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Body fluids contain surprising numbers of cell-derived vesicles which are now thought to contribute to both
physiology and pathology. Tools to improve the detection of vesicles are being developed and clinical applica-
tions using vesicles for diagnosis, prognosis, and therapy are under investigation. The increased understanding
why cells release vesicles, how vesicles play a role in intercellular communication, and how vesicles may concur-
rently contribute to cellular homeostasis and host defense, reveals a very complex and sophisticated contribution
of vesicles to health and disease.

© 2012 Elsevier Ltd. Open access under the Elsevier QA license.

1. Introduction

The release of vesicles by cells is a common and evolutionary con-
served process, because both prokaryotes'? and eukaryotic cells>*
release such vesicles into their environment. The underlying molecu-
lar mechanisms of formation, cargo sorting, and release of vesicles are
still largely unexplored.>™” It is appealing to consider why cells re-
lease vesicles. In complex multicellular organisms or within (mixed)
populations of bacteria, vesicles offer an elegant solution to exchange
biomolecules such as proteins, second messengers, and genetic infor-
mation®* or to get rid of redundant and/or dangerous intracellular or
membrane-associated compounds.®® Once the biomolecules have
been packaged within vesicles they will be less susceptible to degra-
dation. Packaging also offers the opportunity to store cargo in a highly
efficient manner, and vesicles can be equipped with cell type-specific
adhesion receptors so that the cargo will be delivered only at dedicat-
ed target cells. In the case of clearance of vesicles, concentrating
harmful or redundant components into vesicles, such as chemothera-
peutic drugs or (parts of) microorganisms, reduces the risk of “envi-
ronmental contamination”'®'" and at the same time facilitates
cellular survival and may protect the host, e.g. by supporting defense
processes such as coagulation and inflammation.>*!2

Phospholipid bilayer-enclosed vesicles from eukaryotic cells will
be collectively called extracellular vesicles (EVs) in this review
when appropriate. Recent review reports that at least four different
types of EVs have been defined based on phenotype and physical
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characteristics.> These types of vesicles are microvesicles (MVs),
exosomes, membrane particles and apoptotic vesicles, but it is
unclear whether each of these types indeed represents distinct
types of vesicles.> Despite the lack of consensus on classification of
EVs, three common types, MVs, exosomes, and apoptotic vesicles,
are distinguished unanimously. MVs and exosomes have attracted
much attention in the past years because the evidence is increasing,
although mainly from in vitro studies, that both types of vesicles can con-
tribute not only to intercellular communication, but also to processes
such as coagulation, angiogenesis, cell survival, waste management,
modulation of the immune response, and inflammation.>*

EVs are widely distributed, and they have been found in all human
body fluids that have been investigated thus far in both physiological
and pathological conditions, including blood, urine, saliva, mother
milk, and cerebrospinal and synovial fluid.>* The numbers, cellular
origin, composition and functional properties of EVs are associated
with the type of body fluid, diseases and disease states such as
cancer,>"15 cardiovascular disease,'®!” and inflammation.'%1°

Despite extensive research on EVs, there are several major challenges
to be faced, including the proper detection of EVs. Most information on
diameter and size distribution of EVs comes from measurements by
transmission electron microscopy (TEM).?°-?? As based on TEM mea-
surements, most EVs have a diameter less than 100 nm, which is too
small to be detected by standard cell-based methodologies. To which ex-
tent the diameter of single vesicles and the size distribution of a popula-
tion of vesicles as determined by TEM reflects the true size and size
distribution of vesicles in solution, however, are unknown, because
TEM measurements require sample fixation and dehydration, i.e. pro-
cesses likely to affect the size and morphology of vesicles. New method-
ologies such as atomic force microscopy (AFM), nanoparticle tracking
analysis (NTA) or resistive pulse sensing (RPS) are capable of detecting
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single vesicles directly in solution and no fixation or dehydration is re-
quired. Thus, these methodologies are more likely to provide informa-
tion on the real diameter of vesicles. Importantly, development of
commonly accepted and acceptable reference materials will be essential,
not only to define the original diameter and size distribution of EVs, but
also to be able to compare results between laboratories.

In this review, we will present an overview on the presence and
biological relevance of EVs in human body fluids in normal and path-
ological conditions, and we will provide an overview on their poten-
tial clinical applications, including their use as biomarkers and novel
therapeutic agents.

2. Terminology of EVs

As mentioned before, there is no consensus regarding the classifica-
tion and terminology of different types of EVs.> Recent evidence sug-
gests that different types of EVs have more similarities than thought
previously.*?! For example, the membranes of EVs are relatively
enriched in detergent-resistant membrane domains, also known as
lipid rafts, compared to plasma membranes?>~2® and there is much
overlap in the density and diameter of EVs.>* In fact, even for a single
type of vesicle conflicting size ranges have been reported, and there is
no consensus on this matter as illustrated in Table 1. The size of
exosomes is below 100 nm in most references, but the size of the
MVs (also called microparticles) varies widely between investigators.
Furthermore, supposedly different types of EVs may share common
membrane proteins. For example, P-Selectin (CD62p), which is exposed
on activated platelets and platelet derived-MVs (PMVs), is also exposed
on platelet-derived exosomes.?° In addition, it cannot be excluded that
many unique characteristics that have been ascribed to an isolated and
purified population of vesicles, such as the presence of a particular
mRNA or miRNA in exosomes, are due to contamination by larger vesicles,
vice versa. Thus, extreme care is necessary when terms for specific subsets
of vesicles are being used.

