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Rough set theory is an important technique in knowledge discovery in databases. In cover-
ing-based rough sets, many types of rough set models were established in recent years. In
this paper, we compare the covering-based rough sets defined by Zhu with ones defined by
Xu and Zhang. We further explore the properties and structures of these types of rough set
models. We also consider the reduction of coverings. Finally, the axiomatic systems for the
lower and upper approximations defined by Xu and Zhang are constructed.
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1. Introduction

The basic notion of rough sets and approximation spaces were proposed by Pawlak [16–20] during the early 1980s. The
rough set theory may serve as a new mathematical approach to vagueness, and has attracted the interest of researchers and
practitioners in various fields of science and technology.

In Pawlak original rough set theory, partition or equivalence (indiscernibility) relation is a primitive concept. However,
equivalence relations are too restrictive for many applications. To address this issue, many proposals have been put forward
for generalizing and interpreting rough sets. For example, rough set model is extended to arbitrary binary relations [4,9–
11,13,14,24,25,29,31–34,40] and coverings [3,6,37–39,41]. Some researchers even extended classical rough sets to fuzzy sets
[5,15,22,26–28,36], fuzzy lattices [12], Boolean algebras [21], completely distributive lattices [2] and residuated lattices [23].

Various kinds of upper approximations in covering rough sets were studied [39]. For instance, in [38], Zhu defined a new
type of covering-based rough sets from the topological view and explored the topological properties of this type of rough
sets. In [30], based on coverings, Xu and Zhang proposed another new lower and upper approximations and defined a mea-
sure of roughness with this lower and upper approximations. What connections among these approximations? In this paper,
we further explore the structures and properties of these two new rough sets. We establish the close relationship between
these two new covering-based rough sets. A further exploration may serve the purpose of bringing more insights into cov-
ering-based rough sets.

The paper is structured as follows: in Section 2, we present some definitions and properties of generalized rough sets in-
duced by binary relations and coverings. In Section 3, we study the relationship among covering-based rough sets defined by
Zhu [38], Xu and Zhang [30] and binary relation-based rough sets. In Section 4, we investigate the transformation of covering
. All rights reserved.
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and the exact sets. The transformation of coverings can be considered to be a kind reduction of covering. We also obtain the
algebraic structure of the exact sets. In Section 5, axiomatic systems for the covering-based rough sets defined by Xu and
Zhang [30] are constructed. Finally, we conclude the paper in Section 6.

2. Some relevant concepts and results

In this section, we consider fundamental properties of generalized rough sets induced by arbitrary binary relations and
coverings.

2.1. Generalized rough sets induced by arbitrary binary relations

Let U be a non-empty set of objects called the universe. U can be an infinite set, i.e., we do not restrict the universe to the
finite. Let R be an equivalence relation on U. We use U=R to denote the family of all equivalence classes of R (or classifications
of U), and ½x�R to denote an equivalence class in R containing an element x 2 U. The pair ðU;RÞ is called an approximation
space. For any X # U, we can define the lower and upper approximation of X [16,17,34] by
RX ¼ fxj½x�R # Xg and RX ¼ fxj½x�R \ X – ;g;
respectively. The pair ðRX;RXÞ is referred to as the rough set of X. The rough set ðRX;RXÞ gives rise to a description of X under
the present knowledge, i.e., the classification of U.

Much research [8,35,37] has pointed out the necessity to introduce a more general approach by considering an arbitrary
binary relation (or even an arbitrary fuzzy relation in two universes) R # U � U in the set U of objects instead of an equiv-
alence relation.

Suppose R is an arbitrary binary relation on U, the pair ðU;RÞ is called an approximation space. With respect to R, we can
define the R-left and R-right neighborhoods of an element x in U as follows:
lRðxÞ ¼ fyjy 2 U; yRxg and rRðxÞ ¼ fyjy 2 U; xRyg;
respectively. The binary relation R can be determined by its left neighborhoods and vice versa, this is also true for right
neighborhoods. The neighborhood rRðxÞ (or lRðxÞ) becomes an equivalence class containing x if R is an equivalence relation.
For an arbitrary relation R, by substituting equivalence class ½x�R with right neighborhood rRðxÞ, Yao [32–34] defined the oper-
ators R and R from PðUÞ to itself by
RX ¼ fxjrRðxÞ# Xg and RX ¼ fxjrRðxÞ \ X – ;g:
RX is called a lower approximation of X and RX an upper approximation of X. The pair ðRX;RXÞ is referred to as a generalized
rough set induced by a binary relation R. Note that the definition of the lower and upper approximations is not unique. For
example, we can use the R-left neighborhood lRðxÞ ¼ fy 2 UjyRxg to define the lower and upper approximations. With gen-
eralized rough sets induced by an arbitrary binary relation, the following properties hold [11,12,34].

