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By 1985 newly devised behavioural and electrophysiological techniques had been used to track develop-
ment of infants’ acuity, contrast sensitivity and binocularity, and for clinical evaluation of developing
visual function. This review focusses on advances in the development and assessment of infant vision
in the following 25 years.

Infants’ visual cortical function has been studied through selectivity for orientation, directional motion
and binocular disparity, and the control of subcortical oculomotor mechanisms in fixation shifts and
optokinetic nystagmus, leading to a model of increasing cortical dominance over subcortical pathways.
Neonatal face processing remains a challenge for this model.

Recent research has focussed on development of integrative processing (hyperacuity, texture segmen-
tation, and sensitivity to global form and motion coherence) in extra-striate visual areas, including signa-
tures of dorsal and ventral stream processing. Asynchronies in development of these two streams may be
related to their differential vulnerability in both acquired and genetic disorders.

New methods and approaches to clinical disorders are reviewed, in particular the increasing focus on
paediatric neurology as well as ophthalmology. Visual measures in early infancy in high-risk children are
allowing measures not only of existing deficits in infancy but prediction of later visual and cognitive out-
come. Work with early cataract and later recovery from blinding disorders has thrown new light on the
plasticity of the visual system and its limitations.

The review concludes with a forward look to future opportunities provided by studies of development
post infancy, new imaging and eye tracking methods, and sampling infants’ visual ecology.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction: scope of this review

Between 1975 and 1985, there was a rapid development of
work on the development in human infants of acuity, contrast sen-
sitivity, refraction and accommodation, and binocularity. Basic
methods were established that could be applied in the clinic to as-
sess visual function in infants and young children such as the Teller
acuity cards, Cambridge Crowding cards, photo/videorefraction
and the sweep VEP.

Work in the last 25 years has built on this foundation to explore
how higher level aspects of visual processing develop. This period
has seen increasing insights into the emergence of characteristic
aspects of selective processing in V1, including orientation- and
direction-selectivity, and into the developing interactions between
cortical and subcortical systems, particularly in relation to oculo-
motor control. In the last decade, a major focus has been the devel-
opment of integrative functions depending on extra-striate visual
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areas, for example texture segmentation and pop-out, hyperacuity,
grouping, illusory contour formation, global form and global
motion sensitivity. This work has highlighted questions of develop-
mental relations between the dorsal and ventral cortical streams.
This division between cortical streams has proved to be an increas-
ingly important area for work on visual correlates of developmen-
tal disorders, which have shown wide-ranging ‘dorsal stream
vulnerability’. It has also contributed to an increasing trend to uni-
fy visual development with other aspects of developmental cogni-
tive neuroscience (e.g. attention and the control of action). A
summary neurobiological model is presented of visual develop-
ment in the first year of life, which includes eye and brain net-
works integrating sensory visual processing with systems of
visuo-motor control of action and selective attention.

The clinical application of the science of visual development has
extended from the ophthalmology clinic (ocular disorders, strabis-
mus and amblyopia) to an increasing engagement with paediatric
neurology, where vision can provide a uniquely early functional
window into the typically and atypically developing infant brain.
Applications to perinatal brain injury, very premature infants,
and genetic neurodevelopmental disorders are reviewed, as well
as refractive screening for amblyogenic conditions. Work is also
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reviewed on the effects of short- and long-term visual deprivation,
which has increased our knowledge of the developmental plastic-
ity of the visual system in and beyond V1.

The volume and range of work on human visual development is
too great to be covered in the scope of this article: Vision Research
alone has published over 270 papers on visual development in the
period 1985–2010. Our coverage, therefore, will reflect the authors’
particular interests and expertise in spatial pattern vision, cortical
mechanisms, and their application to neurodevelopmental disor-
ders. Major omissions include infant colour vision, scotopic vision
and light/dark adaptation (these areas received a thorough review
in this journal by Brown (1990)), visual fields and temporal/nasal
differences, and pictorial depth cues; their absence does not reflect
any judgment on either the scientific or the clinical importance of
these topics. We have also concentrated on development in in-
fancy. This has been the most intensively studied part of the life-
span for visual development, but as we comment in the
concluding section, there is increasing awareness of the ways in
which visual capabilities, and their underlying brain bases, con-
tinue to develop through adolescence (see Skoczenski and Norcia
(2002), and Knoblauch, Vital-Durand, and Barbur (2001) for two
examples). However, a critical review that could do justice to work
on development beyond infancy would stretch the bounds of this
paper to breaking point. Some other areas – amblyopia, oculomo-
tor development, vergence and accommodation, refractive devel-
opment, temporal sensitivity, and face processing – will be
touched on through connections with our major themes, but can-
not be reviewed as fully as the amount of interesting work on these
topics would deserve. We have reviewed many of these areas more
extensively elsewhere (Atkinson, 2000; Atkinson & Braddick, in
press, chap. 12; Braddick & Atkinson, 2009.

Prospects for future development of the field are discussed,
including the continuity of visual development through childhood,
the application of technical advances in neuroimaging and eye
tracking, and sampling the visual ecology of the developing infant.
2. Infant vision: the early years

When Vision Research was born in 1960, human visual develop-
ment barely existed as a scientific field. Paediatric ophthalmolo-
gists had to cope with the visual disorders of infants and
children, and developmental psychologists tried to understand
how they gained an understanding of the world which depended
heavily on vision. But visual scientists generally did not see the
early years of development as within their scope, and certainly
did not see them as a subject for empirical investigation.

Vision Research published almost nothing recognisable as a
developmental paper before 1969, and the first involving any
investigation of human infant behaviour came with Tronick and
Clanton’s (1971) study of infant looking patterns. However, the
field had been effectively seeded by Fantz’s (1961) invention of
preferential looking and habituation-recovery (Fantz, 1964) as
means of revealing infants’ visual discriminative abilities. In the
mid 70s these were picked up first by Teller, Morse, Borton, and
Regal (1974) who innovated the combination of preferential look-
ing with forced choice by a ‘blind’ observer (forced-choice prefer-
ential looking = FPL), and then by others who saw the
possibilities of combining them with the methods of visual psycho-
physics and new display technologies such as contrast sensitivity
measurements (Atkinson, Braddick, & Braddick, 1974; Atkinson,
Braddick, & Moar, 1977a, 1977b; Banks & Salapatek, 1978), and
random-dot stereograms (Atkinson & Braddick, 1976; Fox, Aslin,
Shea, & Dumais, 1980). The other methodological driver of progress
was the realisation that visual evoked potentials could be recorded
from infants and provided evidence on their development of
spectral sensitivity (Dobson, 1976), acuity (Sokol, 1978), contrast
sensitivity (Atkinson, Braddick, & French, 1979; Harris, Atkinson,
& Braddick, 1976; Pirchio, Spinelli, Fiorentini, & Maffei, 1978) and
binocular interaction (Braddick et al., 1980; Petrig, Julesz, Kropfl,
Baumgartner, & Anliker, 1981).

Visual development was the subject of a personal retrospective
by Teller and Movshon (1986) in the issue marking the first
25 years of Vision Research, which gives a good view of the empha-
ses and motivation of the early years of infant vision research. As
well as the opportunity to exploit new techniques, it is clear that
a major stimulus was the discovery in animals of plasticity of vi-
sual cortical organization during a critical period, pioneered by
Wiesel and Hubel (1963), and accompanying studies on the normal
development of this organization (e.g. Hubel & Wiesel, 1963;
Wiesel & Hubel, 1974). The opening up of this field of developmen-
tal neuroscience brought to the forefront an inspiring goal: the
development of infants’ visual capabilities might be understood
in terms of the structural and functional development of the visual
system. Work on early plasticity also highlighted the relevance of
physiological studies to the common problems of paediatric oph-
thalmology such as strabismus and amblyopia – a link which, if
it was to be realised in practice, needed solid scientific knowledge
of human visual development.

The links to the physiological studies and to amblyopia/strabis-
mus meant that infant vision research up to the early 1980s fo-
cussed particularly on two areas: the development of visual
acuity (since this was the commonest functional measure in clini-
cal practice) and binocular interaction (the main area of plasticity
that had been studied, and the key to studying strabismus). By
1980 there was a clear picture of how acuity develops rapidly in
the first months of life, from neonatal values typically found to
be around 1 c/deg, although some debate continued about discrep-
ancies between behavioural and VEP measures (see reviews by
Atkinson and Braddick (1981), Boothe, Dobson, and Teller (1985),
Dobson and Teller (1978), Norcia and Tyler (1985)). Later, these
different acuity and contrast sensitivity values, estimated from
VEP and behavioural measures were not evident if similar stimuli
and measures were compared across techniques on the same child
(Atkinson, 2000). These measures of acuity in early life raised the
question: what developing properties of the visual system deter-
mine the limits on acuity and contrast sensitivity in infancy? Visual
optics and accommodation provide one potential limit which was
investigated in this period, both by dynamic- and near-retinoscopy
(Banks, 1980; Mohindra, Held, Gwiazda, & Brill, 1978) and by new
methods of photorefraction (Howland, Atkinson, Braddick, &
French, 1978; Braddick, Atkinson, French, & Howland, 1979;
Hainline, Riddell, Grose-Fifer, & Abramov, 1992). This work intro-
duced the potential of large-scale refractive screening of infants
(Atkinson, 1993; Atkinson, Braddick, Nardini, & Anker, 2007); it
also showed that, in early infancy, while the accuracy of accommo-
dative responses increased, even the youngest infants focussed suf-
ficiently well at the normal distance for acuity testing that optical
factors were not generally a significant limit.

A more interesting potential limit is imposed by the immature
outer segment morphology and packing density of the foveal
cones, and small eye diameter, in newborn infants (Youdelis &
Hendrickson, 1986). Banks and Bennett (1988) calculated what
would be the effect of these immaturities if the infant visual sys-
tem then uses the information supplied by the cones as efficiently
as the adult’s. The calculation suggests that if the improvement of
acuity from 1-month to adult is taken as 12-fold, only about 25% of
this change can be attributed to the photoreceptors and to increas-
ing eye size. However, anatomical information on cone structure in
infants is inevitably very limited, and provides almost no data to
track the correspondence between functional and anatomical
development over the marked changes of the first 6 months. Thus,
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while the role of receptor development is certainly significant, ma-
jor changes must occur higher up, in the organization of the neural
pathways that transmit visual spatial information.

Binocular interaction is unambiguously ‘higher up’, and so the
insight into development of a central visual process, as well as
the clinical significance and the link to animal studies of cortical
organization, provided a strong motivation for investigating binoc-
ularity in infants. Work around 1980 from different laboratories
using diverse behavioural and VEP approaches (Birch, Gwiazda, &
Held, 1982; Braddick, Wattam-Bell, Day, & Atkinson, 1983;
Braddick et al., 1980; Fox et al., 1980; Held, Birch, & Gwiazda,
1980; Petrig et al., 1981) showed a remarkable concordance that
binocular interaction and the detection of stereo disparities typi-
cally emerge between about 11 and 18 weeks of age, but with a
substantial degree of individual variation. The work from Held
and Birch’s group showed a remarkably rapid improvement of ste-
reoacuity following its initial emergence. Our knowledge of binoc-
ular development has continued to be refined, including its
relationship to vergence control (Birch, Gwiazda, & Held, 1983;
Birch & Stager, 1985; Hainline & Riddell, 1995). However, there
remain some major areas of controversy and ignorance. One con-
cerns the way in which inputs from the two eyes are organized be-
fore the onset of disparity sensitivity. Work by Shimojo, Bauer,
OConnell, and Held (1986; see also Held, 1993) suggested that in
the first months, the two eyes made undifferentiated connection
to the same cells in layer IV of primary visual cortex, leading effec-
tively to binocular superposition without disparity detection or
rivalry. It is hard to see how such a system would not yield differ-
ential signals for correlated and anti-correlated dot patterns in the
two eyes – the diagnostic for infant binocularity used by Braddick
et al. (1980) and Braddick et al. (1983) – and Shimojo’s original
observations on infants’ preferences between compatible and riv-
alrous binocular stimuli have more recently failed to be replicated
(Brown & Miracle, 2003). An alternative, but unproven possibility
is the inputs from the two eyes are segregated and do not combine
until binocular, disparity sensitive neurons emerge in the upper
cortical layers around age 3–4 months.

Another persisting puzzle is the association between strabismus
and refraction. Hyperopia has long been known to be associated
with early esotropic strabismus, and screening studies have shown
that hyperopic refraction can be a precursor of strabismus (Atkin-
son et al., 1996, 2007). However, the conventional wisdom, that
over-accommodation required by hyperopic eyes leads to a break-
down of the coupling between convergence and accommodation,
has never been convincingly demonstrated and is perhaps not very
plausibleas a sole explanation. The relation between blur and con-
vergence is an example of a sensory-motor mapping. Most such
mappings have to be highly plastic during development. For exam-
ple, the relation between distance perception and limb movement
for grasping has to be modified as the biomechanics of the arm
changes with growth; as has the relation between disparity and
vergence as interocular distance changes. It is not clear why the
linkage of accommodation and vergence should be an exception.

In the remainder of this article we move on, to review in more
detail the progress of work on human visual development since the
early 1980s, and some of the prospects for future research.

