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1. Introduction

Since fuzzy set [1] was introduced, several extensions have been developed, such as intutionistic fuzzy set [2], type-2 fuz-
zy set [3,4], type-n fuzzy set [3], fuzzy multiset [5,6] and hesitant fuzzy set [7,8]. Intuitionistic fuzzy set has three main parts:
membership function, non-membership function and hesitancy function. Type-2 fuzzy set allows the membership of a given
element as a fuzzy set. Type-n fuzzy set generalizes type-2 fuzzy set permitting membership to be type-n — 1 fuzzy set. In
fuzzy multiset, the elements can be repeated more than once. Hesitant fuzzy set permits the membership having a set of
possible values. A lot of work has been done about the first four types of fuzzy sets, however, little has been done about
the hesitant fuzzy set. Torra [7,8] discussed the relationship between hesitant fuzzy set and other three kinds of fuzzy
set, and showed that the envelope of hesitant fuzzy set is an intuitionistic fuzzy set. He also proved that the operations
he proposed are consistent with the ones of intitionistic fuzzy set when applied to the envelope of hesitant fuzzy set.

Hesitant fuzzy set can be applied in many decision making problems. To get the optimal alternative in a decision making
problem with multiple attributes and multiple persons, there are usually two ways: (1) aggregate the decision makers’ opin-
ions under each attribute for alternatives, then aggregate the collective values of attributes for each alternative; (2) aggregate
the attribute values given by the decision makers for each alternative, and then aggregate the decision makers’ opinions for
each alternative. For example, for a decision making problem with four attributes G(j =1,2,3,4), five decision makers
di(k=1,2,...,5) are required to give the attribute values of three alternatives Yi(i = 1,2,3). If we have known that d; is famil-
iar with ¢y, d, with ¢,, d3 with c3, d4 and ds with cg4, then it is better to let the decision maker evaluate the attribute he/she is
familiar to, so as to make the decision information more reasonable. However, in some practical problems, anonymity is re-
quired in order to protect the decision makers’ privacy or avoid influencing each other, for example, the presidential election
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or the blind peer review of thesis, in which we do not know which attributes that the decision makers are respectively famil-
iar with, and thus, leading us to consider all the situations in order to get more reasonable decision results. But the existing
methods only consider the minor situations that each decision maker is good at evaluating all the attributes, which hardly
happen. Hesitant fuzzy set is very useful in avoiding such issues in which each attribute can be described as a hesitant fuzzy
set defined in terms of the opinions of decision makers [8]. Then the aggregation techniques should be given to aggregate the
values for each alternative under the attributes, which is just the focus of this paper. In order to do that, we organize the
remainder of the paper as follows. In Section 2, we discuss the relationship between the hesitant fuzzy set and intutionsitic
fuzzy set. Section 3 develops some operators for aggregating hesitant fuzzy information. Based on the developed operators,
Section 4 gives a method for decision making with hesitant fuzzy information. Section 5 gives some concluding remarks.

2. Intuitionistic fuzzy set and hesitant fuzzy set

Intuitionistic fuzzy set (IFS), as a generalization form of fuzzy set (FS) [1], was introduced by Atanassov [2]. Since it assigns
to each element a membership degree, a non-membership degree and a hesitancy degree, IFS is more powerful in dealing
with vagueness and uncertainty than FS. Since its appearance, IFS has attracted more and more attention from researchers
[9-11].

Definition 1 [2]. Let X be fixed, an intuitionistic fuzzy set (IFS) A on X is defined as follows:
A:{<XHLLA(X)7VA(X)>|XEX}7 (])

where the functions p4(x) and z4(x) denote the degrees of membership and non-membership of the element x € X to the set
A, respectively, with the condition:

0< () <1, 0<va() <1, 0< (%) +valx) <1 (2)

and ma(x) =1 — pa(x) — va(x) is usually called the degree of indeterminacy of x to A. Xu [12] named o = (1, v4) an intuition-
istic fuzzy value (IFV), and let V be the set of all IFVs.
For o, o, 03 € V, Xu and Yager [12,13] gave some operations on them, shown as:

(1) & = (Vo fa);
(2) Uy = (max (ual,uaz),min(m“vaz));
(3) oy Nty (m (Ma, 7ua2>,max(va“va2));
) ot @0 = (L + Ly, — My Hoys Vi Vi, )
(5) g ®oap = (,uo(1 Moys Vay + Vo — Vo, sz):
(6) s = (1= (1= )", i), 2> 0;
(7) o = (ug,1 —(1- va)*),z > 0.
However, when giving the membership degree of an element, the difficulty of establishing the membership degree is not

because we have a margin of error, or some possibility distribution on the possibility values, but because we have several
possible values. For such cases, Torra [7,8] proposed another generation of FS.