Proposition 2.1. Let U be an arbitrary universal set, PðUÞ the power set of U, and R an arbitrary binary relation on U. Then the
lower and upper approximation operators satisfy the following properties:

(1) Rfxg ¼ lRðxÞ; x 2 U and RX ¼ [x2XlRðxÞ for all X 2 PðUÞ;
(2) R; ¼ ; and RU ¼ U;
(3) For any given index set I and Xi 2 PðUÞ; i 2 I;Rð[i2IXiÞ ¼ [i2IRXi, and Rð\i2IXiÞ ¼ \i2IRXi;
(4) If X;Y 2 PðUÞ and X # Y , then RX # RY and RX # RY;
(5) RX [ RY # RðX [ YÞ, and RðX \ YÞ# RX \ RY for all X;Y 2 PðUÞ;
(6) ðRXÞC ¼ RXC , and ðRXÞC ¼ RXC for all X 2 PðUÞ, where XC denotes the complement of X;
(7) R is reflexive () X # RX () RX # X for all X 2 PðUÞ;
(8) R is transitive () RRX # RX () RX # RRX for all X 2 PðUÞ;
(9) R is symmetric () ðX;RYÞ ¼ ðY;RXÞ () ½X;RY � ¼ ½Y;RX�, where ðX;YÞ and ½X;Y � denote the inner and outer products
[13] of X;Y 2 PðUÞ, respectively;
(10) Let S be another binary relation on U, then RX # SX for all X 2 PðUÞ if and only if R # S;
(11) Let S be another binary relation on U, then RX # SX for all X 2 PðUÞ if and only if R � S;
(12) Let S be another binary relation on U, then RX ¼ SX for all X 2 PðUÞ if and only if R ¼ S;
(13) Let S be another binary relation on U, then RX ¼ SX for all X 2 PðUÞ if and only if R ¼ S.

Now we consider the following two interesting subsets of PðUÞ.
G ¼ fXjX 2 PðUÞ;RX ¼ ;g
and
H ¼ fXjX ¼ RY for some Y 2 PðUÞg:
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Proposition 2.2. Let U be an arbitrary universal set, PðUÞ the power set of U, and R an arbitrary binary relation on U. Then

(1) G ¼ fXjX 2 PðUÞ;8x 2 X; lRðxÞ ¼ ;g;
(2) hG;\;[i is a completely distribute lattice. Its least element is ; and its greatest element is fxjx 2 U; lRðxÞ ¼ ;g;
(3) ; 2 H;
(4) For any given index I, if Xi 2 H; i 2 I; then [i2IXi 2 H;
(5) If R is idempotent, i.e., R2 ¼ R; then G \ H ¼ ;.
Proof.

Part (1) is a restatement of Proposition 2.1(1).
(2) By Proposition 2.1(2), R; ¼ ;, we have ; 2 G, thus G–;. For any given index I and Xi 2 G; i 2 I, since
Rð[i2IXiÞ ¼ [i2IRXi ¼ ;, we have [i2IXi 2 G. Similarly, Rð\i2IXiÞ# RXi ¼ ;, this means that \i2IXi 2 G. Thus G is a completely
distribute lattice and it has a least element ; and a greatest element fxjx 2 U; lRðxÞ ¼ ;g.
(3) ; ¼ R; 2 H.
(4) If Xi 2 H, then there exists some Yi 2 PðUÞ such that Xi ¼ RYi, and [i2IXi ¼ [i2IRYi ¼ Rð[i2IYiÞ 2 H.
(5) Suppose that X 2 G \ H, then there exists some Y 2 PðUÞ such that X ¼ RY and RX ¼ ;. Thus X ¼ RY ¼ R2Y ¼
RðRYÞ ¼ RX ¼ ;. h
2.2. Generalized rough sets induced by coverings

This subsection will recall some definitions and results about generalized rough sets induced by coverings, which can be
found in [1,30,37–39].