2.1. The emergence of cortical function

Based on reviewing the limited discriminative abilities that had
been demonstrated in newborns, Bronson (1974) had proposed
that these abilities were mediated by subcortical systems – a sug-
gestion which in fact goes back to Koffka (1924). This idea was
developed by Atkinson (1984), using the much wider range of evi-
dence on infant vision that emerged in the 1970s and early 80s to
highlight the changes in performance that occur in the first few
months of life. She proposed that these reflected not just the emer-
gence of specifically cortical processes, but also the function of
descending pathways through which these processes modulate
and control subcortical visual pathways.

It is well established that pattern-reversal VEPs can be recorded
from birth and even some weeks preterm in prematurely born
infants (e.g. Atkinson et al., 1979; Harding, Grose, Wilton, &
Bissenden, 1989; McCulloch, Orbach, & Skarf, 1999). This might be
taken as evidence of visual cortical function. However, the consen-
sus is that VEPs arise not from spiking activity of neurons but from
longer lasting potentials, e.g. postsynaptic potentials (Wood &
Allison, 1981). Thus, the presence of a pattern-reversal VEP demon-
strates that contrast-related signals are reaching the cortical
neurons, but not necessarily that these neurons are responding to
contrast.

Two kinds of evidence have been used to identify infants’ corti-
cal processing. First, mammalian neuroscience has found that the
neurons of striate cortex (V1) show selective responses to stimulus
properties – particularly orientation, spatial frequency, direction of
motion, and binocular relationships – that are not found in the ear-
lier stages of the visual pathway. The emergence of such selective
responses in infant vision therefore provides an indicator that cor-
tical function is emerging. Second, the direct pathways from the
retina to midbrain centres (in particular the superior colliculus)
serve oculomotor functions which undergo striking changes when
subject to descending control from the cortex.

As outlined above, VEP and behavioural evidence concurred
that binocular interaction in human visual cortex appeared around
the 3rd–4th month of life. VEPs were measured time-locked to
transitions in binocular relationships (e.g. correlated to anti-corre-
lated) (Braddick et al., 1980; Julesz, Kropfl, & Petrig, 1980; Petrig
et al., 1981). It was fundamental to this approach that the binocular
transitions were embedded in a series of random dot replacements,
so that the binocular component of the response to the transitions
could be distinguished from that to local changes in each eye’s se-
quence of random patterns. This approach – extracting a VEP to a
high-order transition from events which shared low-level changes
– could be applied to other forms of cortical specificity.

In interpreting developmental VEP results, it is important to
bear in mind the origin of the VEP as the summated activity in
large numbers of neurons. Thus increases in the VEP signal with
age may reflect overall changes in neuronal sensitivity, an in-
creased number of neurons showing a particular response, or
increasing synchrony in responses across a pool of neurons – an is-
sue discussed below in connection with myelination and temporal
precision.

2.1.1. Orientation selectivity
To reveal orientation-selective responses, Braddick, Wattam-

Bell, and Atkinson (1986a) isolated infants’ VEPs to reversals of
grating orientation between opposite obliques by embedding them
in a series of random shifts in the gratings’ spatial phase. The initial
experiments showed that orientation-selective responses first ap-
peared around 6 weeks of age, although later exploration found
that at lower reversal frequencies, the response could be recorded
at 3 weeks (Braddick, 1993). This aspect of cortical processing,
therefore, could not be found at birth but was seen to emerge in
a few post-natal weeks.

Orientation-specific masking has been an alternative approach
to testing infants for selective cortical channels. Morrone and Burr
(1986) found that parallel and orthogonal masks showed no differ-
ence in their effect on a grating VEP at 3.5 months, showed differ-
ential masking at 4 months, but only showed an adult-like effect of
these masks on contrast gain after 6 months. This was interpreted
as an initial emergence of orientation-selective channels, followed
later by the maturation of inhibitory interactions between these
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channels. An analysis of intermodulation responses between test
and mask gratings led Candy, Skoczenski, and Norcia (2001) to
similar conclusions, albeit expressed in terms of contrast normali-
zation. Overall then, orientation-selective neurons emerges early in
human postnatal life, but the dynamics of their responses, and the
intracortical interactions on which these may depend, continue to
develop at least over the first 6 months: this timetable is consistent
with anatomical evidence on the postnatal development of inter-
columnar connections in infant visual cortex (Burkhalter,
Bernardo, & Charles, 1993).

Behavioural orientation discrimination provided a third line of
evidence, which needs to be reconciled with VEP results. Both
Atkinson, Hood, Wattam-Bell, Anker, and Tricklebank (1988a)
and Slater, Morrison, and Rose (1988) showed using habituation
methods that even newborns could discriminate gratings of oppo-
site oblique orientations. However, these stimuli were static, while
the VEP of Braddick et al. (1986a) requires dynamically alternating
gratings. When the same dynamic frequencies (3 and 8 reversals/s)
were used for behavioural testing, discrimination performance ap-
peared at similar ages as the VEP responses (Braddick, 1993; Hood,
Atkinson, Braddick, & Wattam-Bell, 1992). This does not simply re-
flect overall improvement of temporal response to rapidly chang-
ing stimuli; the simpler pattern-reversal VEP can be seen for
either frequency at birth. There are two alternative interpretations:
either orientation selective cortical neurons are present at birth,
but have extremely sluggish dynamics; or newborns base their dis-
crimination on some other process, perhaps subcortically based
(e.g. if infants’ patterns of eye movements are anisotropic, then dif-
ferent contour directions would generate different spatio-temporal
contrast as the eyes sweep over them).

2.2. Spatial frequency tuning

Another aspect of cortical selectivity is the tuning of neurons to
relatively narrow bands of spatial frequency, compared to earlier
levels of the visual pathway (Blakemore & Campbell, 1969; de Valois
& de Valois, 1990). This has been less explored in infancy. Banks,
Stephen, and Hartmann (1985) used a preferential looking method
to test infants’ detection of gratings in narrowband masking noise,
and found spatial-frequency specific masking in 12-week old but
not 6-week-old infants. However, Fiorentini, Pirchio, and Spinelli
(1983) report frequency specific masking effects on the VEP for 6-
week olds and Suter et al. (1994), using a sweep VEP measure, report
evidence for frequency-specific adaptation as young as 3 weeks,
although the selectivity is less evident in their data plots for the
younger groups. The Banks et al. results suggest a comparable devel-
opmental course to the orientation selectivity reviewed above, and
Fiorentini’s results are compatible with this, while Suter et al. sug-
gest that spatial frequency selectivity is present earlier. Orientation
and spatial frequency need to be tested using the same methods and
the same age groups, for a more conclusive comparison of the devel-
opment of these two dimensions of cortical selectivity.

2.2.1. Directional selectivity
Directional responses to motion are another form of selectivity

which is seen in primary visual cortex but not in its input. In par-
ticular, the evidence is that direction selective responses in the cor-
tex emerge postnatally. By analogy with the methods described for
orientation and binocularity, VEPs can be isolated for reversals of
motion direction which are embedded in a series of non-
directional transitions (Wattam-Bell, 1991). This response was
not seen in infants under 10–12 weeks of age. Detailed comparison
of orientation selective and direction-selective VE P responses in
the same infants shows that these two aspects of cortical process-
ing do not emerge together, but that direction consistently lags ori-
entation in development (Braddick, 1993; Braddick, Birtles,
Wattam-Bell, & Atkinson, 2005). Preferential looking towards a
random-dot field that is segmented by opposite directions of mo-
tion demonstrated a somewhat earlier onset of directional sensi-
tivity (Wattam-Bell, 1992, 1996a) but still at 7 weeks postnatal
or later. It might be expected that motion-based segmentation
develops later that overall directional selectivity; however, tests
of the ability to distinguish different directions of uniform motion
do not demonstrate any earlier onset (Wattam-Bell, 1996b, 1996c,
1996d). Younger infants show a preference for moving over static
stimuli (Volkmann & Dobson, 1976) but such a preference could
be based solely on the salience of temporal transients, without
any registration of direction which is the intrinsic spatio-temporal
characteristic of motion. Thus despite the importance of motion for
diverse perceptual purposes (Nakayama, 1985) it is not the first as-
pect of cortical processing to develop.

The infant’s initial directional sensitivity is limited to quite a
narrow range of velocities around 5–10 deg/s. This range extends
to higher speeds with development (Wattam-Bell, 1992, 1996b),
possibly reflecting (along with a similar extension in the range of
disparity handled by the developing stereo system (Wattam-Bell,
2009)) an extension in the range of the intracortical connections
that are needed to recognise large displacements. In parallel, the
range of velocities and displacements which infants respond to is
also extended at the low speed/small displacement end (Aslin &
Shea, 1990; Banton & Bertenthal, 1997; Wattam-Bell, 1996b).
Since, for a given temporal interval, low-speed discrimination re-
quires the differentiation of small spatial separations, this latter
development is in keeping with the coarse-to-fine development
seen in resolution acuity and other visual functions.

Responses to motion require the transmission and analysis of
rapidly varying visual signals. Infants, at both the photoreceptor
(Horsten & Winkelman, 1962) and behavioural levels (Regal,
1981) show responses to remarkably high flicker rates at 1 month
and younger. However, as we have argued in a review elsewhere
(Braddick & Atkinson, 2009), while individual optic nerve fibres
may convey high temporal frequencies to the infant brain, the
effective integration of this information, for motion detection and
other purposes, is delayed in development – perhaps because sig-
nals in incompletely myelinated fibres of the optic nerve are not
yet well synchronised.

The full account of how motion processing develops has to take
into account optokinetic nystagmus (OKN) – the pattern of follow-
ing slow eye movements interspersed with rapid ‘flicking back’ sac-
cades; that is elicited by large field movements. Brisk OKN
responses can be elicited even in newborn infants (Dayton et al.,
1964; Kremenitzer, Vaughan, Kurtzberg, & Dowling, 1979). While
OKN must depend on a directional neural mechanism, evidence re-
viewed below strongly supports the view that this mechanism is
subcortical in the newborn. Mason, Braddick, and Wattam-Bell
(2003) showed that the OKN and preferential looking responses de-
pended on two distinct mechanisms, which could be distinguished
by the different developmental course of their sensitivity to ran-
dom-dot motion coherence. Infants under 6 weeks show some
other motor responses to motion patterns, such as head withdrawal
to an expanding flow field (Jouen, Lepecq, Gapenne, & Bertenthal,
2000; Nanez & Yonas, 1994 – see reviews by Braddick, Atkinson,
and Wattam-Bell (2003) and Banton and Bertenthal (1997)); these
sensory-motor links are less well investigated than OKN, but may
also represent initially subcortical mechanisms to maintain visual
stability through motor adjustments.

In summary, the characteristic selectivities of cortical neurons
emerge postnatally in human infants. However, this is not a uni-
tary ‘switching on’ of the cortex, but a staged emergence, with ori-
entation selectivity and perhaps spatial frequency tuning first,
followed by directional selectivity and later, specificity for binocu-
lar correlation and disparity.
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2.3. Cortical modulation of subcortical oculomotor systems

As noted above, newborn infants give directional OKN re-
sponses. However, these responses turn out to be asymmetrical;
in common with newborn kittens (Van Hof-Van Duin, 1978) and
infant monkeys (Atkinson, 1979; Distler, Vital-Durand, Korte,
Korbmacher, & Hoffmann, 1999) non-binocular species such as
rabbits, when the infant under 2–3 months views monocularly,
OKN can only be driven by motion in the temporal-to-nasal direc-
tion (Atkinson, 1979; Atkinson & Braddick, 1981) and the nasal-
to-temporal response emerges progressively thereafter (Lewis,
Maurer, Chung, Holmes-Shannon, & Van Schaik, 2000; Naegele &
Held, 1982). If both directions are present, as in a stationary
counterphase reversing grating, monocular stimulation elicits only
temporal to nasal OKN responses in 2-month infants (Teller,
Succop, & Mar, 1993).

This asymmetry is consistent with the directional bias of neu-
rons in the nucleus of the optic tract (NOT), with these neurons
having an ‘ipsiversive’ preferred direction (i.e. the right NOT re-
sponds to rightward motion, and the left NOT to leftward motion
(Hoffman, 1986)). There is a direct pathway from each retina to
the contralateral NOT, so this direct subcortical pathway could
mediate a response to temporal-to-nasal motion only. In the ma-
ture system, a descending pathway from cortical binocular neu-
rons to the ipsilateral NOT provides a route for information from
the each eye to the contralateral NOT, and hence for driving a re-
sponse to nasal-to-temporal motion (Hoffman, 1986, 1989; Ilg &
Hoffmann, 1993). The neonatal OKN asymmetry has therefore been
interpreted as a signature of this subcortical pathway, and the
emergence of nasal-to-temporal OKN in infancy as the develop-
ment of a cortical input to this subcortical sensory-motor loop.

This hypothesis has been supported by findings with infants
who have undergone surgical hemispherectomy to relieve intrac-
table epilepsy caused by unilateral cerebral malformations. If the
operation is early, such infants initially show the neonatal pattern
of OKN asymmetry with either eye (Morrone, Atkinson, Cioni,
Braddick, & Fiorentini, 1999), consistent with an intact subcortical
loop on both sides. However, the nasal–temporal sensitivity that
would, on the hypothesis described above, be served by the miss-
ing hemisphere, does not emerge (Braddick et al., 1992; Morrone
et al., 1999).

