. In general results show increasing spatial autocorrelation for
both properties Mean and SD from L1 to L3 while intra-object vari-
ance decreases. Logically, as the number of objects per level increases,
objects become smaller in size, which leads to reduced object vari-
ability and differences in values of adjacent objects.

What is striking is that Moran's I values of L3 are only slightly
higher than those of L2. Although the number of objects is seven
times higher at L3, the degree of spatial separability between objects
at those two levels is nearly the same. At least variance reduces signif-
icantly from L2 to L3. However, the results suggest that segmentation
of L3 is too fine in some areas.

3.2.2. Class regions per level

Statistics calculated for the domain of class regions give an indica-
tion of between-class separability and within-class variance. Basical-
ly, statistical measures follow the same trends as observed for
object levels. Nevertheless, due to the fusion of objects to class re-
gions, the number of objects is lower. For instance, originally L1 con-
sisted of 1253 objects which have been reduced to 330 class regions
after merging. Due to the reduced number of objects, values of spatial
autocorrelation are low and those of variances are high. Individual
classes are well separated if values of spatial autocorrelation are neg-
ative or around zero. This is the case for class regions of L1 and L2. At
L3 the spatial contrast of adjacent class regions seems to be relatively
low, which is supported by positive Moran's I values. Nevertheless it
is likely that statistics for this domain are heavily impacted by the
thematic resolution, i.e. the number of classes which changes from
two (L1) to eight (L3).

3.2.3. Objects per class

The results of class-specific statistics depend on both thematic res-
olution and class characteristics. Obviously, a lower number of classes
lead to a lower intra-class spatial homogeneity and a higher variance.
At L1, where objects are categorized into only two classes, Iy and
Iyisp actually show minimum values relative to the according set of
class-specific measures. Indices are slightly positive for ‘High’ and
strongly negative for ‘Low’. This suggests that segmentation of class
‘Low’ is not ideal as objects are too large in average resulting in high
within-class heterogeneity. In contrast, class ‘High’ exhibits a similar
degree of spatial uniformity as L1 (Iy;z of 0.271 and 0.387 respective-
ly). Negative spatial autocorrelation is likewise observed for some of

the sub-classes of ‘Low’: ‘Low Hills’ at L2, and ‘Rough Low Hills’ and
‘Smooth Low Hills’ at L3. Apparently, if a class is under-segmented
at the coarser scale, it is probable that some of the sub-classes at
finer levels are not optimally segmented as well. Contrarily, signifi-
cantly high values of Moran's I may be a sign of over-segmentation,
especially if both calculated indices show very high values. The high-
est Iy and Iysp are observed for the L3 class ‘Tablelands’ (0.897 and
0.385) and for ‘Tablelands and High Hills’ at L2 (0.807 and 0.496).

Segmentations of remaining classes of the two finer levels L2 and
L3 appear to be a good compromise between class homogeneity and
intra-class object variability. Except for the under- and over-
segmented categories as discussed above, spatial homogeneity of
classes is high as indicated by positive values of Moran's I. Variance
corresponds well with the ruggedness idea of specific classes. Values
are highest for rough terrain classes such as ‘Mountains’ at L2 or ‘High
Mountains’ at L3 and lowest for smooth physiographic classes such as
‘Plains’ at L2 or ‘Low Plains’ at L3.

3.3. Evaluation based on the online survey

Within the evaluation period 33 people out of 143 interested com-
pleted the questionnaire, i.e. a completion rate of 23%. Major out-
comes of the survey are as follows.

3.3.1. Accuracy

The results of the visual accuracy assessment made by the users
are illustrated in Fig. 6. People were asked to evaluate the spatial ac-
curacy of objects and of class regions as well as the thematic accuracy.
Basically, the three individual diagrams show a similar picture. In
each case about half of the evaluators are of the opinion that results
are accurate or highly accurate (grades of 4 and 5 respectively) with
the lowest percentage (42%) for the spatial accuracy of class regions.
The proportion of people not satisfied with the accuracy (rating of 1
or 2) varies between 15% and 18%, where the highest percentage is
observed for the spatial precision of object boundaries.

3.3.2. Versatility and fruitfulness

Feedback in this category mainly included users' perspectives on
potential application fields and adaptation issues. Outcomes are
graphically summarized in Fig. 7. All in all the evaluators identified
ten scientific fields to which the physiographic classes and objects
are potentially applicable. Answers were categorized into eight clas-
ses. The two most selected disciplines are geomorphology and land-
scape ecology (22 and 21 votes respectively), followed by geology
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Spatial accuracy of classification

Spatial accuracy of objects (class regions)
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= 1 not at all accurate
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27% 4 accurate
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Fig. 6. Evaluation of accuracies of the physiographic dataset at Level 3. User perspectives on the spatial accuracy of objects (left) and class regions (middle) as well as on the the-

matic accuracy (right). Results were obtained through an online survey.

and soil science (both 14). Interestingly, agricultural science got the
same number of selections as hydrology and ecology (13). Concern-
ing adaptation the majority of users (31%) believe that manipulation
of the results is neither easy nor difficult. At least 40% indicate that
adaptation is very simple or simple, against 9% saying that it is diffi-
cult to adapt the results. Obviously, the question created some uncer-
tainty amongst evaluators, since one fifth did not provide a valid
rating.