Definition 2 ([7,8]). Let X be a fixed set, a hesitant fuzzy set (HFS) on X is in terms of a function that when applied to X
returns a subset of [0,1].
To be easily understood, we express the HFS by a mathematical symbol:

E={<xhz(x)>|x e X}, 3)

where hg(x) is a set of some values in [0,1], denoting the possible membership degrees of the element x € X to the set E. For
convenience, we call h = hg(x) a hesitant fuzzy element (HFE) and H the set of all HFEs.
Given three HFEs represented by h, h; and hy, Torra [7,8] defined some operations on them, which can be described as:

(1) h®=Uyen{l = 7}
(2) hl ) h2 = U}rlehl.yzehz maX{Vsz};
(3) h1 N hy = Uy, chy pen, MIN{yy, 7,3

Torra [7,8] showed that the envelop of a HFE is an IFV, expressed in the following definition:

Definition 3 ([7,8]). Given a HFE h, we define the IFV A.,,(h) as the envelope of h, where A, (h) can be represented as
(h=,1 — k"), with h™ = min{y|y € h} and h* = max({y|y € h}.
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Then, he gave the further study of the relationship between HFEs and IFVs:

(1) Aenv(h%) = (Aenv(h));
(2) Aenv(hl U hz) =Aenv(hl) U Aenv(hz);
(3) Aenv(h1 n h2) =Aenv(hl) n Aenv(h2)~

To compare the HFEs, we define the following comparison laws:

Definition 4. For a HFE h,s(h) = ﬁzveh“y is called the score function of h, where #h is the number of the elements in h. For
two HFEs h; and hy, if s(hy) > s(hy), then h; > hy; if s(hy) = s(hy), then h; = h,.
Based on the relationship between the HFEs and IFVs, we define some new operations on the HFEs h, h; and h;:

(1) h*=Uyen{y*} _

(2) Ah= Uyeh{] -(1=prh

(3) hi @ ha = Uy ey pyenp {01 + 72 — 172 b
(4) h1 ® ha = Uy, chy gpeny {7172}

In fact, all the above operations on HFEs can be suitable for HFS. Some relationships can be further established for these
operations on HFEs.

Theorem 1. For three HFEs h, h; and h,, the followings are valid:
(1) h{uhy = (hy Nnhy);
(2) hinhy = (hUhy)
(3) (h)"=(2n)5
(4) A(h°)=(h")5
(5) hi S3) h; = (h @ hy)5;
(6) hi @ hy = (hy @ hy)".

Proof. For three HFEs h, h; and h,, we have

(1) h§ U5 = Uy, chy e, Max{1 — 91,1 = 95} = Uy, eny gpen, {1 — min{y;, 51} = (b1 nhy)";

(2) B hG = Uy eny gen, MIn{1 = 91,1 =9} = Uy eny gyen, {1 — max{y;, 7,3} = (i Uhy)";

(3) (hY = Upen {(1 = 9} = (Upen {1 — (1 = p)')) = (3h)S;

(4) 7h€=Upen {1 = (1 = (1 = )Y} = Upen{1 — 9} = (K)

(5) hS @ hy = Uy, gyen, {1 = 71) + (1= 75) = (1= 9)(1 = 92)} = Upeny ey {1 = 7172} = (i @ hy)";
(6) hi @ hy = Uy, ey gyeny {(1 = 71)(1 = 72)} = Uyyehy e {1 = (1 + 72 = 7172)} = (I @ hy)",

which complete the proof of the theorem. O
The relationship between the IFVs and HFEs can be further discussed:

Theorem 2. Let h, h; and h, be three HFEs, then

(1) Aeny(h*) = (Aenv(h))*;
(2) Aenv(2h) = A(Aenv(h));
(3) Aenv(hl S2] hZ) = Aenv(hI) S2] Aenv(hZ):
(4) Aenv(h1 ® hz) = Aeny(h1) ® Aenv(h2).

Proof. For any three HFEs h, hy, h,, we have

(1) Aen(h*) = Aenm {y*1y € B} = (Y1 = (W), (Aens()" = (h", 1= ") = ((h)", 1= (1= (1 =h"))") = ((h)",1—(h")");

(2) Aens(2h) = Aens({1 = (1 =)y e D=1 - (1 =Y 1 -1 -1 -h"))=(1 -1 -h), (A-h"Y), iAm(h)=i(h",
T—h )= (1—(1=h ), (1-h)):

(3) Aenohr © Bs) = Aews((7 + 72 — 717l € a7y € o) = (hy +hy — iy 1 — () + s — hih3)) = (B, + hy — hyhy )
(1= 1)1 = B3)), Aens () & Aenulhz) = (B 1= }) & (y. 1 — hy) = (y +hy — iy (1= 1) (1 — hy)):

(4) Aens(h1 @ h2) = Aens ({717,171 € h1,7, € ha}) = (hyhy, 1 = hihy),
A1) © A () = (B 1 - 17) 5 (11— 15) = (it (1= ) + (1) — (1= ) (1= 5)) = (b 1 — ;).

Thus the proof is completed. O
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3. Aggregation operators for hesitant fuzzy information

Since its appearance, the ordered weighted averaging (OWA) operator, introduced by Yager [14], has received more and
more attention [15-21]. Xu and Yager [12,13] gave some intuitionistic fuzzy aggregation operators as listed below:

For a collection of IFVs ai=1,2,...,n), then

(1) The intuitionistic fuzzy weighted averaging (IFWA) operator [12]:

=

j=1

n
IFWA(on, 02, . .., 0n) = @ (W) = (1 7H (1= 4,)", TTvs) ) (4
j=1 j=1

where w = (w;,W,,...,w,)" is the weight vector of (1,00, .. .,0,) with w; € [0,1],j=1,2,...,n, Z}':]Wj =1.
(2) The intuitionistic fuzzy weighted geometric (IFWG) operator [13]:

n n

IFWG(alvazv"'v ) ég {ij = <H(MO€j)Wj’1 _H(l _vij)Wj>7 (5)

j=1 j=1
where w = (W, Wy, ..., w,)" is the weight vector of (1,00, .. .,0,,) with w; € [0,1],j=1,2,...,n, Z};le =1.