Definition 2.1. Let U be a universal set and C be a family of subsets of U. C is called a covering of U if none subsets in C is
empty, and [K2CK ¼ U. The order pair hU;Ci is called a covering approximation space if C is a covering of U.

Definition 2.2. Let hU;Ci be a covering approximation space, x 2 U, the minimal description of x is defined as
MdðxÞ ¼ fKjx 2 K 2 C ^ ð8S 2 C ^ x 2 S # K ) K ¼ SÞg:
Zhu [38] has given the following definition of the lower and upper approximation in a covering approximation space hU;Ci.

Definition 2.3 (See [38]). Let hU;Ci be a covering approximation space. NðxÞ ¼ \fK 2 Cjx 2 Kg is called the neighborhood of
an element x 2 U. For a subset X # U, the lower approximation of X is defined as Xþ ¼ [fK 2 CjK # Xg and the upper approx-
imation of X is defined as Xþ ¼ Xþ [ fNðxÞjx 2 X � Xþg.

For the lower and upper approximations, Zhu [38] gave a counter example to show that the dual properties do not hold
generally. That is, ðXþÞC – ðXCÞþ and ðXþÞC – ðXCÞþ. Zhu [38] also obtained another representation of the upper approxima-
tion. That is,
Xþ ¼ [x2XNðxÞ:

For a covering approximation space hU;Ci, Xu and Zhang [30] introduced new covering lower and upper approximations as
follows.

Definition 2.4 [30]. Let hU;Ci be a covering approximation space. For any X # U, the lower and upper approximation of X are
defined as follows:
C�X ¼ fx 2 Ujð\MdðxÞÞ# Xg and C�X ¼ fx 2 Ujð\MdðxÞÞ \ X – ;g;
we can verify that \MdðxÞ ¼ \fK 2 Cjx 2 Kg ¼ NðxÞ, thus C�X and C�X can be rewritten as
C�X ¼ fxjNðxÞ# Xg and C�X ¼ fxjNðxÞ \ X – ;g:
Unlike the lower and upper approximations defined by Zhu [38], the operators C�;C
� are dual to each other. An interesting

question is what connections between these two approximations? Next we will establish the connections and answer the
question.
3. Relationships between Xþ and C�X

This section studies the relationship between the upper approximation Xþ defined by Zhu [38] and C�X defined by Xu and
Zhang [30]. By using the neighborhood NðxÞ of an element x 2 U, we construct a binary relation R on U as follows:
xRy if and only if y 2 NðxÞ: ð1Þ
That is, for x 2 U;R-right neighborhood rRðxÞ ¼ NðxÞ.
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Theorem 3.1. If R is the binary relation on U as defined in above formula (1), then

(1) R is reflexive and transitive;
(2) C�X ¼ RX and C�X ¼ RX for all X # U;
(3) Conversely, for each reflexive and transitive binary relation R on U, there exists a covering approximation space hU;Ci such
that RX ¼ C�X and RX ¼ C�X for all X # U.
Proof.

(1) By definition, x 2 NðxÞ ¼ \fK 2 Cjx 2 Kg, thus R is reflexive. We now prove that R is transitive. Suppose that xRy and
yRz. Then y 2 NðxÞ and z 2 NðyÞ. This, in turn, implies that NðyÞ# NðxÞ and NðzÞ# NðyÞ. Thus z 2 NðxÞ and xRz, we are done.
(2) The proof of follows from the definitions of R;C�X and C�X.
(3) By using the reflexive and transitive binary relation R on U, we define C ¼ frRðxÞjx 2 Ug. Since R is reflexive, we have
x 2 rRðxÞ and [x2UrRðxÞ ¼ U, thus C is a covering of U. Now we prove that, for this covering, 8x 2 U;NðxÞ ¼ rRðxÞ.