The descending pathway consists of binocular neurons, and the
development of the symmetrical response requires normal devel-
opment of binocularity (Atkinson & Braddick, 1981; Birch, Fawcett,
& Stager, 2000a; Crone, 1977). Also linked to disorders of binocu-
larity, and presumably somehow associated with the OKN asym-
metry, is an asymmetry in the VEP elicited by alternating
displacements of a grating (Norcia et al., 1991). However, consis-
tent with the findings that directional cortical responses emerge
postnatally, Birch et al. (2000a) found that the VEP asymmetry is
absent in 6-week and younger infants. Since the OKN asymmetry
is conspicuous at this age, it cannot be an asymmetry in the cortical
signals that drives the OKN asymmetry. We discuss this rather
puzzling relationship in more detail in reviews by Braddick et al.
(2003) and Braddick (1996).

A second apparently subcortical oculomotor loop is that
controlling the fixation response to a suddenly appearing target.
This is present in the first 3 months, provided that there is not a
target already engaging the infant’s fixation (Aslin & Salapatek,
1975; Tronick, 1972). However, in the ‘competition’ situation,
where the infant must disengage from an initially fixated target,
shifts to the newly appearing target are extremely sluggish or ab-
sent; prompt fixation shifts under competition start to appear
around 3 months of age (Atkinson & Hood, 1997; Atkinson, Hood,
Braddick, & Wattam-Bell, 1988b; Atkinson, Hood, Wattam-Bell, &
Braddick, 1992). The superior colliculus contains superimposed
visual and oculomotor maps, which provide a subcortical loop to
generate fixation saccades; however in the mature system there
is also a inhibitory drive from frontal eye fields which has a con-
trolling effect on the fixation loop (Hikosata & Wurtz, 1983). It is
proposed, therefore, that the improvement in competition perfor-
mance reflects development of the cortical system and/or its con-
nection to the colliculus. This development can be mapped out
by varying the interval between offset of one target and onset of
another (Hood & Atkinson, 1993). Again, tests with the hemisphe-
rectomised infants support this account of emerging cortical func-
tion; these infants tested postoperatively at 8 months of age and
later show shifts under competition to targets in the half-field
served by their intact hemisphere, but will only fixate in the other
half field, where there is no cortical control, if there is no central
competing stimulus (Braddick et al., 1992).

2.4. Encoding spatial relationships

Elementary cortical detectors may signal the presence of visual
pattern elements, but pattern vision requires the spatial relation-
ships between these elements to be encoded. One approach to
the development of this encoding has been to test infants’ sensitiv-
ity to the phase relationship between spatial frequency compo-
nents; another has been to examine the development of vernier
acuity and other spatial ‘hyperacuities’.

Braddick, Atkinson, and Wattam-Bell (1986b) used a habitua-
tion method to test whether infants discriminated a square-wave
grating from the same frequency components with scrambled
phase. They found that while 1-month and 2–3-month-old infants
both showed this discrimination, it was abolished in the younger
group when peak-trough contrast was eliminated as a cue, while
the older group showed a genuine discrimination of the phase pat-
tern, which also dominates the appearence of the stimulus for
adult observers. A similar transition was in tests of preferences
for schematic face images against images in which either the phase
or the amplitude spectrum was interchanged with that of a non-
face pattern. For newborns, the preference for face-like images
was dominated by the amplitude spectrum (Kleiner, 1987), while
2-month-olds’ preferences followed the phase spectrum (as do
adults’ judgments) (Kleiner & Banks, 1987). The conclusion is that
the configurational properties carried in the phase relations have
relatively little impact on the perception of the youngest infants,
although Kleiner showed that phase effects could be demonstrated
when the amplitude spectrum was constant. The amplitude spec-
trum (the ‘linear systems account’) was also been found to predict
8- and 13-week infants’ preferences for geometrically simpler
stimuli (Banks & Stephens, 1982; Gayl, Roberts, & Werner, 1983).

Infants’ rapidly improving sensitivity to vernier breaks has been
tested both behaviourally (Shimojo, Birch, Gwiazda, & Held, 1984;
Skoczenski & Aslin, 1992, 1995; Zanker, Mohn, Weber, Zeitler-
Driess, & Fahle, 1992) and using VEP measures (Manny, 1988;
Skoczenski & Norcia, 1999, 2002). Although it is questionable to
compare quantitatively the threshold gap for vernier acuity with
that for grating resolution (Shimojo & Held, 1987; Shimojo et al.,
1984), the age trends can be meaningfully compared, and have
shown that vernier performance increases much more rapidly than
grating acuity between 2 and 6 months, and continues to mature
for longer, asymptoting in adolescence (Skoczenski & Norcia,
1999, 2002). Brown, Adusumilli, and Lindsey (2005) present evi-
dence that the difference between 12-week-old infants’ and adults’
vernier performance can be accounted for by the difference in con-
trast discrimination thresholds for the two groups, which would
argue against the idea that a specific sensitivity to spatial relation-
ships underlies the developmental trend. However, Skoczenski and
Aslin (1995) examine a rather similar argument, on how far the
developmental change in vernier acuity reflects ‘intrinsic blur’



O. Braddick, J. Atkinson / Vision Research 51 (2011) 1588–1609 1593
within the visual system. They conclude that the development
from 3 to 5 months can be accounted for in this way, but that
the further large improvement from 5 months to adulthood re-
quired also improved spatial processing.

The precise neural basis is not well established for either phase
discrimination or for vernier acuity, although there is evidence that
vernier acuity depends on cortical integrity (e.g. Skoczenski &
Good, 2004) and that cortical neurons are sensitive to vernier
breaks (Swindale & Cynader, 1986). It is likely, then, that the devel-
opment of these functions reflects the increasing spatial organiza-
tion and precision of cortical visual mechanisms, although the
changing basic limitations on contrast processing must also be
taken into account.

Vernier acuity is often taken as an example of ‘hyperacuity’,
requiring spatial information to be integrated to define locations
with higher precision than the separation of the photoreceptor mo-
saic. However different hyperacuity tasks do not necessarily in-
volve the same integrative processes, and so may not show the
same developmental course. For instance, the early development
of stereo- and vernier acuity is not parallel (Brown, 1997). Sensitiv-
ity to radial deformation (Birch, Swanson, & Wang, 2000b) is an-
other hyperacuity which develops through infancy, but may
involve global pattern processes of the kind described in the next
section as well as sensitivity to local offsets.

A range of evidence, then, has suggested that visual cortical
function is at best very rudimentary at birth, but develops rapidly
from about 1 month onwards. This evidence from visual function is
consistent with the neuroanatomical finding that the number of
synapses in human striate cortex increases only at a shallow rate
for the first 1–2 months, but then accelerates rapidly, with a peak
around 6–9 months (Huttenlocher, 1990; Huttenlocher, de
Courten, Garey, & van der Loos, 1982) about tenfold higher than
at birth. However, these studies show a subsequent decrease in
synapse number, with only about half of the maximum remaining
at 10 years. The initial exuberance presumably establishes the
receptive field organization underpinning the abilities we have dis-
cussed. The later decrease is believed to be selective pruning that
refines this organization, but we do not yet know what particular
improvements in visual performance during early childhood can
be ascribed to it. In any case, the development of function is not
driven simply by a generic process of synaptogenesis: the differen-
tial time courses for orientation, directional, and binocular devel-
opment indicates that distinct developmental processes must
establish the neuronal connectivity that underlies each of these
types of receptive field organization.

2.5. Integrative, extra-striate processing

The years since 1980 have seen an explosion of our knowledge
of the multiple, specialised extra-striate cortical visual areas, both
from neuroanatomy and physiology in non-human primates, and
from fMRI investigations in humans. Successive tiers of these
extra-striate areas typically show a progressive increase in recep-
tive field size and in the complexity of stimulus properties to
which they respond (see Maunsell and Newsome (1987) for an
early review, and Orban (2008) for a recent one), both trends
reflecting integration of the signals received from V1 which encode
only local properties of visual stimuli. Developmental researchers
in visual development have therefore turned to these integrative
processes to examine how vision develops beyond the basic
receptive field properties of V1.

2.5.1. Segmentation
One relatively simple function which requires spatial integra-

tion is the segmentation of the visual field to define distinct objects
and surfaces for perceptual analysis. Such segmentation can be
based on a number of different dimensions – e.g. colour, motion,
texture orientation – and is closely related to the phenomenon of
pop-out where an element in a visual array is salient because of
its difference from neighbouring elements. Given its importance
for organizing the visual world, it is not surprising that segmenta-
tion emerges early in infancy. In adult perception, colour differ-
ences play a key role in visual segmentation of different surfaces,
and is a particularly powerful cue for ‘pop-out’ (Nothdurft, 1993).
Colour segmentation in infants has not been explored as thor-
oughly as it deserves, but there is evidence that 3- to 4-
month-old infants can detect a pop-out target on the basis of
colour alone (Franklin, Pilling, & Davies, 2005; Gerhardstein,
Renner, & Rovee-Collier, 1999).

Salapatek (1975) pioneered studies on whether a discrepant
element or region within a patterned texture, including orientation
differences, attracted preferential looking in 8–11 week-old in-
fants. His early results demonstrated preferences for particular ele-
ment types (e.g. vertical over horizontal line segments), but no
evidence for detection of texture segmentation at this age.
Atkinson and Braddick (1992) demonstrated infants’ preference
for targets segmented by texture orientation by 4 months. Sirete-
anu and Rieth’s (1992) initial results with a similar paradigm but
smaller stimulus patches did not show segmentation before
9 months but a later habituation experiment by the same group
(Rieth & Sireteanu, 1994) confirmed orientation-based segmenta-
tion by 5 months.

While some theorists have ascribed texture segmentation to
horizontal interactions within V1 (e.g. Li, 2003) there is evidence
that it depends on extra-striate areas, perhaps via feedback con-
nections to V1 (e.g. Allen, Humphreys, Colin, & Neumann, 2009).
The postnatal development of such connections from V2 to V1
has been demonstrated anatomically (Burkhalter, 1993).

The inverse of segmentation is grouping. There are studies
which are interpreted as showing the presence of Gestalt grouping
of local elements in newborns (Cassia, Simion, Milani, & Umilta,
2002; Farroni, Valenza, Simion, & Umilta, 2000). However, as Cassia
et al. point out, the infants’ performance in these studies can be ex-
plained on the basis of a dominance of the low-spatial-frequency
band in their pattern processing. While this may be an important
aspect of ‘global’ processing in both infants and adults, unlike the
texture experiments cited above it does not require a process of ex-
plicit ‘second-order’ linkage of pattern elements, and so does not
bear on the suggested mechanism based on long-range horizontal
cortical connections or feedback connections.

Segmentation based on orientation appears to develop with
some delay from the initial cortical sensitivity to orientation. In
contrast, motion-based segmentation appears to develop at the
same time as cortical directional selectivity. Wattam-Bell (1992,
1994, 1996a) demonstrated the onset of directionality using
directionally-based segmentation to produce preferential looking.
Kaufmann-Hayoz, Kaufmann, and Stucki (1986) and Johnson and
Mason (2002) demonstrated recognition of motion-segmented
shapes in 2- to 3-month-olds. It might seem that segmentation of
different directions requires a prior developing ability to identify
a single direction, but Wattam-Bell (1996b, 1996c, 1996d) found
that directional discrimination for a uniform field developed later
than the ability to discriminate direction within a segmented array.

In fact, the success of Wattam-Bell’s (1992) preferential looking
procedure suggests that motion-based segmentation is rather sali-
ent in driving infants’ visual attention, compared with the rela-
tively weak preferences found by Atkinson and Braddick (1992)
and Sireteanu and Rieth (1992) for targets segmented by oriented
texture. We have speculated that motion-based segmentation is of
particular importance in learning to organize the visual world,
since it occurs whenever parallax is generated either by the
independent movement of objects, or by self-motion. This
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motion-based organization may serve as a scaffolding for the in-
fant to learn that discontinuities in properties such as surface tex-
ture can also be diagnostic of the boundaries between objects and
surfaces.

Visually significant boundaries are signalled not only by lumi-
nance contrast and by discontinuities in motion, texture and col-
our, but also by the presence of aligned contour terminators and
collinear contour segments, generated by occluding surfaces –
the so-called ‘subjective contours’ exemplified by the Kanisza tri-
angle figure (Peterhans & von der Heydt, 1991). Curran, Braddick,
Atkinson, Wattam-Bell, and Andrew (1999) found that infants as
young as 2 months could detect such boundaries. However, this re-
quired aligned terminators to be associated with common motion.
A number of studies have shown that, by 3–4 months, infants are
also sensitive to the figural organization created by aligned
elements in Kanisza figures (Ghim, 1990; Kavsek, 2002; Kavsek &
Yonas, 2006; Otsuka & Yamaguchi, 2003; Yonas, Gentile, & Condry,
1991); again, this sensitivity is demonstrated earliest when the
alignment is coupled to common motion in a dynamic display, con-
sistent with the idea that motion supports the development of
other cues for segmentation.