(3) The intuitionistic fuzzy ordered weighted averaging (IFOWA) operator [12]:

n (’Jj n )

[FOWA(0y, otp, . . ., Olp) = g (0i06)) = (1 —]11 (1 — ,u%u_)) 7]11(\)%0))@), (6)
where o ;) is the jth largest of o; (i=1,2,...,n), and w = (w1, @y, . .,w,)" is the aggregation-associated vector such that
w;€[0,1],j=1,2,. nzjzlefl

(4) The intuitionistic fuzzy ordered weighted geometric (IFOWG) operator [13]:

IFOWG(0on, 02, ..., o) = é aifuél (ﬁ (u“an)U)jvl - ﬁ (1 - V“am)wj)’ (7)
=1 =1

where o,;) is the jth largest of o; (i=1,2,...,n),and @ = (w1, . ..,m,)" is the aggregation-associated vector such that
w;j€[0,1],j=1, 2,. nzzlefl
(5) The intuitionistic fuzzy hybrid averaging (IFHA) operator [12]:

;i

IFHA(ay, g, . . ., Op) = jiel(wjoca(,) (111(1”&”0))%71?@%) ,>, (8)

where &, is the jth largest of &; = nwio;(i=1,2,...,n), w=(wy,Wy,.. ., w,)T is the weight vector of (1,0, . . .,0,) with
wje[0,1],j=1,2,...,n, Z};wj =1land o =(wy,wy,...,w,)" is the aggregation-associated vector such that w; € [0,1],
j=1,2,...,n,and Y/ jo; = 1.

(6) The intuitionistic fuzzy hybrid geometric (IFHG) operator [13]:

n n
FHG(, 0., 0n) = & gl = (H (1)1 - 11 (1- V&nm)w]) 9)
J J=

where 4, is the jth largest of &; = o (i = 1,2,...,n), w= (wq,Wy,.. . wy)T is the weight vector of (ctq,da,. . .,0%,) with
w;je[0,1],j=1,2,...,n, Z}’lej =1and o = (w1,wy,...,w,)" is the aggregation-associated vector such that wj; € [0,1],
j=1,2,...,n,and 3} ;= 1.

Yager [22] defined a generalized ordered weighted averaging (GOWA) operator, Zhao et al. [23] extended it to accommo-
date situations where the input arguments are IFVs.

Definition 5 [23]. A generalized intuitionistic fuzzy ordered weighted averaging (GIFOWA) operator of dimension n is a
mapping GIFOWA: V" — V, which has the following form:

1/2 n 1/2 n 1/2
GIROWA, (11 2..om) = (& (wiy) ) = ((1 -1 #iw)>wf'> - (1 “[Ia-a- v))) )
j=1 j

Jj=1
(10)

where /4 >0, w = (Wy,Ws,...,w,)T is the weight vector of (01,05, . . ., ;) With w;j€[0,1],j=1,2,...,nand Z}‘lej =1, and o is
the jth largest of o; (i=1, 2,...,n).
Furthermore, Torra and Narukawa [8] proposed an aggregation principle for HFEs:
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Definition 6 [8]. Let E = {hy,h,,...,h,} be a set of n HFEs, ® be a function on E, @: [0,1]¥ - [0,1], then

@E = Uye{hlxhzxMxhn}{@(y)} (1])
Based on Definition 6 and the defined operations for HFEs, we will give a series of new specific aggregation operators for
HFEs, and investigate their desirable properties:

Definition 7. Let h(j = 1,2,...,n) be a collection of HFEs. A hesitant fuzzy weighted averaging (HFWA) operator is a mapping
H" - H such that

n n
HFWA(hth “en 7hn) = .@ (thj) = Uylehl.yzehz ..... y,,ehn{ H l - V] }7 (12)
j=1

j=1
where w = (W, Ws,...,w,)! is the weight vector of hi(j=1,2,...,n) with w; € [0,1] and Zj’;]wj = 1. Especially, if w=(1/n,1/
.,1/n)T, then the HFWA operator reduces to the hesitant fuzzy averaging (HFA) operator:

n (1 2 n
HEAh s o) = & () = u,]ehl.«,,zehz..,,,ynehn{1 N K } (13)

j=1

Definition 8. Let h;(j=1,2,...,n) be a collection of HFEs and let HFWG: H" — H, if

HFWG(hlth: (R ahn) :j(:% h T = U,]ehl Va€hy....yp€hn {H }7 (14)

then HFWG is called a hesitant fuzzy weighted geometric (HFWG) operator, where w = (w1, W>,...,w,)" is the weight vector
of hj(j =1,2,...,n), withw; € [0,1] and Z}’lej = 1.In the case where w = (1/n,1/n,...,1/n)", the HFWA operator reduces to the
hesitant fuzzy geometric (HFG) operator:

HFG(hy, ha, ... ) = & W™ = Uy ey ,nehn{H ”"}. (15)

;11

Lemma 1 ([24,25]). Let x;> 0, 4;>0,j=1,2,...,n,and >} | J; = 1, then

with equality if and only if x; =x3=---=X,.