3. Formation and shedding of EVs

Cells release EVs upon activation and during apoptosis in vitro,
i.e. under conditions of cell stress.!%12>27-30 Under cell stress MVs
and exosomes are being formed (Fig. 1). The formation of MVs seems
to be initiated by an increase in the cytosolic concentrations of calcium
ions. The increase of calcium ions activates scramblase and calpain,
which leads to a loss of membrane phospholipid asymmetry (scramblase
action) and calcium dependent degradation of various proteins (calpain
action), which in some way allow the outward budding of MVs from
the plasma membrane.”>! As a consequence, cells and MVs may expose
phosphatidylserine (PS). This is illustrated in a rare bleeding disorder,
Scott syndrome, in which a defective scramblase activity results in a re-
duced transport of PS to the platelet surface as well as the release of a

Table 1
The size distribution of EVs.
Type of vesicles Size (nm) Detection References
Microvesicles 20-50 TEM 138
(microparticles)  100-1000 TEM 20
40-70 TEM 139
200-800 TEM 140
180 (mean) AFM 128
10-475 (mean 67.5) AFM 125
30-90 (mean 50) AFM with microfluidics ~ '3°
100-500 TEM 22
Exosomes 40-100 TEM 20
30-100 TEM 141
50-100 NTA 130

TEM (transmission electron microscopy), AFM (atomic force microscopy), FCM (flow
cytometry), NTA (nanoparticle tracking analysis).

reduced number of PS-exposing MVs.23? Although many studies have
shown that MVs may expose PS, also here there are still many questions
to be answered. Exposure of PS by MVs seems to depend on their cellular
origin, the underlying mechanism of formation, the presence of PS-
binding proteins such as lactadherin that may artifactually shield PS
from detection in our analyses, and, importantly, pre-analytical condi-
tions such as collection, handling and storage.?”?833-3> Therefore, the de-
tection and characterization of MVs based on PS exposure need to be
reconsidered.

The biogenesis of exosomes begins with the inward budding of
small parts of the plasma membrane, containing several antigens ex-
posed on that outer membrane. These small intracellular vesicles
form the early endosome. Then, formation of intraluminal vesicles
(ILVs) by inward budding of the limiting membrane of endosome oc-
curs. Once the endosome contains ILVs, it is called a multivesicular
body (MVB; Fig. 1).° ILVs have a cytosolic-side inward orientation
and thus expose the extracellular domains of transmembrane pro-
teins. Four different mechanisms may contribute to protein sorting
towards ILVs: (1) mono-ubiquitination and the endosomal sorting
complex required for transport (ESCRT) machinery that facilitates
the trafficking of ubiquitinated proteins from endosomes to lyso-
somes via MVBs, (2) association of proteins with detergent-resistant
membrane domains or lipid rafts, (3) higher-ordered protein oligo-
merization, and (4) ceramide-dependent segregation into endosomal
microdomains.>6~3 In fact, several proteins involved in the biogene-
sis of exosomes have been used to identify exosomes. Examples of
such proteins are ESCRT-associated proteins such as PDCD6IP (Alix)
and tumor susceptibility gene 101, tetraspanin molecules (CD9, CD63
and CD81) and heat shock protein 70.204°=42 The MVBs fuse with either
lysosomes for cargo degradation or with the plasma membrane to
secrete the ILVs as exosomes. The concentration of calcium ions within
the MVBs also plays a role in secretion of exosomes.**

Because vesicles which are indistinguishable from exosomes may
also be directly budded from the plasma membrane,>® and because
at least part of the MVB membranes may be deep invaginations of
the plasma membrane, it is unclear whether ILVs, exosomes, and
MVs are truly separate entities. So to summarize, to which extent
EVs contain truly distinct types of vesicles requires further investiga-
tion, and at present no tools are available to purify a single type or
population of vesicle based on size or density.>

EVs expose tissue/cell type-specific marker proteins of their parent
cell.>*** When a sufficient number of such marker proteins are ex-
posed, the cellular origin of a vesicle can be determined by e.g. flow cy-
tometry using antibodies directed against such marker proteins. This is
illustrated in Table 2, in which a shortlist of commonly used marker pro-
teins is summarized for analysis of vesicles in human blood (CD: cluster
of differentiation).