2.5.2. Integrative motion processing
Segmentation is just one of a range of perceptual functions

which require the integration of local motion information, and
which have been demonstrated in infants. Arterberry and Yonas
(1988, 2000) showed quite subtle discriminations of three-dimen-
sional structure defined by dot motions corresponding to surfaces
of a rotating solid. Kellman and Spelke (1983) and Jusczyk, John-
son, Spelke, and Kennedy (1999) have shown that infants link
the parts of a partially occluded object by their common motion,
and Johnson et al. (see review in Johnson, 2004) has explored in de-
tail the conditions for this to occur. Leslie (1984) and Wickelgren
and Bingham (2001) demonstrated sensitivity to the dynamics of
causal event sequences, and Rochat, Morgan, and Carpenter
(1997) report a preference for dynamic event sequences with sim-
ple shapes that adults categorise as social interactions. Infants are
also sensitive to the patterns of point-light motion that character-
ise biological motions (Bertenthal, Proffitt, & Cutting, 1984;
Bertenthal, Proffitt, Spetner, & Thomas, 1985; Booth, Pinto, &
Bertenthal, 2002; Fox & McDaniel, 1982). Most of these tests have
been with 3–6 month-old infants, and so do not require any revi-
sion of the view that directional motion information is available
only after 7 weeks of age. However, they demonstrate that, only
a few weeks later, infants can exploit this directional information
in complex perceptual functions.

For many of these functions, there is little specific knowledge of
how motion information is integrated in extra-striate cortex.
However, some integrative functions have been studied at the sin-
gle-cell level, in particular in area V5 (MT). For example, the com-
bination of motion signals from contours in different orientations
to solve the ‘aperture problem’ is known to occur in the ‘pattern
motion cells’ of V5 (Movshon, Adelson, Gizzi, & Newsome, 1986).
The perceived direction of plaids, made by superimposing two
moving gratings, is the classic test of this integration (Adelson &
Movshon, 1982) and has provided a paradigm for testing functional
development of this area. Manny and Fern (1990) found that, even
at 1 month, OKN eye movements were driven in the direction of
‘pattern motion’ perceived by adults, suggesting that such integra-
tion was occurring. However, Manny and Fern suggested that a
subcortical mechanism, depending on a different process than
combination of motion signals in V5, might drive neonatal OKN
in this way. This seemed to be supported by Smith and Harris’s
(1991) observations of OKN in cats which showed that subcortical
processes contributed a pattern motion signal. However, Harris,
Lewis, and Maurer (1993) later found evidence that, in human
adults, directional integration in OKN had a cortical origin, so the
case for young infants is unresolved. Dobkins, Fine, Hsueh, and Vit-
ten (2004) used a stimulus with spatially separated grating compo-
nents (which would not generate pattern motion by the subcortical
summation suggested for superimposed plaids) and found direc-
tional integration in the youngest group they tested (2 month
infants).

In ‘type 2’ plaids (Adelson & Movshon, 1982) two gratings are
superimposed with very asymmetrical motion vectors and the
resulting pattern motion is very different from the mean direction
of the two components. Such plaids distinguish the integration
process seen in adult perception (and pattern-motion V5 neurons)
from a simpler combination process that averages the motion vec-
tors of each component grating. Harris et al. (1993) found that
adult OKN showed the more complex integration process with type
2 plaids. However, no infant studies appeared to have yet used
such patterns, Nor has there yet been a human infant study using
a behavioural discrimination technique; this is urgently needed
since infant macaques have been shown to develop the ability to
discriminate plaid direction (Hall-Haro & Kiorpes, 2008) much la-
ter than direction discrimination for dot patterns (Kiorpes &
Movshon, 2004). The 10–18 weeks at which macaques show this
discrimination is argued to be equivalent to 30 weeks + in human
development, although it is not clear how far any consistent
developmental scaling can be applied between the two species
(Hall-Haro, Johnson, Price, Vance, & Kiorpes, 2008).

A second form of motion integration with a known extrastriate
mechanism is the detection of globally coherent motion in a dot
pattern containing a proportion of randomly moving dots. The
coherence threshold – the minimum percentage of dots sharing a
common direction of motion that is required for detection of that
motion – provides a measure of this integration. This threshold
has been shown to depend on area V5 in macaques (Newsome &
Pare, 1988) and humans (Baker, Hess, & Zihl, 1991) and individual
V5 neurons in macaque show coherence thresholds which are
comparable to the overall behavioural threshold (Britten, Shadlen,
Newsome, & Movshon, 1992). Neuroimaging results show that hu-
man V5 is sensitive to the level of motion coherence (Rees, Friston,
& Koch, 2000). Other extra-striate cortical areas, such as V3a, share
this strongly coherence-dependent responses (Braddick, O’Brien,
Wattam-Bell, Atkinson, & Turner, 2000), but it seems clear that
the detection of global coherent motion is an extra-striate function.

Infants’ coherence thresholds, assessed by preferential looking,
develop rapidly from the initial onset of directional discrimination,
falling to about 30% by 24 weeks (Mason et al., 2003; Wattam-Bell,
1994) compared to adult values around 20% with the same display.
A related test, in which coherence is varied by changing the spread
of motion directions about the mean value, shows that infants of
12 weeks and over can make direction discriminations that require
integration of directional distributions with standard deviations of
68� (Banton, Bertenthal, & Seaks, 1999). (The wider range of distri-
butions which adults can integrate (Williams & Sekuler, 1984) was
not tested in infants). These findings are supported by VEP/VERP
experiments, discussed further below, in which 5-month infants
gave responses to a stimulus sequence that isolates global motion
integration from local directional responses (Wattam-Bell et al.,
2010) and other VEP recordings of responses to global flow
patterns at this age (Gilmore, Hou, Pettet, & Norcia, 2007; Hou,
Gilmore, Pettet, & Norcia, 2009).

These results, along with the diverse complex motion-based
discriminations discussed above, suggest that very soon after local
motion signals are first available in the developing brain, the pro-
cesses which integrate them into global representations are oper-
ating quite efficiently. We have speculated (Braddick et al., 2003)
that the connectivity between V1 and extra-striate areas including
V5, on which this integration is based, may exist early in some
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crude form, awaiting the organization of local directional selectiv-
ity in V1 – perhaps because the latter requires some minimum le-
vel of temporal performance in the developing visual pathway
before it can function (Braddick & Atkinson, 2009).

Single unit studies of infant monkeys indicate that V5 neurons
show directional responses, albeit sluggish, at 1 month of age,
but are considerably slower to develop pattern-motion responses
and sensitivity to global coherence (Movshon, Rust, Kohn, Kiorpes,
& Hawken, 2004; Kiorpes, Hawken, Movshon, Kohn, & Rust, 2007).
This is consistent with the behavioural results in this species (Hall-
Haro & Kiorpes, 2008). Distler, Bachevalier, Kennedy, Mishkin, and
Ungerleider (1996) found that metabolic activity in macaque V5
was immature in newborns but rose rapidly to near adult-levels
around 3 months of age. In humans, Rosander, Nystrom, Grede-
back, and von Hofsten (2007) measured VEP responses to motion
in 2–3 month-olds that they argued arose from V5, but the stimuli
did not require the specific integrative functions of V5. It will be
important to determine how far high-level motion-based percep-
tion depends on the refinement of V5 properties, and whether
other extra-striate pathways are involved.

Long-range integration of motion between parts of an occluded
object may have a slower developmental course: Kochukhova and
Rosander (2008) found that pursuit eye movements for a diamond
figure, whose edges were visible through four separated apertures,
reflected adult-like integration in 9-month-old but not 5-month-
old infants. It is not known whether motion integration in displays
of this kind depends on later-developing processes in V5, or on
other motion processing areas with large receptive fields.

2.5.3. Integrative pattern processing
Analogous to the integration of local motion signals, a number

of processes integrate the orientations of local contour segments
to define contours, textures, regions and shapes. For example, area
V4, at a similar level in the extra-striate hierarchy to V5 contains
receptive fields that are sensitive to large scale concentric or radial
organization (Gallant, Braun, & Van Essen, 1993).

Above we discussed the segmentation of oriented textures seen
around 4 months. The related ability to discriminate coherent par-
allel texture from the same elements randomly oriented has been
demonstrated using a VEP technique by Norcia, Pei, Bonneh, Hou,
Sampath, and Pettet (2005), in a group of infants aged 2–5 months
(albeit with higher coherence thresholds than adults (Pei, Pettet, &
Norcia, 2007)). A variety of studies (Palomares, Pettet, Vildavski,
Hou, & Norcia, 2010; Braddick & Atkinson, 2007; Wattam-Bell
et al., 2010) have shown infants’ VEP responses specific to the kind
of concentric or radial organization seen in V4 receptive fields.
However, direct comparison of sensitivity to global pattern struc-
ture and global motion, both behavioural (Braddick & Atkinson,
2007; Braddick, Curran, Atkinson, Wattam-Bell, & Gunn, 2002)
and VEP-based (Braddick & Atkinson, 2007; Wattam-Bell et al.,
2010) indicate that the former matures more slowly during
infancy. We return to this comparison in the next section.

Grouping of elements into a texture is a ‘region-based’ integra-
tive process, and can be contrasted with the ‘contour-based’ group-
ing of near-collinear line segments (Hess & Field, 1999). This latter
process also develops during the postnatal months. Gerhardstein,
Kovacs, Ditre, and Feher (2004) and Baker, Tse, Gerhardstein, and
Adler (2008) showed detection of grouped contour segments in a
noise background, in 3-month and 6-month-old infants respec-
tively, although the level of noise tolerated is much lower that
for adults, and indeed remains so at 5–6 years (Kovács, Kozma,
Fehér, & Benedek, 1999). A satisfactory VEP demonstration of this
effect does not yet seem to have been achieved in infants (Pei
et al., 2007), although the alignment of segments may contribute
to the results found for global concentric and radial organizations
which include some degree of alignment.
One specialisation of extra-striate cortex for high-level pattern
properties is the detection and recognition of human faces, partic-
ularly in the ‘fusiform face area’ (FFA) (Kanwisher, 2000). Tests of
infants’ preferences for faces date back to Fantz’s (1961) first pref-
erential looking experiments. The large body of work on what
drives this preference is beyond the scope of this article; Pascalis
and Slater (2003), Simion, Leo, Turati, Valenza, and Dalla Barba
(2007) and Simion, Di Giorgio, Irene Leo, and Bardi (2011)) give re-
cent overviews. However, we need to consider the challenge it of-
fers to the idea that visual cortical function develops postnatally.
Much evidence exists that, at an age before the onset of visual cor-
tical functions more generally, newborn infants are specifically
sensitive to some aspect of facial configurations (Dziurawiec and
Ellis, 1986; Goren, Sarty, & Wu, 1975; Johnson & Morton, 1991;
Simion, Valenza, & Umilta, 1998) or at least have visual preferences
which bias them to acquire face-related information (Turati, 2004).
Johnson and Morton (1991) proposed that a ‘CONSPEC’ mecha-
nism, possibly subcortical, determined initial newborn fixation
biases towards face-like stimuli. However, there is not yet any di-
rect evidence for any subcortical face-specific responses.

Simion and her group (see review by Simion, Di Giorgio, Irene
Leo, and Bardi (2011)) suggest that face preferences at birth are
the result of combining a set of non-specific constraints stemming
from general characteristics of the immature visual system and
some general structural properties that attract newborns’ atten-
tion. For example, newborns may attend preferentially to patterns
that are top-heavy with contrast, because of a possible upper-vi-
sual-field advantage in visual sensitivity.

In adults, face-related information has been found to bypass V1
in a pathway that drives emotional responses in the amygdala
(Morris, Degelder, Weiskrantz, & Dolan, 2001; see also review by
Johnson (2005)), but the role of this pathway in development, what
subcortical and cortical structures it involves, and its relation to
the FFA, are matters for speculation. There are other face-respon-
sive areas in the adult cortex, notably the occipital face area
(OFA) (Gauthier et al., 2000) which may reperesent an earlier level
in the face-processing network than the FFA (Liu, Harris, &
Kanwisher, 2010; Pitcher, Walsh, & Duchaine, 2011) but their role
does not alter the underlying issue of whether there is any cortical
contribution to newborns’ face preferences. Thus in relation to the
model of emerging cortical function, there remain two alterna-
tives: either crude face-specificity, or a pattern of preferences
which favours faces, is a precocious property of the newborn cor-
tex, or it is embodied in subcortical structures such as the superior
colliculus, guiding fixation biases to favour visual stimulation
which then promotes the development of face-specific systems in
the cortex.

It has recently been suggested that neonates display a prefer-
ence for biological motion patterns (Simion, Regolin, & Bulf,
2008; Simion et al., 2011) – an analogy to the face question, since
such performance would reflect sensitivity to a biologically signif-
icant visual configuration in advance of the cortical development
which might be expected to underpin it, Again the question re-
mains whether such performance depends on a specialised early-
developing cortical module, or on previously unknown subcortical
capabilities.