Theorem 3. Assume that hi(j=1,2,...,n) is a collection of HFEs, w = (W1, W5, ..., w,,)" is the weight vector of them, with w; € [0,1]
and Y ,w; =1, then

HFWG(hy, ha, ... hy) < HEWA(hy, hy, ... hy). (17)

Proof. For any ), € hy, Y2 € hy,...,7, € hy,, based on Lemma 1, we have

vajéi;wfvj:l—i;wj(l— - I —-»", (18)
j= Jj= =

j=1

which implies that ® (h ’) " ,(w;h;), and completes the proof of Theorem 3. O
Theorem 3 shows that the values obtained by the HFWG operator are not bigger than the ones obtained by the HFWA
operator.

Definition 9. For a collection of the HFEs h; (j=1,2,...,n), a generalized hesitant fuzzy weighted averaging (GHFWA)
operator is a mapping GHFWA: H" — H such that

. 1/1 n w\ V7
GHFWA).(h17h27 ey hn) = < 7 (th/)> = U",‘]€’11"‘,'2€’12 ..... ynehn{ (1 - H (] - “/f) J) }: (19)
i= i

where w = (W, W,,...,w,)" is the weight vector of hjj = 1,2,. . .,n), with w; € [0,1] and ZJ’?:]WJ- = 1. Especially, if 1 = 1, then the
GHFWA operator reduces to the HFWA operator.
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Theorem 4. Let hj(j=1,2,...,n) be a collection of HFEs having the weight vector w = (w, w,,.. wy,)T such that w; € [0,1] and
Soiiw; =1,2> 0, then

HFWG(hy hy, ... hy) < GHFWA, (hy hy, ..., hy). (20)

Proof. For any y; € hy, 92 € hy,...,7, € h;,, based on Lemma 1, we have
. 1/4 . 1/4 . 1/4 . W\ VA
H = (H ()" ) < (Zwﬁ;) = (1 =Y w1 y;-)) < (1 -11(-%) ) : (21)
= = 1
which implies that @! , (h}””) < (@;;1 (w,—hj’))l/i, and completes the proof of the theorem. O

From Theorem 4, we can conclude that the values obtained by the HFWG operator are not bigger than the ones obtained
by the GHFWA operator for any 2 > 0.

Definition 10. Let hij=1,2,...,n) be a collection of HFEs, w= (W1, W,,...,w,)" be the weight vector of them, such that
w;€[0,1] and Z}Lle = 1. A generalized hesitant fuzzy weighted geometric (GHFWG) operator is a mapping H" — H, and

1/4
1 , z W
GHFWG; (hy, ha, ... hy) = 7 Cé(ﬂhj)wj) = Uyiehpyehy.mehn {1 - <1 - H(l -(1- Vj) ')W’> } (22)

j=1
If 2=1, then the GHFWG operator becomes the HFWG operator.
Theorem 5. For a collection of HFEs hj=1,2,...,n), w=(w;,Ws,...,w,)" is the weight vector such that w;< [0,1] and
Yiaw;=1,4> 0, then
GHFWG; (hq, hy,. .., hy,) < HFWA(hy, hy, ... hy). (23)

Proof. Let y; € hy, Y2 € hy,..., 7, € hy, based on Lemma 1, we can obtain

" A 1/ 1 A 1/4 1 A 1/4
1_(1_H<1—<1-yj>‘>"“j> <1—<1—ij<1—<1—~/;>’*>> —1—< wfﬂ—m‘)
j=1 J

j=1 =1
<1-(]

which implies that %( Ly ().hj)‘”f) < @}, (w;hy), and completes the proof of the theorem. O

::]:

1/4
(1—7)" ) (1=, (24)
j=1

\
I z:‘
IR

Theorem 5 gives us the result that the values obtained by the GHFWG operator are not bigger than the ones obtained by
the HFWA operator, no matter how the parameter A(4 > 0) changes.

Example 1. Let h; =(0.2,0.3,0.5), h, = (0.4,0.6) be two HFEs, w = (0.7,0.3)" be the weight vector of them, then by Definitions
7-10, we have

GHFWA, (hy, hy) = HFWA(hy, hy) = & (wihj)

[
—_

2
Hgfh ;thz{ H 1 — VJ } = {1 — (1 — 0‘2)0'7 X (] _ 0'4)0-371 _ (-l _ 0.2)0.7 % (1 -~ 0.6)0'3
j=1

1-(1-03)""x(1-04)*1-(1-03)"" x(1-06)"1-(1-0.5)° x(1-04)"°

1-(1-05% x(1-06)" } ={0.2661,0.3316,0.3502,0.4082,0.4719,0.5324}.
5 1/6 2 1/6
GHFWAG(hlth) (/ (th )> = U)q chy,y,€hy (1 - H(l - ’VJG)WJ)
=1

— (1= (1-02%%7 x (1 - 04536 (1 (1-025°7 x (1—0.6°)°%)",
(1= (1-03%%7 x (1-0.4%°5(1 — (1= 0.35°7 x (1 - 0.65)°%)"5 (1 — (1 —05°)°7
X (1-0.4%°3)16 (1 - (1 -0.55%7 x (1 0.6°°%)!/5)

={0.3293,0.3468,0.4707,0.4925,0.4951,0.5409}.
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GHFWGi (1, hy) = HFWG(hy, hz) = & (h) uhghmehz{ﬂ }

- {0.20~7 % 0.4°3 0.2°7 % 0.6°3,0.3%7 x 0.4°3,0.3%7 x 0.6°3,0.5°7 x 0.4°3,0.57 x 0.60'3}
— {0.2462,0.2781,0.3270,0.3693, 0.4676,0.5281}.