Since R is transitive, we obtain that if x 2 rRðyÞ, then rRðxÞ# rRðyÞ. Since R is reflexive, we have
NðxÞ ¼ \fK 2 Cjx 2 Kg ¼ \frRðyÞjx 2 rRðyÞg ¼ rRðxÞ;
thus C�X ¼ fxjNðxÞ \ X–;g ¼ fxjrRðxÞ \ X–;g ¼ RX: Similarly, RX ¼ C�X. h

Theorem 3.1 shows that if hU;Ci is a covering approximation space, then hU; Ci can be used to construct a reflexive and
transitive relation R on U such that C�X ¼ RX and C�X ¼ RX. Conversely, a reflexive and transitive relation R on U can also
induce a covering approximation space hU;Ci such that RX ¼ C�X and RX ¼ C�X. However, we do not guarantee that R is sym-
metric, this can be seen from the following counter example.

Example 3.1. Let U ¼ f1;2;3;4g be the universal set. K1 ¼ f1g;K2 ¼ f1;2g, K3 ¼ f1;2;3g and K4 ¼ U. C ¼ fK1;K2;K3;K4g is
a covering. rRð1Þ ¼ f1g, rRð2Þ ¼ f1;2g; rRð3Þ ¼ f1;2;3g and rRð4Þ ¼ U. Note that ð3;2Þ 2 R, but ð2;3Þ R R. This shows that R is
not a symmetric relation on U.

Zhu has considered the properties of the unary coverings. Recall that a covering C of U is called unary if jMdðxÞj ¼ 1 for all
x 2 U. The following corollary establishes a one to one correspondence between unary coverings and reflexive and transitive
binary relations.

Corollary 3.1. Suppose that C is a unary covering of U, then there exists some reflexive and transitive binary relation R on U such
that MdðxÞ ¼ frRðxÞg, where rRðxÞ is the R-right neighborhood of an element x in U. Conversely, if R is a reflexive and transitive
binary relation on U, then C ¼ frRðxÞg is a unary covering of U and MdðxÞ ¼ frRðxÞg for all x 2 U.

Proof. If C is unary, by Theorem 3.1(1), we have a reflexive and transitive binary relation R on U such that
MdðxÞ ¼ fNðxÞg ¼ frRðxÞg. Conversely, if R is a reflexive and transitive binary relation on U. By the reflexive property of R,
C is a covering of U. Since R is transitive, x 2 rRðyÞ implies rRðxÞ# rðyÞ. Therefore, MdðxÞ ¼ frRðxÞg and jMdðxÞj ¼ 1 for all
x 2 U. h

From the covering approximation spaces, we can find that when C is a partition, C� and C� will be the Pawlak lower and
upper approximations. However, we can also find that when C is not a partition, C� and C� may be the Pawlak lower and
upper approximations. We give such an example as follows.

Example 3.2. Let U ¼ fa; b; c; d; eg be a universal set, K1 ¼ fa; bg;K2 ¼ fc; dg;K3 ¼ fd; eg and K4 ¼ fc; eg. C ¼ fK1;K2;K3;K4g
is a covering of U. By direct computation, NðaÞ ¼ NðbÞ ¼ fa; bg;NðcÞ ¼ fcg;NðdÞ ¼ fdg, and NðeÞ ¼ feg. fNðaÞ;NðcÞ;NðdÞ;NðeÞg
is a partition of U. For covering C, C� and C� are the Pawlak lower and upper approximations.

More generally, for covering C, we ask whether C� and C� are Pawlak lower and upper approximations. We will consider
the problem.

Theorem 3.2. Let hU;Ci be a covering approximation space. then C� and C� are the Pawlak lower and upper approximations if and
only if fNðxÞjx 2 Ug is a partition of U.

Proof. By Theorem 3.1(2), C�X ¼ RX and C�X ¼ RX. RX and RX are the Pawlak lower and upper approximations if and only if R
is an equivalence relation on U. This means that fNðxÞjx 2 Ug is a partition of U. h

Recall that an operation on a relation R on U is the formation of the inverse, usually written R�1. The relation R�1 is a rela-
tion on U defined by
yR�1x if and only if xRy:
It is easy to verify that lR�1 ðxÞ ¼ rRðxÞ and rR�1 ðxÞ ¼ lRðxÞ for all x 2 U. The following theorem presents the relationship be-
tween the upper approximations Xþ and C�X.
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Theorem 3.3. Let hU;Ci be a covering approximation space and R be a binary relation on U as defined in above formula (1). Then

(1) C�X ¼ RX for all X # U;
(2) Xþ ¼ R�1X for all X # U;
(3) C�X ¼ [x2XlRðxÞ and Xþ ¼ [x2XrRðxÞ for all X # U;
(4) If C�X ¼ Xþ for all X # U, then R is an equivalence relation on U, therefore, C�X and Xþ are Pawlak rough set upper
approximations.
Proof.