4. Sources of EVs in human body fluids

The numbers, cellular origin, composition and functional proper-
ties of EVs are not only disease (state) dependent, but also depend
on the body fluids being studied. The major populations of EVs in a
body fluid usually reflect the cells that are present in that particular
body fluid and that surround the body fluid. Examples of the latter
are vesicles from synoviocytes which are present in joint (synovial)
fluid, and vesicles from endothelial cells (ECs) in blood. We will brief-
ly summarize the cellular origin presence of EVs in blood, urine, sali-
va, cerebrospinal and synovial fluids in the following paragraphs.

In peripheral blood of a healthy subject, platelets and erythrocytes
are the major sources of EVs, but in certain disease states such as sepsis,
cardiovascular disease (CVD), or cancer, also MVs from monocytes,
granulocytes, lymphocytes, ECs, and cancer cells can be present.*> Pe-
ripheral blood also contains exosomes,*® although the cellular origin
of these vesicles is unknown.
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Fig. 1. Formation and shedding of extracellular vesicles. Microvesicles (MVs, 1), also called microparticles, are formed directly from the cell membrane by a shedding process of
which the exact molecular mechanisms are largely unknown. Specific targeting of membrane proteins and lipids to the MV is known to occur. For the formation of exosomes, in-
vagination of small parts of the cell membrane, with specific membrane protein components incorporated, starts the formation process.® The small vesicles are taken up by this
endocytosis process into early endosomes. The proteins are then packaged into intraluminal vesicles (ILVs) upon inward budding of the membrane of the endosome, transforming
the endosome into multivesicular bodies (MVBs). When proteins are destined for degradation, MVBs fuse with the lysosomal membrane and release ILVs into the lysosome for
degradation. Alternatively, MVBs fuse with the plasma membrane and ILVs are released into the extracellular space as exosomes (2). Exosomes (3) may also be formed directly
by outward budding of plasma membrane, thus resembling the formation of MVs.? Please keep in mind that there is no consensus whether endosomes are intracellular organelles
or deep invaginations of the plasma membrane. When endosomes would be deep invaginations, the consequence is that ILVs would be extracellular and thus are indistinguishable

from exosomes. In fact, then the term “ILVs” would be redundant.

Urine of healthy humans and amniotic fluid both contain significant
numbers of exosomes or exosome-like vesicles.*” These exosomes
expose CD24 and aquaporin-2, therefore, are likely to originate
from kidney cells*® and from epithelial cells facing the renal tu-
bule lumen.*® Urine contains also larger vesicles, but thus far the
characterization of these two types of vesicles in urine has been
problematic.>®

In saliva from healthy individuals, the larger vesicles, MVs, are de-
rived mainly from epithelial cells and granulocytes, whereas the
smaller vesicles, i.e. exosomes or vesicles resembling exosomes, are
mainly from epithelial cell origin.>!

Cerebrospinal fluid also contains EVs.>? In vitro, various types of
brain cells such as astrocytes, microglia, oligodendrocytes and neu-
rons release exosomes.”® The source of the EVs in cerebrospinal
fluid, however, is presently unknown.

Synovial fluid of rheumatoid arthritis (RA) patients and patients
with other types of arthritis contain MVs.'#>4 Most of these MVs orig-
inate from cells associated with inflammation, such as monocytes and
granulocytes. In addition, synovial fluid also contains vesicles from
synovial fibroblasts.>® Taken together, every body fluid has a clearly
distinct vesicle profile.

Table 2
Antibodies for staining microvesicles derived from different cell types.

Cellular origin Cell surface marker

Erythrocyte CD235a
Lymphocyte CD3, CD4 and CD8
Neutrophil/granulocyte CD66b, CD66e
Monocyte CD14

Platelet CD41, CD42, CD61

Endothelial cell CD105, CD144, CD62e

5. Functions of EVs

In the following paragraphs, an overview will be presented of the
cellular functions, which are summarized in Fig. 2.

5.1. Angiogenesis

EVs have pro- as well as anti-angiogenic properties.>%>-2 Angio-
genesis involves the formation and growth of new blood vessels to
provide expanding tissues and organs with oxygen and nutrients,
and concurrently remove the metabolic waste.®*

Cultured ECs release MVs containing metalloproteinase proteins
MMP-2 and MMP-9.5* These endothelial-MVs (EMVs) promote ma-
trix degradation, thereby promoting the formation of new blood ves-
sels. Also MVs from platelets (PMVs) promote proliferation, survival,
migration, and formation of capillary-like structures of ECs in vitro.>®
PMVs also induce angiogenesis in vivo because subcutaneous injec-
tion of PMVs promotes the development of endothelial capillaries in
mice, and injection of PMVs in the ischemic heart muscle of rats in-
creases revascularization.®® Both processes are apparently mediated
by vascular endothelial growth factor (VEGF), which is secreted
upon platelet activation and seems to be associated with the PMVs.
This also holds true for other growth factors, such as basic fibroblast
growth factor and platelet derived growth factor.®® However, because
isolated fractions of PMVs may still contain low levels of growth fac-
tors that have become released by platelets during blood collection
and handling, one has to be careful with the interpretation of these
results.

