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Previous studies found that
individual lateral line axons reliably
re-establish connections with hair cells
of the same orientation following
repeated rounds of hair cell ablation
and regeneration, indicating that
afferents retain a ‘memory’ of hair cell
polarity after denervation [5,6]. The
current study suggests that this
memory is at least partially maintained
by inhibitory interactions between
neighboring lateral line axons [3]. A
similar strategy of “synaptic tiling”
occurs between neighboring DA8 and
DA9 motor neurons in Caenorhabdities
elegans [12]. Much like lateral line
afferents, DA8 and DA9 axons are
closely associated with one another in
the dorsal nerve cord, but segregate
their synapses into adjacent,
non-overlapping synaptic zones in an
activity-independent manner.
Additionally, the synaptic zones of both
axons expanded in worms that had one
axon genetically displaced from the
dorsal nerve cord, suggesting that
axons mutually inhibit the expansion of
each other’s synaptic territory. The
marked similarities between these
different species and neural systems
raise the possibility that synaptic tiling
may be a conserved mechanism for
establishing and maintaining patterns
of neural connectivity.

Although Pujol-Marti et al. [3]
elegantly demonstrated that
neighboring lateral line axons restrict
each other’s synaptic territories, the
molecular signals underlying this
regulation are unknown. Synaptic tiling
between C. elegans motor axons
requires plexin-1 and semaphorin-1
expression in DA9 motor neurons to
segregate synapses [12]. Similarly,
semaphorin signaling is required for

restricting or eliminating synapses in
the mouse spinal cord, hippocampus,
and striatum [13-15]. In addition

to negative regulators, positive
synaptogenic interactions between hair
cells and afferents are also likely
required for establishing and
maintaining lateral line circuitry. The
molecules that mediate these
interactions are also unknown, but
lateral line axons with different
orientation preferences could express
different cell surface adhesion
molecules (reviewed in [16,17]) that
prefer binding partners differentially
enriched in each hair cell population.
Identifying the proteins mediating
positive cellular interactions between
lateral line neurons and hair cells,

as well as negative interactions
between neighboring afferent neurons
with different preferences, will provide
a molecular paradigm for the
segregation and maintenance of neural
circuits responding to distinct sensory
stimuli.
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ER Morphology: Sculpting with

XendoU

Endoplasmic reticulum (ER) sheet membranes are covered with ribosomes and
RNAs that are involved in protein synthesis. A new study reveals that a calcium-
activated endoribonuclease of the EndoU protein family promotes the formation
of tubular ER networks, contributing to dynamic shaping of the ER in cells.

Guohua Zhao and Craig Blackstone*

The endoplasmic reticulum (ER)
is a continuous membrane system
comprising the nuclear envelope, flat

sheets often studded with ribosomes,
and a polygonal network of mostly
smooth tubules extending throughout
the cell. Synthesis, modification,

and transport of lipids and proteins as

well as Ca®* sequestration and protein
quality control within the ER have been
extensively investigated over many
years, but mechanisms responsible
for the distinctive morphology of

the ER have only been uncovered
more recently [1,2]. Several

eukaryotic protein families, including
reticulons and REEPs/DP1/Yop1p,
harbor hydrophobic hairpin domains
that partially insert into the lipid
bilayer, shaping high-curvature

ER tubules [3]. Members of the
atlastin/RHD3/Sey1p family of

large, membrane-bound GTPases

.
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mediate the formation of three-way
junctions via homotypic membrane
fusion, generating the reticulated
tubular ER network [4,5]. Additional
classes of tubular ER proteins,
including some REEPs and the
ATPase M1 spastin (which severs
microtubules), interact with the
cytoskeleton [6,7]. Flat ER sheets
possess a different cadre of proteins,
such as p180, CLIMP-63 and kinectin,
which have been implicated in shaping,
cisternal stacking and cytoskeletal
interactions, with reticulons shaping
the high-curvature edges [8]. Other
proteins, including members of the
Lunapark, SNARE, and Rab protein
families, have also been suggested to
have a role in shaping the ER network
[1]. In a recent issue of the Journal of
Cell Biology, Schwarz and Blower [9]
identify a new and unexpected member
of the cellular ER-shaping team — the
Ca?*-activated ribonuclease XendoU
(for Xenopus EndoU), previously
studied mostly for its roles in
processing intron-encoded small
nucleolar RNAs and in viral

replication [10-12].

Dramatic changes in intracellular
organization and organelle structure
occur during developmental
differentiation, and this is certainly true
for the ER network. Though published
images of the ER tend to paint a static
picture, the ER is in fact in constant
motion, and numerous signaling
pathways as well as interactions
among cytoskeletal elements, the
plasma membrane, and organelles
cooperate to position and shape the ER
dynamically. Striking morphological
changes in the ER occur during cellular
events, such as fertilization and cell
division. For example, within minutes
of fertilization, the ER in starfish
eggs undergoes fragmentation,
accompanied by Ca®* release from
internal stores [13]. Ca®*-induced,
reversible ER fragmentation has also
been reported in cell lines and neurons
[14,15], prefiguring key roles for
signaling pathways in the regulation
of ER morphology.

In the new work, Schwarz and Blower
[9] set out to investigate the role of Ca?*,
which is increased upon fertilization,
in the developmental transition from
oocyte to embryo. Starting with
metaphase-arrested Xenopus egg
extracts, they added Ca?* to mimic the
cytoplasmic Ca?* influx that occurs
from both intracellular and extracellular
stores at fertilization. They then purified
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Figure 1. Schematic diagram of effects of XendoU on ER morphology.