1/6
1 2
GHFWGe(hl,hz)=6</ (6h))™ ) Heh]/zehz{ (1 Hlf(lfyj ) }
j=1

:{17(17(17( —0.2)°)" % (1-(1-0.4)%)"%)"",
1-(1-(1-(1-02)°)" x (1-(1-0.6)°)™)"* 1= (1-(1-(1-03)")*" x (1-(1-04)")*)"°,
1-(1-(1-(1-03)%"" x(1-(1-0.6)%**)"6 1-(1-(1-(1-0.5)%)"7 x (1 (1-0.4)5)°%)"/5,
1-(1-(1-(1-0.5)°)" x (1-(1-0.6) )0'3)”6}

={0.2333,0.2400,0.3222,0.3369,0.4591,0.5203}.
In the following, we discuss the relationships among the developed aggregation operators:

Theorem 6. Let hj(j=1,2,...,n) be a collection of HFEs with the weight vector w = (W, Ws,...,w,)" such that w; € [0,1] and
Z}’:le =1,2>0, then

(1) @ wihf = (ep,h")

(2) (hc> (69}’%1W1h1)c:

3) (eej":]wj (hj)j)l/L = (4 (s am™))

3 (1)) = (o7 o))

Proof.

(1) e, (wth) Uy, ehy gpehy... /nehn{1 —Hﬁ]("/j)w’} = (Umem Jah ynehn{nﬁ 7i) M})C :( T 1h;vi>f;
@) &5 (1) = Unengaemnenm { T (1= 2" } = (uhghl e uetn {1 =TI (1 =7 1) = (o wihy)
R ) RN (e
:(uylemzehz ..... «,,nghn{l—(vn};lu7<1fv,4>") 1) = C(emom)'
@3 (512 (45)") = S {1 (-T2 (1-31)") " = (Guamnomnon { (1= T2 (1-29) "))

1/

= (@}Ll thj) . O

Theorem 7. Let hi(j =1,2,...,n) be a collection of HFEs associated with the weight vector w = (Wy, W, ..., w,)" such that w; € [0,1]
and 3! ,w; = 1,7 > 0, then

(1) Aens (B Wihy) = B, (WiAens (hy));

(2) Aens (@4 Wily) = @1y (WiAens (1)

3) Ao (efw)’)") = (SLw Asth) "
(4) Aens (1 (91 (1)) ) =1 (&1 (PAens ())").

Proof. Based on Definition 3, we can get

(1) Aenv (69}1:1 (th])) :Aenv(uuehl V2€hy..... *,',,ehn{] - Hf:](] - yj)Wj}> = ( Hj ](1 — 1 ) 1- (] - H} 1(] - h+) ))
(1) (1)) = 1)) =
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(2) AEnv (®]f’:1 hJWJ) = Aenu<Uyleh1.y26hz Yn€hn {Hf;]V;VJ}> = (H}L] (hji)wjv 1- H}lzl (h]#r)wj) = (HF:] (hji>wj7
1- Hjll (l - <1 - hf))wj) = ?:1 <hj7’1 - hJT>W] = ®?:1(Aenv(hj))wj;

B <(1 ST ) (1 - H}’:l(l - (hf)/:)%)lﬁ) - <(1 VR )",
- (- (- (- (- "f)Y)Wj)W) - (st 1-8)) " = (o wdwny)

wi\ 1/4 NN i
(e ) ) (e (1 o)) ) ) 2w,

Definition 11. Let hfj=1,2,...,n) be a collection of HFEs, h,;, be the jth largest of them, w = (w1, ®;,. .., ;)" be the aggre-
gation-associated vector such that w; € [0,1] and Z}’?:]wj =1, then

(1) A hesitant fuzzy ordered weighted averaging (HFOWA) operator is a mapping HFOWA: H" — H, where

HFOWA(hy, hy, ... hy) = |
J

Tds

n
(wjhUU)) = U?”rf[l)ehﬁﬂ)v"/o(ZthG(Z) ----- Yo EMa(n) {1 - H(l - VJO))U)j}' (25)

j=1
(2) A hesitant fuzzy ordered weighted geometric (HFOWG) operator is a mapping HFOWG: H" — H, where
n
n oo fon
HFOWG(hl ’ hZ» R hn) = jg haé}') = UVJ(I)Ehﬁ(’l)-7"0(2]Ehn(2\~---=7rl(n)€hﬁ(n) {H Va&) } (26)
i
(3) A generalized hesitant fuzzy ordered weighted averaging (GHFOWA) operator is a mapping GHFOWA: H" — H, where
n i 1/2 n o 1/2
GHFOWA (hy, hy, ..., hy) = </€—B1 <wjh<;(i)>> = U}’amEho<1)~7u(2)€hu(z> ----- Vot Ehom) 1- H (1 - fo(i)) (27)
- .

with 1> 0.
(4) A generalized hesitant fuzzy ordered weighted geometric (GHFOWG) operator is a mapping H" — H, where

1/4
n A\
1(lha(i))w]> = U‘/au)ehn(l)%(z)eho(z‘),...,",’n(n)éha(m {1 - (1 - H (1 - (1 - you’)) ) > }
j=

R=

GHFOWG; (hy, hy, ..., hy) = } C

(28)
with 7> 0.

In the case where w = (1/n,1/n,...,1/n)", the HFOWA operator reduces to the HFA operator, and the HFOWG operator be-
comes the HFG operator; in the case where / = 1, the GHFOWA operator reduces to the HFOWA operator and the GHFOWG
operator reduces to the HFOWG operator.