Induction of angiogenesis by PMVs or other vesicles may also
support tumor angiogenesis and metastasis. For example, binding
of PMVs to metastatic lung cancer cells triggers the expression of ma-
trix metalloproteinases (MMP-9, MMP-2 and MMP-14), VEGEF,
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Fig. 2. Functions of extracellular vesicles.

interleukin-8 (IL-8) and hepatocyte growth factor.5® In addition, also
cancer cells release exosomes which promote tumor angiogenesis.
Glioblastoma tumor cells release exosomes containing mRNA and
miRNA involved in remodeling the tumor stroma and enhancing
tumor growth.>° These glioma-derived exosomes are also enriched
in angiogenin, IL-6 and IL-8, all of which have been implicated in
glioma angiogenesis and increased malignancy.>°

Besides pro-angiogenic features, EMVs also inhibit angiogenesis as
they can stimulate the production of endothelial reactive oxygen spe-
cies (ROS).°® Lymphocyte-derived MVs generated after actinomycin
D treatment in vitro decrease nitrite oxide (NO) and increase ROS
production by stimulating phosphatidylinositol 3-kinase, xanthine
oxidase and nicotinamide adenine dinucleotide phosphate oxidase
pathways.”®>8 Thus, reduced NO and increased ROS productions in-
hibit angiogenesis.

5.2. Intercellular communication

EVs can transfer biomolecules to recipient cells e.g. adhesion re-
ceptors or ligands, cytokines, and genetic information, and therefore
are capable of changing the composition and function of recipient
cells. For example, PMVs can transfer the platelet fibrinogen receptor
(integrin allbB3) to cancer cells, thereby increasing the ability of the
cancer cells to adhere to ECs in vitro.°>5” One has to bear in mind,
however, that in vivo the situation may be far more complex because
such vesicles may also inhibit the interaction between cancer cells
and ECs.

Patients with stage 3 or 4 melanomas have increased levels of
phosphorylated MET, a receptor tyrosine kinase, in tumor exosomes,
and circulating bone marrow progenitor cells from these patients
also show an increased expression of phosphorylated MET compared
to cells from healthy volunteers.® In a mouse melanoma model,
tumor-derived exosomes promote tumor cell proliferation by transfer
of MET to bone marrow cells.®® Thus, tumor-derived exosomes are
likely to transfer MET and educate bone marrow progenitor cells to
support tumor growth and metastasis in vivo.

Tumor exosomes transfer mutant epidermal growth factor recep-
tor (EGFRVIII) RNA into platelets. Nilsson et al.%® showed that plate-
lets, after incubation with vesicles from EGFRvIII-positive glioma
cells, contain EGFRVIII RNA. In addition, they showed that EGFRVIII
RNA was detectable in platelets from 80% of the EGFRvIII-positive gli-
oma patients, but absent in platelets from healthy individuals. The
presence of tumor-associated messages is apparently not unique for
platelets from glioma patients, because platelets from prostate cancer
patients—but not from healthy controls—contain RNA encoding the
prostate cancer marker PCA3. However, one must bear in mind that
platelets and vesicles overlap in size (diameter), and isolation and pu-
rification of either platelets without contaminating vesicles or vesi-
cles without contaminating platelets is and will likely remain a
tremendous challenge. This may lead to misinterpretation of results
on the exact origin of certain components. Moreover, isolated vesicles
also contain DNA, which further complicates analysis and interpreta-
tion of results.

Transfer of receptors by EVs can also support intracellular signaling.
Human umbilical vein ECs produce exosomes that contain Delta-like 4
(DI14), a notch ligand that is up-regulated during angiogenesis. D114
is transferred between ECs by exosomes in vitro and in vivo, suggesting
that such exosomes are indeed capable of transferring Delta like/Notch
signaling to recipient cells.”®

5.3. Cell survival

After treatment with chemotherapeutic drugs, tumor cells release
vesicles which contain the corresponding drugs. Experiments with
cisplatin'® and doxorubicin'! on cultured resistance cancer cell lines
confirm drug accumulation and expulsion in shed vesicles. Although
these studies show that the release of vesicles may support tumor
cell survival by removing the chemotherapeutic drug, the relative
contributions of exosomes to reduce the intracellular drug concentra-
tion, however, is thought to be modest.”' Alternatively, MVs can
transfer multidrug transporters, such as P-glycoprotein (P-gp), be-
tween cells. MVs released from drug-resistant cancer cells in vitro
transfer functional P-gp to drug-sensitive cells.”> To which extent
such mechanisms contribute to drug resistance in vivo, however, is
still unknown, and there may be other mechanisms via which vesicles
contribute to tumor progression. For example, MVs from human mes-
enchymal stem cells (MSCs) enhance the survival of cisplatin-induced
acute kidney injury in a mouse model by about 80% by increasing the
expression of anti-apoptotic genes and down-regulating the expres-
sion of pro-apoptotic genes.”>