2.6. Dorsal and ventral stream development

The extra-striate areas whose functions are discussed above are
components of two major processing streams: the ‘ventral stream’
which includes V4 and other areas (including the FFA) projecting to
the temporal lobe, which is believed to be responsible for object,
face, and scene recognition, and the ‘dorsal stream’ including mo-
tion-sensitive areas V5 and V3A, which connects to a network of
parietal areas and is believed to underlie perception of spatial
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relationships and the visual control of actions (Felleman & van Es-
sen, 1991; Milner & Goodale, 1995; Mishkin, Ungerleider, & Macko,
1983; Zeki, 1993). This division has highlighted questions of the
developmental relations between the two streams and the parvo
and magno-pathways which respectively feed them. As will
emerge in discussion, there is no simple answer that one stream
develops ahead of the other; the answer depends on the stage of
development considered and on whether functional onset, rate of
development, or vulnerability is taken as an indicator.

Directionality and binocularity, the later-developing aspects of
primary cortical function, are associated with magnocellular input
to the cortex and dorsal-stream areas (Livingstone & Hubel, 1988),
suggesting that the initial development of this pathway may be
slower than that of the parvocellular-ventral pathway which spec-
ialises in the processing of form (orientation or slant) and colour
discrimination (Atkinson & Braddick, 1992). We have suggested
(Braddick & Atkinson, 2009; Braddick et al., 2003) that the magno-
cellular/dorsal stream lag may reflect the demands for temporal
precision in a motion-processing network, and/or the need for hor-
izontal transmission of information by intracortical connections. It
should be noted, however, that it has been argued from VEP tem-
poral-frequency responses that the precortical stages of the magno
pathway may mature earlier than parvo (Dobkins, Anderson, & Lia,
1999). It should also be noted that the division of processing be-
tween the two streams may be subject to developmental change:
for example Dobkins (2009) discussed evidence that chromatic
information, which is absent from the magno pathway in the adult,
provides input to motion mechanisms in infants in the early
months of life.

The tests of global processing discussed in the last section allow
the direct comparison of comparable functions of extra-striate
areas in the two streams. Specifically, the detection of motion
coherence and form coherence have analogous requirements of
information integration for the dorsal and ventral streams respec-
tively, and behaviourally make similar demands on attention. A
neuroimaging study by Braddick, O’Brien, Wattam-Bell, Atkinson,
and Turner (2000) has shown that the two forms of coherence acti-
vate independent networks of extra-striate cortex (and do not acti-
vate V1 differentially compared to incoherent arrays of the same
elements). We have cited above that young infants appear to seg-
ment visual arrays much more readily by motion than by static
texture orientation, and this also seems to be the case for coherent
motion patterns than for the corresponding form coherence test. In
particular Braddick and Atkinson (2007) have used matching con-
centric organization for coherent form (short static arc segments)
and motion (short trajectories rotating about a common centre.
In preferential looking the response to motion coherence was al-
ready statistically significant at age 8 weeks and changed little
over the following 10 weeks. In contrast the response to global
form was initially at chance and showed an increasing preference
over the same period. This developmental course is consistent with
VEP responses to incoherent-coherent transitions, which at 4–
5 months are robustly present for motion coherence in the major-
ity of infants, but are statistically reliable for form coherence in a
minority (Atkinson, Birtles, Wattam-Bell, & Braddick, 2005;
Braddick & Atkinson, 2007). This has recently been confirmed in
high-density VEP/VERP recording, which allows the spatial distri-
bution of the response to be mapped (Wattam-Bell et al., 2010).
While the responses were of approximately equal amplitude in
adults, in 5-month infants the form response was typically around
half the amplitude of the motion, and reached statistical reliability
in only 50% of infants.

The high density study also showed that, in infants who showed
both responses, the form and motion patterns yielded spatially dis-
tinct voltage distributions over the scalp, indicating that they were
activating anatomically distinct mechanisms, as they did in adults.
However these distributions were markedly different in infants
from adults, with the motion signal focussed on the posterior mid-
line in adults but predominantly lateral in infants, while the form
signal showed the opposite relationship. Wattam-Bell et al. (2010)
proposed that each of these signals arises from a network of extra-
striate areas (including, e.g. V5, V3a, and probably V6 for motion in
adults) but that the relative contribution of the areas within each
network undergoes substantial re-organization between infancy
and adulthood.

In summary, although the local directional analysis for motion
develops later than that for orientation, motion signals are inte-
grated to generate a global response (dorsal stream) earlier in
development than oriented elements are integrated to yield global
form (ventral stream). However, the neural basis of each stream is
far from its mature anatomical organization in infancy.

2.6.1. Development in childhood and ‘dorsal stream vulnerability’
Children aged 4 years and over are capable of identifying ver-

bally or by pointing a region of coherence in a computer display
– the ‘ball in the grass’ or the ‘road in the snowstorm’ (Atkinson,
Braddick, Anker, Curran, & Andrew, 2003) – and so their global mo-
tion and form coherence thresholds can be tested psychophysi-
cally. Such tests show that at age 4–5, motion coherence
thresholds are higher and more variable, relative to adult values,
than for form coherence; both thresholds improve with age and
converge at adult values around 10 years, with the form coherence
thresholds reaching adult asymptote earlier (Armstrong, Maurer, &
Lewis, 2009; Atkinson & Braddick, 2005; Gunn et al., 2002;).

Motion coherence thresholds are not just more variable and
slower developing in childhood, they are also more susceptible to
disruption. The greater impact of developmental disorders on glo-
bal motion compared to global form was first identified in Williams
Syndrome (Atkinson et al., 1997, 2006), a genetic disorder where
other features suggest a dorsal stream deficit (Atkinson et al.,
2003; Meyer-Lindenberg et al., 2004). However work from a num-
ber of groups showed that global motion was disproportionately
impaired in a number of genetic and acquired developmental disor-
ders, including hemiplegia (Gunn et al., 2002), autism (Koldewyn,
Whitney, & Rivera, 2010; Spencer et al., 2000), fragile-X syndrome
(Kogan et al., 2004); developmental dyslexia (Cornelissen,
Richardson, Mason, Fowler, & Stein, 1995; Hansen, Stein, Orde,
Winter, & Talcott, 2001; Ridder, Borsting, & Banton, 2001); prema-
ture birth (Atkinson & Braddick, 2007; Taylor, Jakobson, Maurer, &
Lewis, 2009) and visual deprivation through early cataract
(compare Ellemberg, Lewis, Maurer, Brar, and Brent (2002) with
Lewis et al. (2002)). This has led to the proposal of a general ‘dorsal
stream vulnerability’ in development (Braddick et al., 2003).

The normal developmental relationship between dorsal and
ventral streams, as assessed through form and motion coherence,
is therefore a complex one. Sensitivity to pattern properties (e.g.
orientation) is apparent earlier in cortical development than to
directional motion, but global integration of these directional sig-
nals develops in infancy faster and more robustly than for static
pattern elements. Through childhood, this relation reverses again
and global motion development depends on a relatively delicate,
vulnerable system whose disruption is apparent in a range of
developmental disorders. How this changing relationship is linked
to the re-organization of the two systems, apparent from high-
density VEP, requires further exploration.

2.6.2. Dorsal stream function
Global motion sensitivity samples an early stage in the process-

ing of information by the dorsal stream. Two higher level aspects of
this stream are important for putting visual development in a
wider context. First, it has the major role of providing the visual
information needed for the control of action (Milner & Goodale,
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1995), including oculomotor systems; second (and connected) it is
intimately involved in the control of visual behaviour through spa-
tially directed attention.

The visual control of action can be considered to involve a set of
visuo-motor modules, each delivering the information required for
a particular action system. Atkinson and Braddick (2000), using the
extensive reviews of Jeannerod (1997), Milner and Goodale (1995)
and Rizzolatti, Fogassi, and Gallese (1997) have schematized the
connecting areas, primarily connecting through parietal to frontal
lobe areas, which are likely to form the modules for the visually
controlled actions which emerge in the first years of life, illustrated
in Fig. 1.

The first developing visual action systems are for the control of
gaze (saccades, head movements, and pursuit). Saccades and head
orienting form the basis of the preferential looking methods which
are usable from birth, and the dynamics of the saccadic system are
mature at a surprisingly early age (Hainline, Turkel, Abramov,
Lemerise, & Harris, 1984; Hainline, 1993). Smooth pursuit emerges
more gradually (Aslin, 1981; Phillips, Finocchio, Ong, & Fuchs,
1997; von Hofsten & Rosander, 1996, 1997), reflecting at least in
part the development of cortical directional motion systems. How-
ever, there is developmental continuity between slow phase of
OKN (initially subcortically controlled) and (cortically controlled)
smooth pursuit which both aim to match eye velocity to stimulus
velocity to serve related goals of stabilizing the retinal image.

Visually controlled reaching and grasping develop from about
4 months, and are a prominent feature of infants’ visuo-motor
exploration during the rest of the first 2 years of life. There have
a number of approaches to characterising the visual information
which elicits this behaviour (von Hofsten & Spelke, 1985; Yonas,
Arterberry, & Granrud, 1987; Newman, Atkinson, & Braddick,
2001; Braddick & Atkinson, 2007) and evidence that binocular
depth information plays an important role in initiating and guiding
the reach (Braddick, Atkinson, & Hood, 1996; Kavsek, Granrud, &
Yonas, 2009).

A visuo-motor system which is not included in Fig. 1 is the con-
trol of locomotion, which begins towards the end of the first year.
Developmental research on the stimulus information which elicits
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and guides locomotion is starting to appear (Adolph, 2008; Cowie,
Atkinson, & Braddick, 2010) and is likely to be an area of active re-
search in the years ahead, hopefully alongside better understand-
ing of the underlying neural systems (Drew, Andujar, Lajoie, &
Yakovenko, 2008).

All these visuo-motor systems require a target object or location
to be selected and maintained as a goal. Much if not all of the cov-
ert operation of selective attention can be regarded as ‘selection-
for-action’ (Allport, 1989; Rizzolatti, Riggio, & Sheliga, 1994). It is
therefore not surprising that many areas identified as belonging
to attention networks in the brain (Kastner & Ungerleider, 2000;
Posner & Dehaene, 1994) appear within the dorsal stream systems
diagrammed in Fig. 1. A developmental account of visually con-
trolled action must therefore be integrated into a developmental
account of spatial attention (Hood, Atkinson, & Braddick, 1997),
of which a few elements have been introduced above.

While spatially directed action and attention have been pre-
sented as dorsal stream functions, it is clear that for effective per-
ception and action, dorsal and ventral systems must work in a
closely integrated way – for example in reaching, an target must
usually be selected using ventral-stream systems to recognise the
appropriate object type before the appropriate action is planned
and initiated using dorsal stream processing. Some aspects of the
developmental course may reflect the need to develop this integra-
tion, as well as components of the separate streams.

The evidence outlined earlier for ‘dorsal stream vulnerability’
was derived from form and motion processing at the relatively
early extra-striate levels of the two streams. However the higher
level aspects of dorsal stream function, in visuo-motor control
and attention, seem also to be particularly vulnerable in neurode-
velopmental disorders. Some evidence on this point will be cited in
the clinical section below.

2.7. Clinical applications

For many infant vision researchers, a primary or parallel goal
has been to apply the new knowledge and new methods from
the field to the detection, diagnosis, and management of children’s
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vision disorders. Atkinson and Braddick (1999a) provide an over-
view of many of these methods.

One of the first moves in this direction was to adapt the prefer-
ential looking procedure for measuring acuity from the specialised
equipment used in the laboratory to the portable Teller Acuity
Cards procedure (McDonald et al., 1985). This has been widely
adopted in paediatric vision clinics, and used in a range of clinical
research investigations, notably two major surveys and trials of
treatment for the retinopathy of prematurity which is a problem
associated with preterm birth (Dobson et al., 1990, 1995, 1999;
Palmer, 1990). The approach using preferential looking cards has
also been extended to stereopsis by Birch and Salomão (1998).

VEPs have also been used as a tool for measuring acuity and
contrast sensitivity, including the development and application of
the ‘sweep VEP’ method in which a steady-state VEP is measured
as the spatial frequency or contrast of the grating stimulus is con-
tinuously varied (Norcia & Tyler, 1985; reviewed recently by
Almoqbel, Leat, and Irving (2008)). However measures of acuity
from gratings, whether by FPL or VEP, do not capture the extent
of visual deficits, particularly in amblyopia where ‘crowding’ ef-
fects (reduced acuity for a target that is surrounded by nearby de-
tail) play a major role (Levi, 2008). Several groups have developed
tests to measure crowded acuity in children too young to use a
standard linear acuity chart. For example the Cambridge Crowding
Cards (Atkinson, Anker, Evans, Hall, & Pimm-Smith, 1988c) in
which children from 3 years upwards can match the central letter
of an array without needing to name it, has been shown to yield
values corresponding to a linear Bailey-Lovie chart in adults. Other
recently developed acuity tests for young children include the
HOTV and Lea symbols tests (Dobson, Maguire, Orel-Bixler, Quinn,
& Ying, 2003; Hyvärinen, Näsänen, & Laurinen, 1980; VIP Study
Group, 2010) and the Cardiff acuity cards (Adoh, Woodhouse, &
Oduwaiye, 1992).