Part (1) is the restatement of Theorem 3.1(1).
(2) We note that the R�1-right neighborhood rRðxÞ coincides with the R-left neighborhood lRðxÞ for all x 2 U and vice versa.
By substituting R with R�1 in Proposition 2.1(1), we obtain R�1X ¼ [x2XrRðxÞ. Comparing R�1X ¼ [x2XrRðxÞ with
Xþ ¼ [x2XNðxÞ, we have Xþ ¼ R�1X.
(3) C�X ¼ RX ¼ [x2XlRðxÞ, and Xþ ¼ R�1X ¼ [x2XlR�1 ðxÞ ¼ [x2XrRðxÞ.
(4) If C�X ¼ Xþ for all X # U, then RX ¼ R�1X, by Proposition 2.1(12), R ¼ R�1 and R is symmetric. By Theorem 3.1, R is also
reflexive and transitive. Thus R is an equivalence relation on U. h
4. Transformation of coverings and the exact sets

The concept of reduction of coverings is introduced by Zhu and Wang [37]. In this section, we consider two problems: One
is transformation of coverings and the other is the algebraic structure of all exact sets.

Here we propose the concept of transformation of coverings. We will show that the transformation of coverings makes
the upper approximations Xþ;C�X and the lower approximation C�X to be invariant. For these aims, we first give an example
of transformation of coverings.

Example 4.1. Let U ¼ fa; b; c; dg;K1 ¼ fa; bg;K2 ¼ fa; cg;K3 ¼ fa; dg;K4 ¼ fb; cg, and C ¼ fK1;K2;K3;K4g is a covering of U. It
is easily to verify that NðaÞ ¼ fag;NðbÞ ¼ fbg;NðcÞ ¼ fcg and NðdÞ ¼ fa; dg. C0 ¼ fNðaÞ;NðbÞ;NðcÞ;NðdÞg is also a covering of U.
Moreover, C and C0 generate the same upper approximations Xþ;C�X and the lower approximation C�X for all X # U.

Let CðUÞ denote the set of all coverings of U, we define the transformation F from CðUÞ to CðUÞ as follows.
F : CðUÞ ! CðUÞ; FðCÞ ¼ C0 ¼ fNðxÞjx 2 Ug: ð2Þ
Lemma 4.1. If F : CðUÞ ! CðUÞ is the transformation as defined in above formula (2), then FðFðCÞÞ ¼ FðCÞ.

Proof. For any covering C of U, since x 2 NðxÞ;C0 is a covering of U and F, indeed, is a transformation from CðUÞ to CðUÞ. Recall
that a binary relation R on U has defined in Section 3:
xRy if and only if y 2 NðxÞ:
Denote NðxÞ ¼ \fK 2 Cjx 2 Kg and N0ðxÞ ¼ \fK 2 C0jx 2 Kg. We now prove NðxÞ ¼ N0ðxÞ. Since R is reflexive and transitive, we
have
N0ðxÞ ¼ \fK 2 C0jx 2 Kg ¼ \frðyÞjx 2 rRðyÞg ¼ rRðxÞ ¼ NðxÞ:
Thus FðFðCÞÞ ¼ FðC0Þ ¼ fN0ðxÞjx 2 Ug ¼ fNðxÞjx 2 Ug ¼ FðCÞ. h

Corollary 4.1. If a covering C is unary, then FðCÞ ¼ fMdðxÞjx 2 Ug.
The FðCÞ ¼ C0 can be seen as a kind of reduction of C. More generally, we have the following result.

Theorem 4.1. Let hU;Ci be a covering approximation space. Then C and FðCÞ ¼ C0 ¼ fNðxÞjx 2 Ug generate the same upper approx-
imations Xþ;C�X and the lower approximation C�X for all X # U. That is, C�;C

� and Xþ are invariant under the transformation F.