5.4. Inflammation and Immune response

EVs can affect or enhance autoimmunity and inflammation. Synovial
fluid of RA patients contains strongly coagulant and pro-inflammatory
vesicles which are mainly of leukocytic origin.>* Such EVs trigger autol-
ogous fibroblast-like synoviocytes to produce and secrete inflammatory
mediators including monocyte chemoattractant protein-1, IL-8, IL-6,
RANTES (regulated on activation, normal T cell expressed and secreted),
ICAM-1 (Intercellular Adhesion Molecule-1) and VEGF.>* Although
PMVs were also reported to be present in synovial fluid, there is no con-
sensus on this matter yet.'®”4 PMVs can also activate monocytes via the
RANTES pathway, thereby inducing monocyte migration and recruit-
ment to sites of inflammation.”®

MVs from neutrophils trigger secretion of transforming growth
factor B1, a potent inhibitor of macrophage activation, by human
macrophages, and thus elicit an anti-inflammatory activity.’® These
MVs also contain the anti-inflammatory protein annexin 1,7 and
such vesicles inhibit the inflammatory response of macrophages to
bacterial lipopolysaccharide.”®

PMVs orchestrate immune responses by delivering CD154, also
known as CD40 ligand or CD40L, to initiate and propagate the adaptive
immune response via CD4 ™ T cells.”® Also tumor-derived exosomes can
modulate the immune response by affecting the differentiation of anti-
gen presenting cells, such as dendritic cells (DCs). Differentiation of
monocytes to DCs is impaired by tumor-derived exosomes isolated
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from plasma of patients with advanced melanoma, and these exosomes
also promote the generation of a myeloid immunosuppressive cell
subset (CD14THLA-DR™°").?° In addition, exosomes from tumor
cells can also down-regulate the immune response against the tumor
by inducing apoptosis of activated T cells via the Fas/Fas ligand path-
way. Wieckowski et al.”® demonstrated that EVs from tumor cells but
not EVs from DCs isolated from sera of head and neck squamous cell
carcinoma and melanoma patients are enriched in Fas ligand. These
EVs induced the proliferation of CD4"CD25"FOXP3™" T regulatory
cells and suppressed CD8* effector T cells in vitro. The suppression ef-
fect is mediated by Fas/FasL interactions. Thus, tumor-derived vesicles
may contribute to tumor growth and development by interfering with
the anti-tumor immune response via various mechanisms.

5.5. Coagulation

Tissue factor (TF) initiates coagulation. TF is not expressed and pro-
duced by cells within the blood under physiological conditions, but is
constitutively expressed and produced by extravascular cells such as
smooth muscle cells. Under pathological conditions, however, sepsis,
ECs and monocytes, and perhaps neutrophils, can produce coagulant
TF.8%-85 Reports of the presence, cellular source and coagulant activity
of TF in blood are controversial. In 1999 Giesen et al.*® demonstrated
the presence of TF antigen and coagulation activity on monocytes, neu-
trophils, and cell-derived vesicles (also named ‘blood-borne TF) in
blood and plasma of healthy individuals. However, others showed
that the concentration of coagulation active TF either in blood or plasma
from healthy individuals does not exceed 20 fmol/1.8” Moreover, it
seems unlikely that such concentrations of vesicle-exposed coagulant
TF can be present in vivo under normal conditions because in vitro the
addition of (sub)picomolar concentrations of active TF induces the
clotting of blood or plasma within minutes.83% In fact, the presence
of detectable levels of coagulant TF in blood has been associated with in-
travascular bleeding and thrombosis. Blood from a patient with menin-
gococcal septic shock, who suffered and probably also died from
disseminated intravascular coagulation, contained a large number of
monocyte-derived vesicles exposing highly coagulant TF.*> Further-
more increased levels of coagulant TF exposed on circulating vesicles
are present in blood from cancer patients who developed venous
thromboembolism (VTE), suggesting that such vesicles may contribute
to thrombotic events in such patients. One must bear in mind that TF
can also be present in a non-coagulant form on vesicles.">3%% This is
likely to be the main form of TF in the circulating blood. In contrast, ves-
icles exposing highly coagulant TF are present in human wound blood,
where they are likely to play a physiological role in hemostasis.?*?

In contrast to blood, saliva and urine of healthy humans contain high
numbers of vesicles exposing coagulant TF. Addition of saliva shortens
the clotting time of autologous plasma and whole blood.”" EVs isolated
from saliva expose TF and initiate TF/factor VII-mediated coagulation,
illustrating that saliva and urine, but not blood, contain vesicles expos-
ing coagulant TF under physiological conditions.

MVs exposing coagulant TF have been reported in various patho-
logical conditions such as sickle cell disease (SCD), acute coronary
syndrome (ACS), essential thrombocythemia and cancer, but often
the results from such studies are difficult to compare to each other.
For example, plasma from SCD patients was reported to contain
endothelial- and monocyte-derived MVs exposing TF, and these
MVs were shown to be procoagulant.”® In contrast, we detected
only platelet and erythrocyte-derived MVs in plasma of SCD patients,
and the procoagulant state was associated with activation of factor XI
and not with extrinsic coagulation activation.®* The isolation condi-
tions of vesicles in the two studies, however, were markedly different,
and are likely to affect the results.