Another area of technical development has been photo- and
videorefraction, methods for assessing the refractive state of the
eyes from the distribution of light, in the lens plane of a camera, re-
turned from a flash source close to the camera lens. Howland (2009)
has recently summarised the history and development of the vari-
ous optical configurations and instruments (‘orthogonal’, ‘isotropic’
and ‘eccentric’ photorefraction). These methods have the advanta-
ges over conventional retinoscopy, for work with infants and chil-
dren with communicative disorders, that they operate at a
distance around 1 m and so are not intrusive for the child; they
measure both eyes and all axes simultaneously, and they make an
instantaneous measure of a freely accommodating child, thus
requiring a few seconds of cooperation for each picture and a few
minutes for the entire test procedure including breaks. Photorefrac-
tion has been used in a range of research studies of refractive and
accommodative development (e.g. Braddick et al., 1979; Hainline
et al., 1992; Howland et al., 1978; Suryakumar, Meyers, Irving, &
Bobier, 2007) and its evident suitability for vision screening has
been exploited in large-scale trials discussed below (Atkinson,
Braddick, Durden, Watson, & Atkinson, 1984; Atkinson et al., 2007).

These are examples of exploiting new methods to improve the
measurements usually made in the ophthalmology clinic – acuity,
stereopsis, refraction – for young children and preverbal infants.
However, another important development has been the recogni-
tion that visual function does not stop at the level of these mea-
surements, and even for clearly ocular pathologies it is important
to know the impact on higher level visual functions. Furthermore,
an increasing proportion of visual impairment in children is cere-
bral visual impairment (CVI) due to early brain damage (e.g. Good,
Jan, Burden, Skoczenski, & Candy, 2001), generally associated with
wider neurological and cognitive problems, where the impair-
ments can involve any of the levels of developing visual brain func-
tion reviewed in this article.
We have described above (and in Braddick, Atkinson, & Wat-
tam-Bell, 2011) a range of VEP methodologies that analyse cortical
functions beyond simple contrast detection, and will cite below
some applications of these to clinical groups (e.g. Mercuri et al.,
1998). The use of VEP tests of extrastriate global function with clin-
ical groups is promising, but still at an early stage (Atkinson et al.,
2008) The fixation shift test under competition (discussed above
under ‘cortical modulation of subcortical oculomotor systems’)
has also given a method for probing, in children with neurological
problems, function both of subcortical orienting networks and
parietal and frontal cortical systems controlling disengagement
processes and switches of attention.

A different approach is to assess behaviour and abilities that re-
flect the everyday requirements of visual function. This is the ratio-
nale of the ABCDEFV battery (Atkinson, Anker, Rae, Hughes, &
Braddick, 2002a) which has been standardised for children from
birth to 5 years of mental age. The battery is divided into ‘core vi-
sion’ tests requiring no motor abilities beyond minimal saccadic
tracking eye movements, and a further set of age-specific tests
which assess visuo-motor, cognitive and spatial functional visual
behaviour which should be typically achieved at particular ages
in the areas of vision. The core tests include measures of strabis-
mus, tracking eye movements, visual fields, visual attention at dis-
tance, acuity (with optional use of a Rapid Acuity Screening
Procedure (RASP), a shortened version of the TAC (Anker, Atkinson,
Braddick, & Birtles, 2009). The additional age-appropriate tests re-
quire the minimum motor skills of reaching, pointing and grasp-
ing; they test functions associated with dorsal stream, ventral
stream function or their interaction e.g. picking up fine cotton
thread, copying block constructions, detecting embedded figures.
Some work using these tests with clinical populations is cited
below. The Children’s Visual Function Questionnaire (Birch,
Cheng, & Felius, 2007) takes a questionnaire-based approach to
similar questions of the effect of visual disability on everyday
tasks.

As discussed above, attentional systems are intimately related to
dorsal stream visual processing, and disorders of attention are one
of the major consequences of extreme prematurity and other
sources of perinatal brain injury (van de Weijer-Bergsma, Wijnroks,
& Jongmans, 2008; Mulder, Pitchford, Hagger, & Marlow, 2009).
Effective visual behaviour depends on cognitive control processes,
in particular the control of attention. The abilities of selective, sus-
tained, and controlled attention are believed to depend on distinct
brain systems (Posner & Petersen, 1990) and subtests for each of
these components have been incorporated into a battery – the Test
of Everyday Attention for Children (TEA-Ch) (Manly et al., 2001).
However, this test is designed for mental ages 6–12 years, and so
it is too demanding either for younger children or for many of the
children with potential cortical impairment, where assessment of
attention is a major requirement. To overcome this, the Early
Childhood Attention Battery (ECAB), a test on similar principles
but adapted for the capabilities of mental age 3–6 has been devised
(Breckenridge, 2007a, 2007b; Breckenridge, Braddick, & Atkinson,
submitted for publication) and used to characterise groups with
developmental disorders (Breckenridge & Atkinson, 2008). Both
the TEA-Ch and ECAB have the advantage over many tests of atten-
tion of giving an individual profile of attentional abilities across the
different attention components, which may be used to guide per-
sonalized specific intervention programmes, focussing on specific
component deficits.

A wide range of clinical conditions can impact visual develop-
ment in children and can be evaluated through the methods dis-
cussed. The use of many of these tests and methods has been
reviewed previously by Atkinson (1989, 2000), Atkinson and Van
Hof-van Duin (1993) and an overview of methods is provided by
Atkinson and Braddick (1999b). Many of the techniques have been
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used to investigate cerebral visual impairment – CVI, assessing
children at risk of perinatal or early brain abnormality. For example
these methods have been applied to infants who have undergone
hemispherectomy to relieve intractable epilepsy (Braddick et al.,
1992; Morrone et al., 1999), infants born prematurely (e.g.
Atkinson et al., 2002b; Atkinson & Braddick, 2007), infants with
perinatal infarcts (e.g. Hood and Atkinson, 1990; Mercuri et al.,
1996, 1997, 1998, 2003), and hypoxic-ischemic encephalopathy
(HIE) (Mercuri et al., 1997, 2004) with their prognostic value exam-
ined (e.g. Atkinson & Braddick, 2007; Mercuri et al., 1998, 1999).

Below we describe some examples of the areas where these
new techniques and tests have been used. These are:

1. Refractive screening using photo and videorefraction in trials to
prevent strabismus and amblyopia.

2. Visual development related to perinatal brain damage in term
and preterm infants and children.

3. Visual development in Williams syndrome and other genetic
developmental disorders.

2.7.1. Refractive screening and visual development
The development of photo- and videorefractive methods, out-

lined above, made non-invasive screening a practical possibility.
These technologies were used in two population screening pro-
grams in Cambridge (UK), to detect significant refractive errors in
a geographically based population of infants at 8–9 months of
age (Atkinson et al., 1983, 2007). Over 8000 infants were screened
in the two programs in the Cambridge Health District with a high
attendance rate of around 80% of children born in the geographical
area.. Hyperopic infants (P+4D) were followed up alongside an
emmetropic control group, with visual and developmental mea-
sures up to age 4–7 years, and entered a controlled trial of partial
spectacle correction. These programs showed that hyperopic in-
fants could be detected by either cycloplegic or non-cycloplegic
photo or videorefraction, and were at increased risk of developing
strabismus and poor acuity. The incidence of these conditions
could be reduced by preventive refractive correction which did
not prevent the normal refractive development of the eyes towards
emmetropia.

The follow-up of these children indicated that, as well as purely
visual effects, children who had significant hyperopia in the first
year of life were significantly worse on many of the visuospatial
ABCDEFV tests and visuomotor and attentional measures in the
preschool years (Atkinson et al., 2002c, 2007). This raises the pos-
sibility of using infant refractive screening as a predictor of chil-
dren at risk of preschool developmental delays of development
and deficits and of intervention programmes at an early age to pre-
vent later educational difficulties at school.

The conventional theory of accommodative strabismus would
suggest that the group at greatest risk of strabismus would be
those showing habitual accommodation in the face of their hyper-
opia. However, data from these screening programmes indicate
that accommodative lag in infancy is an indicator of poor visual
outcome. Given that detected hyperopia in freely accommodating
infants was associated with modest delays in visuocognitive and
attentional development, it is possible that poor accommodative
responses in infancy reflect a poor ability to attend to targets at dif-
ferent distances, and share a common link with later deficits in
spatial attentional networks.

There have been several other studies to evaluate photorefrac-
tive screening (e.g. Schaeffel, Mathis, & Bruggemann, 2007;
Williams, Harrad, Harvey, Sparrow, & ALSPAC Study Team. Avon
Longitudinal Study of Pregnancy & Childhood, 2001) but appar-
ently no attempt has been made to replicate or extend the
Cambridge programmes in their scale, validation by cycloplegic
refraction, or inclusion of a trial of prevention. As Howland
(2009) has commented ‘‘Whether [photorefraction] will play an
important role in improving the ocular health and welfare of in-
fants and children probably depends more on future developments
in the healthcare system and the financial practicality of vision
screening than on technological progress.’’

2.7.2. Vision and perinatal brain insults
Vision is itself a key function for cognitive, behavioural and so-

cial development, but also, because it shows rapid early develop-
ment in infancy, it provides an early measure of the wider
integrity of brain function. As such, infant visual measures have
been used to gauge the plasticity of both peripheral and central
neural development in recovery from perinatal injury and to pre-
dict more complex later-developing abilities. Visual measures also
have the potential to gauge the effectiveness of early treatment
and intervention in neurologically at-risk infants.

For example, a series of longitudinal studies on infants born at
term with focal cerebral lesions or hypoxic-ischemic encephalopa-
thy (HIE), found that the generalised lesions in HIE were more fre-
quently associated with abnormalities in fixation shift (FS) and
orientation-reversal VEP (OR-VEP) measures of cortical visual func-
tion in the first 5 months (Mercuri et al., 1995, 1996). However,
poor visual outcome was not necessarily most strongly associated
with specific damage to classically ‘visual’ areas of the brain; for in-
stance neonatal lesions in the basal ganglia were generally associ-
ated with a more severe visual outcome than visual cortical lesions,
supporting the idea that certain circuits between subcortical areas
and cortical areas are essential for normal visual development. De-
layed or absent FS and OR-VEP responses were predictive of devel-
opmental testing and neurological outcome at 3 years (Mercuri
et al., 1998, 1999), and showed a much higher sensitivity for this
prediction than deficits in lower level visual function such as low
acuity or a failure to show a binocular OKN response in both
directions.

2.7.3. Sequelae of very preterm birth
Changes in obstetric practice and perinatal care have led to in-

creased numbers and improved survival of infants born prema-
turely, as young as 24 weeks gestation. However, very preterm
birth remains a major risk factor for childhood sensory, neurolog-
ical and psychiatric impairment, (e.g. Marlow, 2006; Rennie, 2002;
Robertson, Watt, & Dinu, 2009). Premature infants commonly suf-
fer a different pattern of brain damage from that seen at term, with
damage predominantly to the white matter (du Plessis & Volpe,
2002; Dyet et al., 2006). Nonetheless, the tests of cortical function
which were predictive of outcome in term infants – OR-VEP and
fixation shifts – again provide a general indicator of cerebral devel-
opment; as for term-born infants these tests in children born be-
fore 33 weeks gestation also correlate with the level of brain
damage seen on MRI, and show a similar specificity and sensitivity
in predicting 2-year neurological outcome (Atkinson et al., 2008).

Premature infants without overt brain damage have a potential
advantage compared to term infants at matched post-conceptual
age (PCA); they have spent more time in a visually stimulating
environment. There is little evidence for any developmental accel-
eration as a result: most studies have concluded that acuity ma-
tures in line with PCA with no evidence of preterm acceleration
(e.g. van Hof-van Duin & Mohn, 1986; see review by Birch and
O’Connor (2001)), although there is a contrary finding from VEP
measurements of acuity (Norcia, Tyler, Piecuch, Clyman, & Grob-
stein, 1987). The maturation of orientation-specific cortical re-
sponses in healthy preterms appears to be in step with term-
born infants of the same PCA Atkinson et al. (2002b). However;
the picture is different for direction-specific responses, which are
delayed by several weeks in healthy preterms (Birtles, Braddick,
Wattam-Bell, Wilkinson, & Atkinson, 2007); this may perhaps be
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taken as an early example of dorsal stream vulnerability, and the
timing requirements of motion processing may be particularly vul-
nerable to subclinical white matter damage.

Generally, very preterm infants taken as a group show long-term
deficits in a range of visual and visuo-cognitive functions. Ophthal-
mological studies have normally concentrated on physical exami-
nation of the eyes, refraction, acuity, and binocularity. In all these
areas, prematurely born children have a higher rate of defects that
their term-born peers (e.g. Birch & O’Connor, 2001; Hellgren et al.,
2007; Larsson, Rydberg, & Holmström, 2005). Some of these are
associated with the occurrence of retinopathy of prematurity
(abnormal retinal vascularisation, due to excessive oxygen deliv-
ered in intensive care to premature neonates) (Sylvester, 2008),
others with general developmental delay ascribed to identifiable
cerebral damage, but as a group, prematurely born children show
worse vision even when these specific conditions have not been
identified. It should be realised that strabismus, refractive error
and acuity are not independent problems but in this group of
children, as in others, are intimately interrelated.