Ca?*-activated XendoU favors ER tubule formation, with its depletion or loss of catalytic
activity resulting in expansion of ER sheets. (Image drawn by Ethan Tyler.)

a Ca2*-dependent ribonuclease
activity, identifying the protein as

the XendoU ribonuclease. The authors
further found that a subpopulation

of XendoU is tightly membrane

bound at the ER surface, where it
functions in local RNA degradation.
This Ca*-dependent degradation
results in the removal of ribosomes,
ribonuclear proteins (RNPs) and RNAs
from the ER surface (Figure 1), favoring
ER tubule formation and thus helping to
regulate the dynamic balance between
ER sheets and tubules. Depletion of
XendoU caused expansion of sheets
at the expense of tubules, an alteration
that could be rescued by XendoU

in a catalysis-dependent manner.

The authors concluded that
Ca2+-dependent removal of RNA,
ribosomes, and RNPs from the
membrane by XendoU promotes ER
remodeling and the formation of
tubular ER [9].

Mechanistically, there are a number
of possibilities for how XendoU
functions in regulating ER morphology.
First, there could be sheet stability
conferred by the presence of
ribosomes. Thus, removing them
would destabilize sheets and help
promote tubule formation. In this
regard, ER network formation in vitro
using purified Xenopus egg
membranes was inhibited by specific
antibodies against XendoU,
emphasizing the direct role of the
membrane-bound subpopulation
of XendoU. Schwarz and Blower [9]
postulate that oligomerization of
atlastin GTPases mediates membrane
fusion and subsequent Ca®* release
through Ca®* channels on the

membrane. XendoU would then be
activated by Ca®* and degrade RNA
locally, resulting in the release of
ribosomes, RNPs, and RNA [9]. Studies
of Xenopus, human, and viral EndoU
orthologs (including XendoU, PP11,
and Nsp15) have demonstrated that
these Ca?*-dependent endonucleases
are relatively nonspecific, cleaving
RNAs in vitro after UU dinucleotides or
a single U nucleotide. Interestingly,
mild treatment of salt-washed vesicles
with non-specific RNase A facilitated
network formation, while an excess of
RNAse A was very disruptive,
emphasizing more generally the
importance of RNA [9]. Similar findings
were observed in mammalian HeLa
cells, with effects on ER morphology
also dependent on EndoU catalytic
activity. Protein scaffolding could
conceivably play a role, since a protein
of the XendoU family produced by
haemocytes of the moth Heliothis
virescens can form large, amyloid-like
fibrils at ER sheets, and these are
released upon immune challenge [16].
Ca®* is a ubiquitous signaling
molecule implicated in a plethora
of cellular pathways involved in
organelle changes, including many
that affect the ER. For instance,
B lymphocyte activation is
accompanied by increased Ca?*
signaling and expansion of the ER,
with downregulation of EndoU
suppressing activation-induced cell
death in these cells [17]. Another
example is found in neurons, where
prominent dynamic changes in ER
morphology occur in neuronal
dendrites [18]. In this latter case,
proteins including synaptic glutamate
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receptors rapidly diffuse within the
continuous network of dendritic ER
but are confined by increased ER
complexity at branch points of
dendrites and near dendritic spines.
The spatial range of receptor mobility
is rapidly restricted by
phosphoinositide-linked metabotropic
glutamate receptor signaling, which is
linked to intracellular Ca* release via
inositol (1,4,5) trisphophate (IP3)
receptor channels, through a
mechanism involving protein kinase C
and the ER sheet protein CLIMP63.
The morphological changes in local
zones of ER have the effect of
compartmentalizing ER export and also
correspond to sites of new dendritic
branches [18]. It will be particularly
important to assess any role for XendoU
in such Ca%*-dependent processes,
and small-molecule inhibitors effective
against XendoU in the low micromolar
range provide additional tools for such
studies [12].

In future studies, investigations of
the function of EndoU proteins in vivo,
particularly within cells in tissues such
as the central nervous system, will be of
particular interest. Though these
proteins are known to be aberrantly
expressed in human diseases, such as
cancer, loss of function may similarly
be related to disease. In fact, many
proteins involved in shaping the ER
network are mutated in neurological
disorders, including hereditary spastic
paraplegia and hereditary sensory
neuropathy [19,20]. It will be interesting
to probe any links of EndoU mutations
to human neurological disease.
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Symmetric Development:
Transcriptional Regulation of
Symmetry Transition in Plants

Symmetry breaking and re-establishment is an important developmental
process that occurs during the development of multicellular organisms. A
new report determines that transcription factors regulate a symmetry transition
event in plants by modifying the direction of auxin transport. This provides one
of the first mechanistic descriptions of a transition from bilateral to radial

symmetry in plants.

Liam Dolan

Two flattened leaf-like structures
fuse to form the bilaterally symmetrical
carpel in the Arabidopsis thaliana

flower. Early in development, the
organ is bilaterally symmetrical
along its entire length. Then, a
symmetry-breaking event occurs
in cells in the distal regions which

become committed to radialization.
These tissues in the distal region
develop into the radially symmetric
style, a specialized structure that
develops a papillate surface (stigma)
to which pollen adhere during
reproduction. Thus, a symmetry
transition event occurs during the
formation of a key structure in the
life cycle of a flowering plant.

The major discovery of Moubayidin
and Ostergaard, published recently in
Current Biology [1], is that the basic
helix-loop-helix proteins SPATULA
(SPT) and INDEHISCENT (IND) are
necessary and sufficient for the
establishment of a radially symmetric
style from bilaterally symmetric tissue
in the distal region of the young
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