In most but not all studies, elevated levels of MVs of endothelial or-
igin are reported in plasma from ACS patients compared to non-ACS

patients.®>¢ To which extent these endothelial MVs contribute to the
hypercoagulable status of these patients, however, is unknown.

MVs isolated from blood of patients with essential thrombocythemia,
a chronic myeloproliferative disease that is characterized by an increased
risk of both arterial and venous thrombosis, are mostly derived from
platelets and ECs. The MVs in these patients are thought to contribute
to the hypercoagulable state that is observed in vivo.’

Plasma from patients with certain types of cancer contains higher
numbers of vesicles than plasma from healthy subjects.’ %98 Fur-
thermore, MVs exposing coagulant TF in blood of cancer patients
have been associated not only with thrombosis but also with disease
progression.'>!> Interestingly, in some cancer patients with a detect-
able level of coagulant TF present within the blood, a minor fraction of
MVs exposes the epithelial marker, MUC-1."® To which extent these
MUC-1-expressing vesicles, i.e. vesicles likely to originate from the
tumor, are exposing coagulant TF and to which extent such vesicles
are associated with development of VTE, however, remain to be de-
termined.® Furthermore, tumor cells may elicit a host response that
leads to expression of TF by monocytes and possibly ECs, and to the
shedding of MVs bearing TF. Recently, in a study comprising over
200 cancer patients, we found a subpopulation of vesicles in one pa-
tient exposing TF, VE-cadherin (CD144) and E-selectin (CD62e),
both specific markers of endothelial origin. How much TF exposed
by this subpopulation is coagulant or how TF contributes to coagula-
tion activation in vivo has not been investigated yet (A. Kleinjan, MD,
personal communication). One has to bear in mind that TF can also
induce angiogenesis and transmembrane signaling, each processes
important for cancer growth and development. To which extent
vesicle-exposed TF contributes to such functions in cancer patients
is unknown.

It is still unknown whether exosomes are coagulant. This is a rele-
vant question because most vesicles present in body fluids are within
the size range of exosomes rather than of MVs, and thus may have a
relatively large contribution to coagulation because formation of
tenase and prothrombinase complexes requires a membrane surface
which both MVs and exosomes could provide. The membrane surface
has to expose negatively charged lipids such as PS to enable the for-
mation of the coagulation factor complexes and the PS can be
detected by binding of annexin V. Heijnen et al.2° showed that only
a relatively low number of exosomes, supposed to originate from
platelets, bound annexin V. Furthermore, MVs but not exosomes
bound factor X and prothrombin in this study. This would indicate
that exosomes are not a mainly determinant in the propagation of
the coagulation process once the coagulation system has been acti-
vated. In contrast, Davila et al.’®® showed that exosomes, defined as
vesicles with a diameter of less than 100 nm, contribute to the overall
procoagulant activity of tumor cell derived vesicles. They showed that
approximately 20% of the TF coagulant activity was still present after
filtration through a 0.1 um filter, which would indicate a role for
exosomes in coagulation activation. Unfortunately, they did not in-
vestigate whether filtration enables removal of all vesicles larger
than 0.1 um, or whether larger vesicles are fragmented by such a pro-
cedure, making the distinction between exosomes and small MVs
uncertain.

5.6. Waste management

Vesicles act at two levels regarding waste management. Vesicles
can contain redundant intracellular components, thus acting as cellu-
lar waste disposal bags by their extrusion from the cell. In turn, such
vesicles may be removed from the circulation by phagocytosis by
other cells. It is tempting to speculate that EVs containing cellular
waste are especially equipped to facilitate their clearance, e.g. by ex-
posing PS, thereby becoming easy targets for phagocytes. There is ev-
idence that the spleen is involved in the clearance of MVs in vivo.!%°
Thirty minutes after injection of PS-exposing MVs from breast or
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pancreatic cancer cell lines into mice, both TF antigen and TF activity
decreased by 72% and 90%, respectively, becoming undetectable 2 h
after injection. Already 5 min after injection, the TF antigen was de-
tectable in the spleen. In contrast, in splenectomized mice most of
the human TF antigen was still detectable 30 min after injection,
and 30% of the splenectomized mice did not survive 2 h after injec-
tion. In humans, clearance of circulating vesicles exposing coagulant
TF is extremely fast and efficient. We showed that human wound
(pericardial) blood from patients undergoing open heart surgery con-
tains exceptionally high levels of coagulant TF-exposing vesicles that
trigger coagulation in vitro®' and thrombus formation in vivo.%?
When this wound blood is retransfused, the TF-coagulant activity be-
comes undetectable in peripheral blood already after 20-30 min, re-
vealing that also in humans clearance of vesicles must be very
efficient.!!