The cerebral damage associated with prematurity has a contin-
uing impact on high-level as well as low-level visual abilities. The
infants studied with OR-VEP in the first year showed levels of fail-
ure on ABCDEFV component tests over years 1–5 that were also
correlated to the severity of damage seen on neonatal MRI
(Atkinson & Braddick, 2007). The functional impact of this damage
depended on the complexity of the function concerned. For core vi-
sual functions, in particular binocularity and visual fields, deficits
were associated with the most severe MRI group. Performance on
the visuo-cognitive tests was impaired in the ‘severe’ and ‘moder-
ate’ groups; for block construction and frontal executive function
tests, especially the latter, even the ‘normal/mild’ group showed
deficits compared to age norms. This conclusion is reinforced by
the follow-up of such children at later ages.

In a preterm cohort born before 33 weeks gestation and tested
between 6–7 years, overall performance of the group show a range
of deficits (Atkinson & Braddick, 2007) including global motion
coherence test, fine and gross visuomotor tests (Henderson &
Sugden, 1992), subtests of TEA-Ch, and spatial memory (Nardini,
Burgess, Breckenridge, & Atkinson, 2006). In contrast, IQ scores
and language (vocabulary) tests of the group were normal. As dis-
cussed above, deficits of spatial processing, attention, and visual
control of actions are those primarily associated with the dorsal
stream. Factor analysis has shown that the different test results also
show differential patterns of association with MRI findings of peri-
natal brain damage, gestational age at birth, as well as impairment
in the group as a whole (see Atkinson & Braddick, 2007).

A variety of other studies have shown deficits of motion pro-
cessing and dorsal stream functions in preterm born children at
age 8–18 years: local and global motion thresholds (MacKay
et al., 2005; Taylor et al., 2009); biological motion detection
(Pavlova, Sokolov, Birbaumer, & Krageloh-Mann, 2006); motion-
based form segmentation (Jakobson, Frisk, & Downie, 2006);
execution of directed pointing movements (van Braeckel et al.,
2008); drawing and three-dimensional constructional tasks
(Luoma, Herrgård, & Martikainen, 1998) and other motor tasks
(Marlow, Hennessy, Bracewell, Wolke, & EPICure Study Group,
2007). Attention deficits are another common finding among
ex-premature children (Botting, Powls, Cooke, & Marlow, 1997;
van de Weijer-Bergsma et al., 2008; see also the meta-analysis
by Bhutta, Cleves, Casey, Cradock, & Anand, 2002), in line with
the broader concept of dorsal stream vulnerability.

2.7.4. Williams Syndrome and other genetic developmental disorders
As well as developmental disorders acquired through brain in-

jury, there has been extensive research interest in visual problems
associated genetically based neurodevelopmental disorders, both
because of the clinical and educational issues these children face,
and because of the insights they might yield on the genetic basis
of visual brain development. A particular focus has been on
Williams Syndrome (WS), a rare disorder arising from a deletion
of around 30 genes on one arm of chromosome 7 (reviewed by
Atkinson and Braddick (2011)). WS is characterised by a very un-
even cognitive profile, with relatively good language abilities, good
face recognition, and object recognition in line with their mental
age (Landau, Hoffman, & Kurz, 2006) but very poor performance
on visuospatial and visuomotor skills such as drawing and block
construction (e.g. Bellugi, Lichtenberger, Mills, Galaburda, &
Korenberg, 1999). In a large scale study of 73 young children with
WS (Atkinson et al., 2001), a high incidence of binocular disorders,
reduced acuity and refractive errors (usually hyperopia rather than
myopia) was found in around 50% of the group. Marked deficits
were also found on many subtests of the ABCDEFV, with particu-
larly poor performance on the block construction copying task.
However, the severity of spatial deficits was not well correlated
with sensory visual deficits such as strabismus, suggesting no di-
rect causal link between sensory visual loss and problems of spatial
cognition.

The discrepancy between face and object recognition abilities
and spatial cognition, supported by findings on global motion vs.
global static form perception and on the contrast between good
orientation matching vs. poor visuomotor alignment to the orien-
tation of a postbox slot, led to the hypothesis of ‘dorsal stream vul-
nerability’, that the dorsal stream was a focus of this disorder
(Atkinson et al., 1997). Many later findings are consistent with this
idea of a dorsal stream loss, examples are a massive delay on all vi-
suo-motor planning tasks (e.g. Atkinson et al., 2001, 2003), prob-
lems of using visual judgments of step height in stair descent to
scale leg and foot movements (Cowie, Braddick, & Atkinson,
2010), poor spatial location memory for hidden objects when allo-
centric frames of reference (relative to the external environment)
need to be used (Nardini, Atkinson, Braddick, & Burgess, 2008), bet-
ter face processing than processing the location of faces (Paul,
Stiles, Passarotti, Bavar, & Bellugi, 2002) and neuroimaging evi-
dence (Eckert et al., 2005; Meyer-Lindenberg et al., 2004). How-
ever, although some of these tests have isolated dorsal from
ventral processing, many of the spatial defcits in WS may depend
heavily not on dorsal stream functioning alone but on integration
of ventral stream information with dorsal and it may well be this
integration which is the main block for these children learning to
overcome their difficulties.

Other genetic developmental disorders which have attracted
studies of visual performance, with particular attention to
disorders of motion processing, are Fragile-X syndrome (Farzin,
Whitney, Hagerman, & Rivera, 2008; Kéri & Benedek, 2009; Kogan
et al., 2004) and Prader-Willi syndrome (Woodcock, Humphreys, &
Oliver, 2009). Autism has also attracted much attention, with
visual findings recently reviewed by Simmons et al. (2009) and
Kaiser and Shiffrar (2009). As well as motion processing problems,
a striking finding in autism is the focus on local detail rather than
global object or pattern organization, a focus which can actually
enhance autistic individuals’ performance on embedded figures
tasks (Pellicano, Gibson, Maybery, Durkin, & Badcock, 2005; Shah
& Frith, 1983, 1993).

In many developmental disorders, including WS, marked defi-
cits have been found on a range of tasks involving control of spatial
attention. For example, many infants and very young children with
WS could not disengage attention and shift their gaze to a newly
appearing peripheral target, when two targets are visible simulta-
neously (‘competition’ condition in the fixation shift paradigm)
and older children with WS cannot inhibit a familiar motor move-
ment (‘prepotent response’) and point to the opposite side to the
target, rather than point to the target when it appears in the
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periphery (‘counterpointing task’) (Atkinson et al., 2003). Deficits
in selective attention, sustained and executive control have been
found in children with WS on the TEA-Ch battery and those with
a mental age between 3 and 6 years on the ECAB described above
(Breckenridge, Anker, Braddick, & Atkinson, submitted for publica-
tion; Breckenridge & Atkinson, 2008; Breckenridge, Braddick,
Anker, Woodhouse, & Atkinson, submitted for publication).

Ultimately, findings in all these disorders will illuminate the
connection between visual development and the broader genetic
programs that determine the development of the brain. However,
clear insights of this kind remain a hope for the future.
3. Plasticity and deprivation

The focus on visual development in the 1970s and 1980s was
driven significantly by discoveries by Wiesel and Hubel (1963),
Blakemore (1978) and others about the plasticity of the developing
visual system, through which cortical binocularity, orientation, and
directionality could be strikingly modified by early selective depri-
vation in a critical period. Recent neuroscience has concentrated on
the cellular and molecular processes that underlie this plasticity
(see Daw (2006) and Hensch (2005) for recent reviews).

These studies of animal models showed that early strabismus is
associated with a loss of binocular input to cortical neurons, and
led to a classic study by Banks, Aslin, and Letson (1975). They
tested the interocular transfer of a visual after-effect in individuals
whose strabismus had onset and surgical correction at different
ages, leading to an estimate of the critical period for binocularity
which tails off between 1 and 3 years. Animal models have also
provided an analogy to clinical amblyopia – a functional loss of vi-
sion, usually in one eye – associated with visual deprivation, aniso-
metropia (difference in refraction between the eyes), or
strabismus, which has driven much of the interest in visual cortical
plasticity. A proper review of the large, continuing volume of work
on amblyopia is beyond the scope of this article; two short reviews
on human research (Levi, 2006) and animal findings (Kiorpes,
2006) summarise many recent findings, and Barrett, Bradley, and
McGraw (2004) highlight continuing topics of uncertainty. Work
on animal models, exemplified by Boothe, Louden, and Lambert
(1996) and Mitchell and Sengpiel (2009), has provided valuable
evidence, which should be applicable to clinical patching regimes,
on the effects of schedules of monocular occlusion on V1 input and
acuity for the two eyes. However, among the issues emphasised in
the reviews cited above are (a) that effects on grating acuity are
only a part of the visual deficit in amblyopia, for which spatial
‘scrambling’ effects among others are very important; (b) that
although the emphasis has been on plasticity of the input to V1,
there is also important plasticity at higher levels of visual process-
ing. Furthermore, the patterns of visual function between strabis-
mic, anisometropia and deprivation amblyopia are different, and
complicated by associations between these conditions (McKee,
Levi, & Movshon, 2003). Finally, the possibility of effective therapy
for amblyopia beyond the classical ‘critical period’ raises the ques-
tion of how early plasticity is related to the lifelong capacity for
perceptual learning (Levi & Li, 2009). Given these open questions,
the wider interest in the modifiability of brain mechanisms, and
the progress on the cellular and molecular mechanisms of plastic-
ity, amblyopia-related research is likely to continue as an area of
intense and multidisciplinary activity.

The visual development of children with early, and early re-
moved, cataracts has been a prime area of evidence on the plastic-
ity underlying deprivation amblyopia (Birch, Stager, Leffler, &
Weakley, 1998; Maurer & Lewis, 1993). However, recent work
from the Ontario group has explored the long-term effects of such
deprivation on higher level visual function, with striking results.
Functions including motion coherence sensitivity (Ellemberg
et al., 2002), form coherence sensitivity (Lewis et al., 2002), holistic
face recognition (Geldart, Mondloch, Maurer, de Schonen, & Brent,
2002; Le Grand, Mondloch, Maurer, & Brent, 2004) and integration
of contour segments in a Kanisza figure (Putzar, Hötting, Rösler, &
Röder, 2007) show impairment in children who had visual depriva-
tion from cataracts for a period as short as 4 months after birth.
Since these abilities are very immature in the first 4–6 months of
life, Maurer, Mondloch, and Lewis (2007) characterise these as
‘sleeper’ effects, whereby deprivation interferes with the establish-
ment of foundations that are necessary for development that nor-
mally takes place after the period of deprivation. Evidence for a
critical period for these effects comes from the finding that cata-
racts with an onset after 4–6 months do not produce the impair-
ment of motion coherence thresholds (Ellemberg et al., 2002)
(this ‘late onset’ group do not yet appear to have been tested on
the other tasks discussed).

Deprivation amblyopia – the loss of acuity and contrast sensi-
tivity resulting from early cataract – is a strongly competitive ef-
fect: the loss is greater in the affected eye with unilateral
cataract than it is the two eyes of bilateral cataract cases. In con-
trast, the effects on global form and motion were much greater
in bilateral cases than in the affected eyes following unilateral cat-
aract, suggesting that rather than interocular competition, these ef-
fects are mediated by co-operative interactions between the eyes,
through which the stimulated eye can provide ‘scaffolding’ which
can be exploited by the input from the deprived eye, once the cat-
aract is removed (Ellemberg et al., 2002; Lewis et al., 2002). The
relatively smaller effect of monocular deprivation also argues
against the idea that the deficits in high-level function are simply
secondary to the amblyopic loss of acuity and contrast sensitivity.

New data relevant to the plasticity of visual brain systems have
also come from cases which suffered long-term visual deprivation.
Fine et al. (2003) report an individual who was blind from corneal
scarring at age 3 until a successful graft in his 40s. The patient MM
has continuing poor acuity and contrast sensitivity, difficulty with
face recognition, parsing overlapping figures, and interpretation of
depth cues. On fMRI testing, he showed greatly reduced BOLD re-
sponses in V1 even within his spatial frequency range. Thus it
was clear that prolonged deprivation later than infancy leads to a
profound degeneration of both low and high levels of cortical vi-
sual processing. However, the most intact functions appeared to
be associated with motion processing (segmentation, 3-d structure
from motion) (although formal coherence thresholds, for instance,
have not yet been reported), and his BOLD responses from MT+ are
closer to normal than those from V1. Thus despite its vulnerability
in childhood disorders, including deprivation by cataract in the
first 6 months, motion processing in the dorsal stream seems bet-
ter able to resist degradation from later, long-term deprivation, as
shown both for MM and for the late-onset cataract group. Configu-
ral face processing, on the other hand, appears vulnerable both to
early and to late visual deprivation.