3.3.3. General usefulness

More than one third of experts find the provided dataset very use-
ful (Fig. 8). Another 27% still indicate that it is useful. Only two people
(6%) really doubt that the physiographic classification can be of any
use. The rest 24% expressed a neutral opinion (grade of 3).

4. Discussion

Our classification produced patterns visually comparable to the
existing per cell classifications at global level (Meybeck et al., 2001;
Iwahashi and Pike, 2007), although it appears more generalized.
More in depth comparisons were made at the level of the contermi-
nous United States, where the classification of Fenneman and
Johnson (1946) is available in geospatial format (http://water.usgs.
gov/GIS/metadata/usgswrd/XML/physio.xml) (Fig. 9). When com-
pared to Fenneman and Johnson (1946), the object-based classifica-
tion appears quite successful in depicting well individualized areas,
bounded by major regional discontinuities, such as the Olympic
Mountains, the Oregon Coast Range, the Klamath Mountains, the Cal-
ifornia Coast Ranges, the Salton Trough, the California Trough, the
Puget Trough, the Northern Cascade Mountains, the Black Hills, the
subunits of the Interior Highlands, and those of the Appalachian High-
lands. However, it seems less successful in delineating highly hetero-
geneous areas such as the Intermountain Plateaus and highly

Application fields
Count

S & P & e &
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&8 c;o& > SO

&

homogeneous areas such as the Interior Plains or the Atlantic Plain;
these areas look too generalized. Iwahashi and Pike's (2007) classifi-
cation (in the following abbreviated as IP) does a better job in these
areas, probably as a consequence of a higher number of classes.

IP was also statistically compared with the classification at L3 pre-
sented in this study. Since IP was only available in digital raster for-
mat, the classification was transformed into a feature dataset. Due
to the huge number of IP objects, statistics of spatial autocorrelation
and object variance were not calculated on a global basis, as originally
planned, but only for the conterminous USA (Table 5). IP for the USA
still consists of 373,644 objects resulting in considerably high Moran's
I'indices (Iy;e=0.993 and Iy;sp = 1). Hence, the spatial contrast of ad-
jacent IP objects is low, which is not optimal at all. The 436 extracted
class regions at L3 are also positively correlated, implying that the
spatial contrast is relatively low, though higher than for IP. Surpris-
ingly, the intra-object variance of 53,000 for the class regions seems
to be acceptable, since it is only about twice the object variance of
IP. We would have expected a much higher internal variability of
class regions, because of the low number of objects. These results sug-
gest that the object-based classification performs better than IP in
partitioning the land surface, particularly in terms of roughness,
according to the basic principle of regionalization (maximizing inter-
nal homogeneity and external difference).

As Bittner (2011) has demonstrated, a trade-off is required be-
tween delineation of geographic regions (which relies on local quali-
ties) and their classification (which relies on global qualities). Such
trade-off is possible with OBIA, since object delineation is clearly sep-
arated from classification of objects. The methodology presented here
puts more emphasis on capturing topographic discontinuities based
on local contrasts and leaves the classification of objects at a generic
level. The eight classes might not coincide with some geomorphic cat-
egories, as for instance piedmont or footslopes. As this classification is
unsupervised, the resulting categories represent geomorphometric

Adaption is...
0%
9% m1 very difficult
o2 difficult
8% O3 moderate
> 04 easy
@5 very easy
On.a.

Odo not know

Fig. 7. Evaluation of versatility and fruitfulness of the physiographic dataset at Level 3. User perspectives on potential application fields (left) and on adaptation (right). Results were

obtained through an online survey.
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Usefulness

= 1 not at all useful
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Fig. 8. User perspectives on the general usefulness of the physiographic dataset at Level
3. Results were obtained through an online survey.

entities that should be interpreted as representations of different land
surfaces in terms of roughness and altitudinal position, relevant to a
given extent (in this work the whole Earth surface). These entities
can be further interpreted by incorporating expert knowledge and

1,000 Km

(possibly) other data to extract geomorphologically relevant categories
(Eisank et al,, 2011). For a comprehensive discussion on differences be-
tween geomorphometric classification and geomorphological mapping,
see Evans (2012). The classification scheme has been designed for gen-
eral purposes, i.e. to offer a synopsis of the Earth surface in respect to the
two variables. Nevertheless, the classification can be tuned for specific
goals by manipulating the objects and their attributes (see Appendix 2
in supplementary on-line material for a list of available attributes)
through basic GIS operations. For instance, even though the alluvial
plain of the Mississippi River was smoothed out within a large flat
plain (Fig. 9B), its boundaries are captured as parts of distinct objects
(Fig. 10), which can easily be reclassified to depict the alluvial plain dis-
tinctly. This is only one of many examples proving the high versatility of
results.