In pathological conditions, the waste management may not function
properly. This could happen because of the failure of the phagocytes
to recognize the danger signal'®'%® or because these phagocytes
are impaired (apoptotic/necrotic).'%-1% The consequence is that EVs
containing redundant and unwanted biomolecules are not rapidly
cleared from the circulation. Thus, these EVs are likely to play a role in
the pathological conditions. Monocytes are phagocytes which expose
a PS-specific receptor that recognizes PS-exposing vesicles.'®” In an in
vitro study, human monocytic leukemia cells (THP-1 cells) showed
signs of apoptosis or possibly even necrosis after incubation with
PS-exposing PMVs containing caspase 3.'°® This study supports the no-
tion that decreased clearance of vesicles from the circulation may be
detrimental.

6. Potential biomarkers and novel therapies

EVs are potential biomarkers for detection of diseases. Total num-
bers and/or numbers of certain subsets of EVs in body fluids may be
used to predict the presence of a disease, or a risk factor of developing
a disease. Recently, increased numbers of several types of EVs were
shown to increase the Framingham risk score (FRS), a risk assessment
tool to estimate a patient's 10-year risk of developing CVD.!08-110
These results are promising and imply that more prospective studies
are needed to further investigate the prognostic value of EVs in indi-
viduals at risk for CVD.

In cancer patients with VTE, the coagulant activity of TF associated
with MVs isolated from platelet-poor plasma is markedly increased
compared to the cancer patients without VTE.'*>8 These findings sug-
gest that MVs associated with coagulant TF in cancer patients may
predict thrombotic events in patients at risk of developing VTE.

EGFRVIII promotes the expression of the proangiogenic protein
IL-8 through the NF-B pathway.%? EGFRvIIl mRNA was present not
only in resected glioma tissue but also detectable in exosomes isolat-
ed from serum of 7 out of 25 glioblastoma patients.>’ Thus, measuring
EGFRVIII mRNA in vesicles may provide clinically relevant informa-
tion on tumor presence, tumor progression, and response to therapy.
Not only blood or fractions thereof, but also other body fluids may be
a useful source of vesicular biomarkers. For example, aquaporin-2, ex-
posed by exosomes isolated from urine, may be a biomarker for renal
and systemic disease.”® Exosomes isolated from urine were shown to
contain the mRNA encoding two known prostate cancer biomarkers,
PCA3 and TMPRSS2: ERG, and both mRNAs can be transferred to
platelets.%® Thus, extraction of mRNA from urine or platelets may pro-
vide a useful means for prostate cancer diagnosis.

Vesicles also offer therapeutic applications. For example, the adhe-
sion of hematopoietic stem-progenitor cells (HSPC) to the endothelium
is significantly improved in the presence of PMVs, thereby supporting
engraftment after stem cell transplantation in lethally irradiated
mice.!"" MVs derived from MSCs may provide a future (adjuvant) ther-
apy for acute renal injury!!? because intravenous administration of
MSC-derived MVs improves the recovery of glycerol induced-acute

renal injury in SCID mice.'® Exosomes from IL-10-treated immature
DCs suppress inflammatory and autoimmune responses.!' This type
of exosome may therefore become a suitable therapy for arthritis. An-
other interesting clinical application is exosome-based immunothera-
py. The initial studies by using DC-derived exosomes (“dexosomes”)
loaded with tumor peptides showed that “dexosomes” are capable of
priming cytotoxic T cells and inducing tumor rejection in mice.!!®
Dexosomes also promote NK cell activation in immunocompetent
mice and NK cell-dependent anti-tumor effects.'’> Based on these
results, clinical trials are ongoing.!'® There are several strategies to
use exosomes as a (therapeutic) vaccine. Tumor-derived exosomes
carrying tumor antigens and plasmacytoma cell-derived exosomes
may be used to induce tumor-specific immunity and thus to prevent
tumor development.'!”

7. Preparation and measurement of EVs

Despite the extensive studies on EVs, until now there are no pro-
tocols available for standardized collection, isolation and storage of
EVs. Such standardized protocols are important to be able to com-
pare results between laboratories. Despite the fact that blood is
probably our most complex body fluid, EVs present in or isolated
from blood or fractions thereof have been most extensively studied
so far. Although there are several recommendations regarding the
collection of blood with regard to EVs,!'® for other body fluids no
protocols are available. In most studies EVs have been isolated from
body fluids by differential centrifugation.>*” Differential centrifuga-
tion involves multiple sequential centrifugation steps where in each
step the centrifugal force is increased to separate smaller and less
dense components from the previous step. Another type of separa-
tion by means of centrifugation is density-gradient ultracentrifuga-
tion, which separates vesicles based on density.?*!'® Although
different types of vesicles have been distinguished based on densi-
ty,>2941 differences in density are likely too small to allow full sepa-
ration of EV species. Differential centrifugation and density-gradient
centrifugation protocols are unlikely to isolate only a single type of
vesicle. Immunoaffinity-based assays, usually coated with a specific
CD-antibody, are also used.?*'2° Theoretically, this method isolates
only one subpopulation of vesicles. Unfortunately, in daily practice
successful isolation and purification of a single population with an
acceptable recovery by this technique are usually very difficult. Ide-
ally, EVs are measured directly in freshly collected samples, but in a
clinical setting this is hardly feasible at present. When samples are
frozen and thawed before analysis, concentrations and exposure of
PS can markedly increase in samples containing PMVs.3>118