Treatable but uncorrected visual deprivation is very rare in
Western nations, but sadly common in the developing world. Pro-
ject Prakash (http://web.mit.edu/bcs/sinha/prakash.html) has the
goal of treating long-term cataracts and other blinding conditions
in rural India, and at the same time investigating the visual
capabilities of the treated individuals. Results with early subjects
(Ostrovsky, Meyers, Ganesh, Mathur, & Sinha, 2009; Sinha, Ostrov-
sky, & Meyers, 2006) had much in common with those from Fine
et al.’s patient MM, in finding a difficulty in parsing static images
that was resolved by introducing structure from motion. However,
study of an individual, who was reported to have 20 years of visual
experience following 12 years of congenital visual deprivation,
found recovery of many functions including face recognition, im-
age segmentation, and pictorial depth cues (Ostrovsky, Andalman,

http://web.mit.edu/bcs/sinha/prakash.html
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& Sinha, 2006). Cross-modal transfer between vision and touch is
another intriguing area for these studies; early reports (Held,
2009) suggest that it is initially absent but very rapidly acquired
with visual experience. More extensive series, of patients with dif-
ferent histories of deprivation and restored vision, will be required
to understand whether a coherent account of these effects can be
achieved, including dependence on residual plasticity in adoles-
cence and/or recovery during very long periods of visual learning.
It is to be hoped that Project Prakash may provide unique material
for such an account. In the meantime, combining data from these
subjects, the Ontario cataract studies, and MM, we can at least
say that visual functions, both low- and high-level, require initial
visual experience to establish the foundation for functional mech-
anisms, and continuing visual experience to sustain them.

3.1. Prospects

Can we foresee what advances in our knowledge of human vi-
sual development will appear in Vision Research, and its competi-
tor and complementary journals, in the next quarter century?
Almost certainly not, but some potential lines of progress can be
suggested.

The early years were marked by applications of methodological
innovation. Since then the ease with which we can generate rich,
complex, dynamic stimuli has been transformed, but these more
elaborate stimuli have largely been used to investigate new aspects
of infant vision using the same basic armoury of methods – prefer-
ential looking, habituation, and evoked potentials. However, some
new approaches, and new developments of old approaches, are in
prospect.

3.1.1. The continuity of visual development
Infants aged under about 6–9 months are relatively tractable

participants in visual research – they are highly visually engaged
and generally look at what is put in front of them. As they become
more capable of manipulation and locomotion they are less in-
clined to co-operate in obtaining psychophysical and electrophys-
iological data. As a consequence, most of the research reviewed
above has studied infants in the first 6 months of life. Infant
researchers never believed that development stopped after that
point, but there has been a tendency to emphasise the rapid devel-
opment of basic mechanisms during that early period.

Researchers in both development and adult vision have given
increasing attention to higher levels of visual processing, including
those processes in which vision interacts with motor control, ob-
ject knowledge, and executive systems. These areas will demand
understanding of stages of development beyond early infancy. Fur-
thermore, modern anatomical neuroimaging has emphasised how
far structural development of all parts of the brain, including visual
areas, continues throughout childhood and into adult life (Toga,
Thompson, & Sowell, 2006). Some of the studies discussed above
(e.g. Gunn et al. (2002) on ‘dorsal vulnerability’) illustrate the in-
sights to be gained from the differential development of visual
capabilities during childhood. We anticipate that a future overview
of human visual development would contain a much fuller picture
of how development during childhood builds on the foundation
based in early infant development. The work on visual deprivation
described in the preceding section will also continue to inform our
ideas on the contributions of visual experience over the lifespan.

We can also expect more attention to the other end of continu-
ity in development – from fetus to infant. There is considerable
work, some discussed above, on the visual consequences of pre-
term birth. An increasing number of children now survive healthily
from birth at ages as early as 24 weeks gestation, but knowledge of
the state of their visual systems before term is very limited. It will
be difficult to obtain such knowledge, but if it can be obtained it
would greatly improve the links that can be made between human
development and our broader knowledge of visual developmental
neurobiology (e.g. the role of spontaneous neural activity in form-
ing the organization of the visual system, illustrated in the work of
Shatz (1996) and others). The exposure of preterm infants to visual
stimulation also offers one of the few ‘natural experiments’ on the
role of environmental manipulations in human visual development
(see Van Hof-van Duin and Mohn (1986) and Dobkins, Bosworth,
and McCleery (2009) for examples of this approach).

3.1.2. Neuroimaging and high-density recording
Our understanding of the brain mechanisms of human vision

has been transformed over the last 15 years by the progress of
functional neuroimaging methods, in particular fMRI. We can con-
fidently expect that the same methods will lead to progress in
understanding the development of these brain mechanisms in in-
fancy and childhood. Mapping infants’ brain activity will be impor-
tant not only for understanding how the organization of the visual
brain emerges, but also for investigating its plasticity in the face of
abnormal development, whether from genetic or traumatic causes.

As commented above, structural neuroimaging has increased
awareness of the continuing changes in the brain through middle
childhood and adolescence. Functional studies of development in
this period are underway, confirming that the basic retinotopic
organization of cortical areas is in place by 7–12 years (Conner,
Sharma, Lemieux, & Mendola, 2004) although the metabolic de-
mands are greater in children, perhaps due to less selective re-
sponses (Marcar, Strässle, Loenneker, Schwarz, & Martin, 2004).
At the beginning of this period, extrastriate functional specificity
is still markedly less focussed that the adult, both for motion pro-
cessing in the dorsal stream (Klaver et al., 2008) and face- and
place-selective areas in the ventral stream (Grill-Spector, Golarai,
& Gabrieli, 2008).

However, to provide direct evidence on the brain development
that underlies the striking functional changes of visual capacities in
infancy, we will need results from fMRI and analogous methods in
this early period. This presents great experimental challenges. Pio-
neering studies of cortical activity in the newborn have used flicker
stimulation through the closed eyelids of sedated or sleeping in-
fants (Born et al., 1998, 2000) but further progress will require
fMRI scanning of infants who are awake with eyes open. The vul-
nerability of the method to movement artefacts requires minimal
head movement during a scan period of many minutes – a serious
obstacle to testing conscious young children. Algorithms which al-
low some correction of images for head movements are in use in
research and clinical contexts, and we can hope that these will
be developed to the level where they can provide reliable data
from babies in a natural, alert, and happy state. Advances in scan-
ner design may also improve the degree of physical contact which
a sympathetic and experimentally sophisticated adult can main-
tain with the infant during scanning. If and when these technical
advances materialize, we may expect a wealth of information
which can clarify the developmental stability and change of the
brain systems mediating many aspects of visual perception.

fMRI uses the Blood Oxygen Level-dependent (BOLD) signal as a
proxy for neural activity, and records from developing children de-
pend on the maturation of the metabolic and hemodynamic pro-
cesses by which neuronal activity elicits changes in blood
oxygen. In adults, the major effect is to increase oxygen in the cere-
bral vasculature, presumably because local increases in blood flow
outweigh the depletion of oxygen due to metabolic demands. In
contrast, the local changes around the calcarine fissure elicited
by visual stimulation found by Born et al. (1998, 2000) were reduc-
tions in blood oxygen. This is consistent with the changes found by
in our laboratory by Meek et al. (1998) during visual stimulation of
awake infants, using near infra-red spectroscopy (NIRS), and this
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result suggests that Born’s ‘negative’ signals were not an result of
sleep state or sedation. We do not yet know the age function for
the transition between negative and positive BOLD signals. How-
ever, the fact of this reversal between infancy and adulthood
means that studies of visual development using the BOLD signal
will have to take into account the development of hemodynamic
control as well as the development of neural processing.

While we wait for infant fMRI to deliver on its promise, other
technical approaches can provide some information about infants’
brain activity. NIRS measures infra-red absorption by oxy- and de-
oxyhemoglobin between an optical source and receiver (‘optodes’)
placed on the infant’s scalp and so provides measures analogous to
BOLD. It gives good signals in infants due to the relative transpar-
ency of the infant tissues to infra-red, and since the optodes are
head mounted, small head movements do not move the sensors
relative to the source. Its spatial resolution has been very much
poorer than MRI but is improving through technical advances in
multi-optode arrays (Lloyd-Fox, Blasi, & Elwell, 2010) and in mea-
sures using photons’ time of flight rather than simply optical den-
sity (Heiskala, Hiltunen, & Nissila, 2009). A number of studies have
shown that NIRS recordings from infants are practical and can yield
useful information about the activity of striate and extra-striate vi-
sual areas (Meek et al., 1998; Minagawa-Kawai, Mori, Hebden, &
Dupoux, 2008; Otsuka et al., 2007; Lloyd-Fox et al., 2010), but
the full potential of the method for visual developmental neurosci-
ence has yet to be realised.

The best established approach for localising brain activity in
infants is high-density EEG, and arrangements for attaching large
arrays of sensors on the heads of infants and children are widely
available. Mapping the distribution of voltage in evoked (or
‘event-related’) potentials over the surface of the scalp allows
distinct visual mechanisms to be spatially distinguished and
developmental changes to be tracked, yielding important insights
on visual development (e.g. Arcand et al., 2007; de Haan,
Humphreys, & Johnson, 2002; Izard, Dehaene-Lambertz, & De-
harne, 2008; Rosander et al., 2007; Wattam-Bell et al., 2010).
However, going beyond inferences from changes in scalp distri-
butions, to identifying the location of sources in the 3-D volume
of the head, is not straightforward. Solving this ‘inverse problem’
requires a model of the geometry and electrical properties of the
various tissues and fluids of the head and brain; even for adults
there is much scope for controversy about the assumptions of
such modelling, and the modelling of the infant head has so far
been very little explored. Furthermore, even a source that has
been accurately localised in geometrical terms can only be lo-
cated with respect to brain features if a structural brain image
of the individual subject referenced to head landmarks is avail-
able. So far this has been rarely true for (non-clinical) infant sub-
jects, but work with this approach is under way (Richards,
Reynolds, & Courage, 2010). We anticipate that secure discoveries
from this approach will emerge in step with the development of
infant MRI methods.

EEG (recording the voltages arising at the scalp from evoked
currents in brain tissue) has recently been complemented by mag-
netoencephalography (MEG) which records the magnetic fields
arising at the scalp from the same currents. MEG has advantages
over EEG – it is much less affected by the tissues between the
source and the sensor array, leading to higher spatial resolution
and a simpler inverse problem. However the sensors form a bulky,
fixed (and very expensive) array which does not have the flexibility
in use of an EEG array which forms a cap worn on an infant’s head.
Consequently, although the feasibility of MEG recording of audi-
tory responses in sleeping infants has been demonstrated (Cheour
et al., 2004), its use in developmental vision research faces similar
obstacles to fMRI. As for EEG, accurate source localisation requires
structural MRI information from the individual.
3.1.3. Infant eye tracking
Instrumental measures of infant eye movements have been

important since the early days (e.g. Aslin & Salapatek, 1975;
Hainline, Turkel, Abramov, Lemerise, & Harris 1984), but in the
early years the technical difficulty of using systems that required
accurate alignment with infants involved heroic efforts and large
amounts of lost data. Modern digital systems using the corneal-
reflection method allow rapid calibration and relatively good toler-
ance of head movements (Gredeback, Johnson, & von Hofsten,
2010), and have made measurements of infants’ gaze much more
accessible. They have been most prominently exploited for study-
ing issues such as infant’s ability to anticipate the path of moving
objects behind occluder (e.g. Johnson, Amso, & Slemmer, 2003), or
the intentional actions of a human agent (e.g. Falck-Ytter,
Gredeback, & von Hofsten, 2006). There is also scope, however
for using eye-tracking to refine the use of gaze data in preferential
looking methods. For example the statistical efficiency of FPL
would be greatly improved by using four or more target positions
rather than just two; this is generally beyond the ability of human
observers to discriminate gaze reliably, but should be readily
achieved with an automated eye-tracking system. Currently such
an automatedsystem is being developed using the Tobii eye-track-
ing system; initial results suggest that this may be useful for clin-
ical assessment before and after treatment such as gene therapy in
infants and young children (Burton, Nardini, & Wattam-Bell, 2011).

It should be noted however, that the temporal and spatial pre-
cision required to analyse the dynamics of oculomotor mecha-
nisms themselves are considerably more demanding (Schupert &
Fuchs, 1988) and may require more sophisticated and less infant-
friendly instrumentation.

3.1.4. Sampling the visual ecology of the infant
A well-founded account of visual development needs to de-

scribe how a programme of maturation interacts with the input
that the developing child’s visual system receives from the envi-
ronment. In recent years there have been quite extensive studies
of the statistics of visual images in natural scenes, with proposals
about how visual mechanisms embody adaptation to these statis-
tics (see reviews by Simonceli (2003) and Geisler (2008)). The pre-
sumption is that an important part of this adaptation takes place
during sensitive periods in infancy and early childhood. However,
our knowledge of the visual input that infants actually receive
has been based on intuitions. Attempts have now started, using
lightweight head-mounted cameras, and records of infants’ fixa-
tions (Aslin, 2009; Franchak, Kretch, Soska, Babcock, & Adolph,
2010; Sinha, Balas, & Ostrovsky, 2007; Yoshida & Smith, 2008) to
determine what infants actually look at in natural situations. Given
the challenges, it is not surprising that there are methodological
limitations in all the cited studies. However they give a first look,
notably at the high preponderance of face information in young in-
fants’ visual ecology, and of monitoring hand workspace in older,
manipulating toddlers, and promise that this approach before too
long will give the kind of quantitative data for input to visual learn-
ing systems that child language researchers have had for some
time.
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