Land-surface classifications have usually been implemented based
on combinations of land-surface variables that make up a geometric sig-
nature (Pike, 1988). Selection of the optimal number of variables as
input data (aka parameterization) depends on spatial scales (Iwahashi
and Pike, 2007) and might involve subjective decisions. We demon-
strated that using a single variable as input data, namely elevation,
can lead to reasonable results as shown by visual inspection, statistical

high mountains

low mountains

[ high hills
tablelands
rough low hills
smooth low hills
high plains

- low plains

Fig. 9. Comparison between Iwahashi and Pike (A) and the object-based classification (B). Both classifications are compared with the polygons delineating Fenneman and Johnson's
(1946) sections for the conterminous United States. The legend of (A) represents the 16 topographic classes of Iwahashi and Pike (2007) symbolized according to their degree of

slope steepness (gentler from 1 to 16). The red square in (B) shows the extent of Fig. 10.
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Table 5
Statistical comparison of the object-based class regions at L3 with the classification of
Iwahashi and Pike (2007) for the conterminous USA.

Domain Object count Ive Invisp Intra-object variance
Class regions L3 436 0.611 0.399 53,000
Objects IP 373,644 0.993 1 24,186

assessment and the survey. This was possible as the method of LV
graphs, when applied to DEMs, shares the rationales of the topographic
grain concept (Wood and Snell, 1960). Pike et al. (1989) defined topo-
graphic grain as a threshold phenomenon of spatial autocorrelation
that measures the areal dominance of terrain by its characteristic local
relief. Topographic grain therefore evaluates the characteristic horizon-
tal spacing of major topographic features by integrating measures of
distance, local relief (aka elevation range) and scale. For the present
study we replaced the unit-cell size by the object size, and local relief
by standard deviation of elevation, which is a more stable measure of
variation (Evans, 1998) and enhances the graph (Pike et al., 1989).
Thus, two of the three components of Iwahashi and Pike's (2007) geo-
metric signature, namely slope gradient and surface texture, were ap-
proximated in our methodology from a single input data. Indeed,
Table 3 shows a logical distribution of summary statistics of slope gradi-
ent among classes even though this variable was not used in classifica-
tion. Accounting indirectly for the two land-surface variables via the LV
with topographic grain approach makes this methodology much less
sensitive to DEM resolution and accuracy, two main issues acknowl-
edged by Iwahashi and Pike (2007). Our tests on various extends (not
presented here) showed similarly satisfying results when using the
90 m SRTM DEM as input. Accuracy, on the other hand, becomes a
less important issue in an OBIA approach, as local variation is smoothed
out by objects.

Application of the LV method did not necessarily result in ‘perfect’
segmentation of the entire scene. Naturally, the more complex a
scene is, the more challenging scale optimization becomes. The re-
sults of the statistical assessment demonstrated that over- and
under-segmentation could not be fully avoided — not even when ap-
plying an optimization strategy that works regionally. Though consid-
ered in this work, scene complexity is an issue that deserves more
research. For the present study we used a rather crude criterion of
selecting highly variable objects to be re-processed at each level,
namely mean and min/max elevations not belonging to an elevation
domain. An iterative procedure based on internal variability and ex-
ternal difference of each object could be a better solution to cope
with scene complexity.

5. Conclusions

The global SRTM DEM at 1 km is automatically classified into eight
topographic classes using an OBIA approach. Global complexity is
decomposed on three levels by an iterative algorithm that identifies
appropriate scales in the data, produces scale-relevant objects, and
partitions these objects into domains of similar land-surface
properties.

The results reasonably resemble patterns of existing global and re-
gional classifications, and the statistical evaluation indicates that
most of classes satisfy the regionalization requirements of maximiz-
ing internal homogeneity while minimizing external homogeneity.
Exceptions are given by ‘Tablelands’, which are over-segmented,
and the two categories of low hills, which are under-segmented.
Most of volunteers participating in an online survey are satisfied
with the accuracy, versatility and usefulness of the results.

The present study introduces the first OBIA classification of land-
forms at global level. Compared to existing per cell classifications,

Fig. 10. Polygons (in black) classified as ‘Low Plains’ corresponding to regional topographic discontinuities such as the contacts of the alluvial plain of the Mississippi River. Location
of the area is shown in Fig. 9B. For comparison, red lines represent a section from the Mississippi Alluvial Plain as delineated by Fenneman and Johnson (1946).
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the object-based approach appears to produce more generalized re-
sults and a better partition of the land surface from a regionalization
perspective, particularly regarding surface roughness. The results are
delivered in a vector format, thus ready for GIS analyses and
customizing.

The methodology is implemented as a customized process for the
eCognition® software, available online at http://www.scala-project.
at. The results are embedded in a web application with functionalities
of visualization and download, available at http://zgis202.plus.sbg.ac.
at/LandformClassification/default.aspx.

Supplementary data associated with this article can be found in
the online version, at doi:10.1016/j.geomorph.2011.12.001. These
data include Google maps of the most important areas described in
this article.
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