As EVs may expose one or more surface antigens of their parent
cell, the cellular origin of EVs can be assessed by using antibodies di-
rected against such cell-type specific surface antigens. Flow cytome-
try (FCM) is still commonly used to estimate the number of EVs.
Due to the fact that the refractive index of vesicles is low, only the
larger vesicles will be detected as single vesicles and the smaller ves-
icles will be detected only as a swarm.'?! Thus, FCM will underesti-
mate the number and concentration of vesicles. Although many
researchers use annexin V to identify or isolate MVs, PS exposure by
MVs is still ambiguous because exposure of PS can be due to isolation
and handling procedures such as centrifugation and storage.>*** Fur-
thermore, the binding of annexin V to MVs depends on the calcium
concentration and the membrane PS content,>*'?? and staining of
PS-exposing MVs with lactadherin, a milk fat globule-epidermal
growth factor VIII (MFG-E8), may be more sensitive to small changes
in PS exposure than annexin V.>*'?3 Because the binding of lactadherin
to PS is calcium independent, lactadherin can be used to detect PS-
exposing MVs directly in citrate- or EDTA-anticoagulated plasma
samples, whereas PS detection by annexin V is calcium dependent
and can therefore not be performed in those materials.
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Other techniques such as TEM,2%2240 capture assays?>412% and

atomic force microscopy (AFM)?>125-127 can also be used in combination
with specific antibodies. However, the specificity, affinity, and whether
the antibody tends to form aggregates, are all important considerations
in selecting the antibody of choice,!8128

As regards techniques such as NTA, and
RPS,'?! single EVs can be detected directly in body fluids or buffers.
Based on data obtained by these techniques, EVs in solution are
reported to be spherical and to have diameters ranging between 20
and 600 nm, with a mean diameter of 50 nm.?""'2>132 But again,
things are complicated. One has to keep in mind that plasma also con-
tains high concentrations of lipoprotein particles, and techniques
such as NTA or RPS cannot distinguish between EVs and lipoprotein
particles. The body fluid containing EVs, the pre-analytical conditions
of body fluid collection and sample preparation, and the methodology
used to measure the EVs all considerably influence the number and
size distribution of EVs.>>!!® Interestingly, by using AFM combined
with microfluidics, Ashcroft et al.'®> showed that the size distribu-
tions of CD41-exposing vesicles in fresh plasma before and after iso-
lation are comparable, indicating that the size distribution was
unaffected by the isolation procedure used in that study.

Recently, a novel high resolution FCM-based method was developed
to detect single exosome-sized particles based on fluorescence.
Although this methodology offers the opportunity to detect single
exosome-sized vesicles directly in solution, unbound antibody has to
be removed from vesicles using gradient centrifugation, making this
technology not or hardly useful in a clinical setting.'3¢13”

129-133 AFM125,127,134,135

8. Conclusions and future directions

The underlying mechanisms of the formation of EVs are still
largely unexplored, and the distinction or isolation of purified EV
species is still a goal to be attained. Nevertheless, the formation and
release of EVs seem to relate to cellular homeostasis by balancing
intra- and extracellular signals. Clearly, EVs are likely to contribute to
physiology and pathology. There is still no consensus on EV classifica-
tion which is likely related to the lack of sensitive methodologies on
the detection of EVs. Currently, new technologies which provide sensi-
tive detection and reliable measurements of EVs are being developed.
These new technologies as well as the preparation of EVs from body
fluids also need to be standardized to make the measurements of EVs
feasible in the clinical settings. In the near future, EVs may serve as
potential clinical biomarkers for diagnosis and prognosis, and therapy
of certain diseases.

Practice points

« All human body fluids including blood, urine, saliva, mother milk,
and cerebrospinal and synovial fluid contain surprising numbers
of extracellular vesicles (EVs) which are now thought to contribute
to both physiology and pathology.

EVs carry biomolecules such as proteins, second messengers, and
genetic information for delivery and transfer only to dedicated tar-
get cells, and therefore are capable of changing the composition and
function of target (recipient) cells.

Increased total numbers and/or numbers of certain subsets of EVs in
body fluids may be used to predict the presence of a disease, or a
risk factor of developing a disease.

EVs also offer therapeutic applications, i.e. tumor- and dendritic
cell-derived exosomes to induce tumor-specific immunity and
thus to prevent tumor development.

Research agenda

* The underlying mechanisms of the formation of EVs are still largely
unexplored.

* There is still no consensus on EV classification which is likely relat-
ed to the lack of suitable isolation/purification protocols of single
type of EVs.

» There are no protocols available for standardized collection, isola-
tion and storage of EVs.

* New technologies which allow sensitive detection and reliable
measurements of EVs also need to be standardized to make the
measurements of EVs feasible in the clinical settings.
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