The HFOWA, HFOWG, GHFOWA, and HFOWG operators are developed based on the idea of the OWA operator [14]. The
main characterization of the OWA operator is its reordering step. Several methods have been developed to obtain the OWA
weights. Yager [14] used linguistic quantifiers to compute the OWA weights. O’Hagan [26] generated the OWA weights with
a predefined degree of orness by maximizing the entropy of the OWA weights. Filev and Yager [27] obtained the OWA
weights based on the exponential smoothing. Yager and Filev [28] got the OWA weights from a collection of samples with
the relevant aggregated data. Xu and Da [29] obtained the OWA weights under partial weight information by establishing a
linear objective-programming model. Especially, based on the normal distribution (Gaussian distribution), Xu [18] devel-
oped a method to obtain the OWA weights, whose prominent characteristic is that it can relieve the influence of unfair argu-
ments on the decision result by assigning low weights to those “false” or “biased” ones.

Example 2. Let h; =(0.1,0.4), h, =(0.3,0.5) and h3 =(0.2,0.5,0.8) be three HFEs, and suppose that the aggregation-associated
vector is w = (0.25,0.4,0.35)".
By Definition 4, we calculate the score values of hy, h, and hs:
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01404
)

—0.25, s(hy) = 0'32;0'5 — 04, s(hy) =

02+05+08

s(h) 3

Since

s(hs) > s(hy) > s(hy)

0.5.

then
hsay = h3 = (0.2,0.5,0.8)

he) =hy = (03,0.5), he) =hy = (0.1,0.4).
By Definition 11, we have
3
GHFOWA, (hy, ha, h) = HFOWA(hy, hi,h) = & (ihary) = U, et aet st {1 —(1=7)" (1 =p)* (1 - y1)°‘35}

={0.2097,0.2973,0.3092,0.3143,0.3858,0.3903,0.4006,0.4412,0.4671,0.5115,0.5151,0.5762}.

3 172 025 0.4 035\ 1/2
GHEOWA, (1o ) = (2 (01h25)) = Onenemnen { (1= (1= (1=3) " (1-39)")

={0.2239,0.3213,0.3271,0.3476,0.3961,0.4123,0.4165,0.4687,0.5067,0.5461,0.5586,0.5920} .

3 W
GHFOWG; (hy,hy,hs) = HFOWG (hy, hy, hs) =9 (hgb_ )) = Uy ety ey {13257949935)

={0.1845,0.2264,0.2321,0.2610,0.2847,0.2998,0.3202,0.3678,0.3770,0.4240,0.4624,0.5201}.

l L
GHFWG, (hi. hy,hs) = @1 (ZhG@)“J)

= Usyeh et {1 (1= (a0 (1-a-n?) (1-a —v1>2)°'35)m}

={0.1820,0.2165,0.2238,0.2403,0.2678,0.2882,0.2972,0.3601,0.3740,0.4057,0.4610,0.5047}.

From Definitions 7-11, it is noted that the HFWA, HFWG, GHFWA and GHFWG operators only weight the hesitant fuzzy
argument itself, but ignores the importance of the ordered position of the argument, while the HFOWA, HFOWG, GHFOWA
and GHFOWG operators only weight the ordered position of each given argument, but ignore the importance of the argu-
ment. To solve this drawback, it is necessary to introduce some hybrid aggregation operators for hesitant fuzzy arguments,
which weight all the given arguments and their ordered positions.

Definition 12. For a collection of HFEs h(j = 1,2,...,n), w = (W, W,,...,w,)" is the weight vector of them with w; € [0,1] and
Z]’f’:le = 1,n is the balancing coefficient which plays a role of balance, then we define the following aggregation operators,
which are all based on the mapping H" — H with an aggregation-associated vector @ =(wj,w,,...,w,)" such that w; € [0,1]
and 31 w5 =1:

(1) The hesitant fuzzy hybrid averaging (HFHA) operator:

—_

HFHA(hy, hy, ..., hy) = @ (@jheg) = U oo {1 -1 - ?a@)“’f}, (29)

= Yoy €M1y, Va2 EMG(2) V)

where h, is the jth largest of h = nwhi(k = 1,2,...,n).
(2) The hesitant fuzzy hybrid geometric (HFHG) operator:

n
n o o
HEHG(hy, hy, ... ha) = jg ha{i) = U1y oty Tz hoay v Fotm ot {H Vat) }’ (30)

j=1

where g is the jth largest of hy, = h{"(k =1,2,...,n).
(3) The generalized hesitant fuzzy hybrid averaging (HFHA) operator:

A 1/2
GHEHAG ho, ) = (& (o)) =0 o M T 7)” B1
N ':1< g “(1)) T o) €ho1) Vo2 ENg(2) - Tatm Eham) H( /zr(i)> ) )

where /> 0, i, is the jth largest of h = nwihi(k = 1,2,...,n).
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(4) The generalized hesitant fuzzy hybrid geometric (GHFHG) operator:

1/i
1/n /o \9 L o A\
GHFHG(h1, hy, ..., hy) = 2 (/g ()“h“(i)> > = U”}"nmeii:ru]@"a(z)eﬁa(z) ----- Jan) Elan) {1 N <1 - H <1 = (1= Vop) ) ) }7 (32)
=1

where 2 > 0, hyy is the jth largest of iy, = h{"(k =1,2,...,n).

Especially, if w=(1/n,1/n,...,1/n)", then the HFHA operator reduces to the HFOWA operator, the HFHG operator reduces
to the HFOWG operator, the GHFHA operator reduces to the GHFOWA operator, and the GHFHG operator becomes the
GHFOWG operator; if /=1, then the GHFHA operator reduces to the HFHA operator, and the GHFHG operator becomes
the HFHG operator.

Example 3. Let h;=(0.2,0.4,0.5), h,=(0.2,0.6) and h3=(0.1,0.3,0.4) be three HFEs, whose weight vector is
w=(0.15,0.3,0.55)", and the aggregation-associated vector is w =(0.3,0.4,0.3)". Then we can obtain
hy=(1—-(1-02>"1-(1-04>%51-(1-05)>%"%)=(0.0955,0.2054,0.2680),

hy=(1-(1-02%1-(01-06)>%)=(0.1819,0.5616),

hs=(1-(1-01%%%1-(1-03>%"1-(1-04)>"%) = (0.1596,0.4448,0.5695)
and

s(hy) =0.1896, s(hy) =0.3718, s(h;) = 0.3913.
Since

s(hs) > s(hy) > s(hy)
then

hoy = hs = (0.1596,0.4448,0.5695), ) = hy = (0.1819,0.5616),

hg3 = by = (0.0955,0.2054,0.2680).
By Definition 12, we have
3 . . . .
GHFHA (hy, hy, h3) = HFHA(hy, hy, hs) =9 (@ihog) = Uy i sochamens 11— (1= 93)%2 (1 = 72041 = §1)*°}

= {0.1501,0.1825,0.2023,0.2494,0.2781,0.2956, 0.3046, 0.3311, 0.3378,0.3474, 0.3630,
0.3785,0.4152,0.4375,0.4512, 0.4582, 0.4788, 0.4915).

3 : 13 3103 31,04 .3,03\1/3
GHFHA3(h17h2?h3) = (/?] (Cl)jh?;—w)) = U'}'lEh]f}'thﬂhEha { <] - (] - V%) (1 - A))g) (1 - y?) ) }
={0.1573,0.1840,0.2112,0.3102,0.3179,0.3279,0.3957,0.4243,0.4283,0.4336,0.4649,
0.4681,0.4725,0.4003,0.4065,0.5069,0.5095,0.5130}.

If we use the GHFHG operator to aggregate the HFEs h;, h, and hs, then

o) = by = (0.2°01°,0.4015 0.5%1%) — (0.4847,0.6621,0.7320),

ho) = hy = (0.2°93,0.65%%) = (0.2349,0.6314),

hos) = hs = (0.1°0°°,0.3%0%5 0.4*9%%) — (0.0224,0.1372,0.2205).

3 /ew:
GHEHG (hy, hy, hs) = HFHG (1, hy, ) = © (Rl ) = Us i s, 5, 19918 187)
={0.1442,0.1584,0.1632,0.2142,0.2352,0.2424,0.2484,0.2728,0.2811,
0.2864,0.3145,0.3241,0.3690,0.4051,0.4175,0.4254,0.4671,0.4814}.
1/3 - . . . .
GHFHGs (h1.h,hs) =3 C@ (3hou>)w’> =Upyehy achpnein {1~ (1= (1= (1=907)°P (1= (1 =52 (1 = (1-)%)°*)"? }

={0.1264,0.1312,0.1322,0.1633,0.1698,0.1710,0.2361,0.2467,0.2487,0.2772,0.2905,
0.2930,0.3222,0.3390,0.3423,0.3902,0.4138,0.4185}.
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4. Decision making based on hesitant fuzzy information

In some practical problems, for example, the presidential election or the blind peer review of thesis, anonymity is re-
quired in order to protect the decision makers’ privacy or avoid influencing each other. In this section, we apply the hesitant
fuzzy aggregation operators to multi-attribute decision making with anonymity. Suppose that there are m alternatives
Y{i=1,2,...,m) and n attributes G; (j = 1,2,...,n) with the attribute weight vector w = (wy,ws,.. . wp)' such that w;€[0,1],
j=1,2,...,n.If the decision makers provide several values for the alternative Y; under the attribute G; with anonymity, these
values can be considered as a hesitant fuzzy element h;;. In the case where two decision makers provide the same value, then
the value emerges only once in h.

Based on the above analysis, we give the following decision making method:

Step 1. The decision makers provide their evaluations about the alternative Y; under the attribute G;, denoted by the hesitant
fuzzy elements hy(i=1,2,...,m;j=1,2,...,n).

Step 2. Utilize the developed aggregation operators to obtain the hesitant fuzzy elements h; (i=1,2,...,m) for the alterna-
tives Y(i=1,2,...,m), i.e,

Y n ) 1/
= GHPWA, (o ) = (& (wh0) ) = Ui ,mehm{<lﬂ(1ya)>wf'> } i=1.2....m

=1
33)

Step 3. Compute the score values s(h;)(i=1,2,...,m) of h(i=1,2,...,m) by Definition 4.
Step 4. Get the priority of the alternatives Y; (i=1,2,...,m) by ranking s(h;)(i=1,2,...,m).

Example 4 [30]. The enterprise’s board of directors, which includes five members, is to plan the development of large pro-
jects (strategy initiatives) for the following five years. Suppose there are four possible projects Y; (i = 1,2, 3,4) to be evaluated.
It is necessary to compare these projects to select the most important of them as well as order them from the point of view of
their importance, taking into account four attributes suggested by the Balanced Scorecard methodology [31] (it should be
noted that all of them are of the maximization type): G;: financial perspective, G,: the customer satisfaction, Gs: internal
business process perspective, and G4: learning and growth perspective. And suppose that the weight vector of the attributes
is w=(0.2,0.3,0.15,0.35)".
In the following, we use the developed method to get the optimal project.

Step 1. In order to avoid influencing each other, the decision makers are required to provide their preferences in anonymity
and the decision matrix H = (h;j).«n is presented in Table 1, where hy(i,j = 1,2,3,4) are in the form of HFEs.

Step 2. Utilize the GHFWA operator to obtain the hesitant fuzzy elements h;(i = 1,2,3,4) for the projects Y{(i=1,2,...,m).
Take project Y, for an example, and let /=1, we have

hy = GHFWA, (hay, hay, has, has) = HFWA((0.3,0.5,0.6), (0.2,0.4), (0.5,0.6,0.7), (0.8,0.9)) = & (w;hy)

j=1
4
—u 1-1]01 - ,)Wj
= 41€d41,742€d42,743€043,744€dag Y 4j

j=1

= {0.5532,0.5679,0.5822,0.5861,0.5901, 0.5960, 0.6005, 0.6036,0.6131,0.6136,0.6168,0.6203, 0.6294,
0.6299,0.6335,0.6450,0.6456,0.6494,0.6605,0.6610,0.6753,0.6722,0.6784,0.6830,0.6865, 0.6890,
0.6964,0.6969,0.6993,0.7021,0.7092,0.7097,0.7125,0.7215,0.7219,0.7337}.

As the parameter / changes we can get different results for each alternative, here we will not list them for vast
amounts of data.

Step 3. Compute the score values s(h;)(i=1,2,3,4) of hi(i = 1,2,3,4) by Definition 4. The score values for the alternatives are
shown in Table 2.

Table 1
Hesitant fuzzy decision matrix.

Gy G, Gs Ga

Y (0.2,0.4,0.7) (0.2,0.6,0.8) (0.2,0.3,0.6,0.7,0.9) (0.3,0.4,0.5,0.7,0.8)
Y, (0.2,0.4,0.7,0.9) (0.1,0.2,0.4,0.5) (0.3,0.4,0.6,0.9) (0.5,0.6,0.8,0.9)

Ys (0.3,0.5,0.6,0.7) (0.2,0.4,0.5,0.6) (0.3,0.5,0.7,0.8) (0.2,0.5,0.6,0.7)

Ya (0.3,0.5,0.6) (0.2,0.4) (0.5,0.6,0.7) (0.8,0.9)
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Table 2
Score values obtained by the GHFWA operator and the rankings of alternatives.
Yi Y, Ys Ya Ranking

GHFWA, 0.5634 0.6009 0.5178 0.6524 Ys >Y2>Y1>Y;
GHFWA, 0.5847 0.6278 0.5337 0.6781 Ys >Y2>Y1>Y;
GHFWA; 0.6324 0.6807 0.5723 0.7314 Yy >Yo>Y>Y3
GHFWA 0.6730 0.7235 0.6087 0.7745 Yy >Y2> Y >Y3
GHFWA,, 0.7058 0.7576 0.6410 0.8077 Ys >Y2>Y1>Y3

Table 3
Score values obtained by the GHFWG operator and the rankings of alternatives.
Y: Y, Ys ' Ranking

GHFWG,4 0.4783 0.4625 0.4661 0.5130 Ys>Yi>Y5>Y,
GHFWG, 0.4546 0.4295 0.4526 0.4755 Yi>Y1>Y3>Y,
GHFWGs 0.4011 0.3706 0. 4170 0.4082 Y; >Y,>Y>Y,
GHFWGq 0.3564 0.3264 0.3809 0.3609 Y; >Y,>Y>Y,
GHFWG»o 0.3221 0.2919 0.3507 0.3266 Ys >Ys>Yi>Y,

Step 4. By ranking s(h;)(i=1,2,3,4), we can get the priorities of the alternatives Y{i=1,2,3,4) as the parameter / changes,
which are listed in Table 2.
From Table 2, we can find that the score values obtained by the GHFWA operator become bigger as the parameter /.
increases for the same aggregation arguments, and the decision makers can choose the values of 4 according to their
preferences.

In Step 2, if we use the GHFWG operator instead of the GHFWA operator to aggregation the values of the alternatives, the
score values and the rankings of the alternatives are listed in Table 3.

It is pointed out that the ranking of the alternatives may change when the parameter / in the GHFWG operator changes.
By analyzing Tables 2 and 3, we can find that the score values obtained by the GHFWG operator become smaller as the
parameter /4 increases for the same aggregation arguments, but the values obtained by the GHFWA operator are always
greater than the ones obtained by the GHFWG operator for the same value of the parameter 4 and the same aggregation
values.

5. Concluding remarks

In this paper, we have given an intensive study on hesitant fuzzy information aggregation techniques and their applica-
tion in decision making. Some hesitant fuzzy operational rules have been developed based on the interconnection between
the hesitant fuzzy set and the intuitionsitic fuzzy set. To aggregate the hesitant fuzzy information, a series of operators have
been developed under various situations, the relationships among them have been discussed. Moreover, we have applied the
developed aggregation operators to solve the decision making problems with anonymity. By the illustrative example, we
have roughly shown the change trends of the results derived by the developed aggregation operators with the increase of
the parameter 4.
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