Proof. By Lemma 4.1, the upper approximations Xþ; C�X and the lower approximation C�X are defined by NðxÞ. Since NðxÞ is
invariable under the transformation F. Thus C and FðCÞ generate the same upper approximations Xþ;C�X and the lower
approximation C�X for all X # U. h

However, in the process of transformation of coverings, since Xþ is not defined by NðxÞ, we cannot guarantee that Xþ is
invariant. The counter example as follows.

Example 4.2. Let U ¼ fa; b; cg be a universal set, K1 ¼ fa; bg;K2 ¼ fb; cg and K3 ¼ fa; cg. Then C ¼ fK1;K2;K3g is a covering of
U. By direct computation, NðaÞ ¼ fag;NðbÞ ¼ fbg;NðcÞ ¼ fcg and C0 ¼ fNðaÞ;NðbÞ;NðcÞg. Suppose X ¼ fag, for covering
C;Xþ ¼ ;, but for covering C0;Xþ ¼ fag.
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In covering rough sets, when C�X ¼ C�X, we say that X is an exact set. This section investigates the exact sets for a covering
approximation space hU;Ci. Consider the set of all exact sets
T ¼ fXjX 2 PðUÞ;C�X ¼ C�Xg:
We prove that T is a Boolean algebra.

Theorem 4.2. Let hU;Ci be a covering approximation space. T ¼ fXjX 2 PðUÞ;C�X ¼ C�Xg, then hT;\;[;C ;U; ;i is a Boolean
algebra (the Boolean subalgebra of PðUÞ).

Proof. Since ; ¼ C�; ¼ C�;, we have ; 2 T . Similarly, U 2 T. If X 2 T , then C�X ¼ C�X, by Theorem 3.1, RX ¼ RX. Thus
ðRXÞC ¼ ðRXÞC , that is, RXC ¼ RXC . This implies C�X

C ¼ C�XC and XC 2 T.
We prove that if X;Y 2 T , then X [ Y 2 T . Suppose that X;Y 2 T , then C�ðX [ YÞ ¼ C�ðXÞ [ C�ðYÞ ¼ X [ Y . Since X # X [ Y

implies C�ðXÞ# C�ðX [ YÞ, we have X ¼ C�ðXÞ# C�ðX [ YÞ. Similarly, Y # C�ðX [ YÞ. Thus X [ Y # C�ðX [ YÞ# X [ Y and
X [ Y 2 T .

Similarly, we can prove that if X;Y 2 T , then X \ Y 2 T . Thus T is a Boolean algebra. This completes the proof. h

Lemma 4.2. Let hU;Ci be a covering approximation space. Then for any given index set I,

(1) C�ð[i2IC�XiÞ ¼ [i2IC�Xi;
(2) C�ð\i2IC

�XiÞ ¼ \i2IC
�Xi.
Proof.

(1) It is clear that C�ð[i2IC�XiÞ#[i2IC�Xi. We only need to prove [i2IC�Xi # C�ð[i2IC�XiÞ. For x 2 [i2IC�Xi, then 9i 2 I such
that x 2 C�Xi. Since C�ðC�XiÞ ¼ C�Xi, this implies x 2 C�ðC�XiÞ. By the definition of operator C�;NðxÞ# C�Xi #[i2IC�Xi. Thus
x 2 C�ð[i2IC�XiÞ. This means [i2IC�Xi # C�ð[i2IC�XiÞ and C�ð[i2IC�XiÞ ¼ [i2IC�Xi.
(2) By duality, the proof of part (2) is analogous to that of part (1). h
Theorem 4.3. Let hU; Ci be a covering approximation space. S ¼ fXjX 2 PðUÞ;C�X ¼ Xg, then hS;\;[;U; ;i is a completely distrib-
ute lattice.

Proof. It is clear that ;;U 2 S. For any given index I and Xi 2 S, we first prove \i2IXi 2 S. Since C�ð\i2IXiÞ ¼ \i2IC�Xi ¼ \i2IXi, we
have \i2IXi 2 S. By Lemma 4.1, [i2IXi 2 S. Thus hS;\;[;C ;U; ;i is a completely distribute lattices. h

Theorem 4.4. Let hU;Ci be a covering approximation space. W ¼ fXjX 2 PðUÞ; C�X ¼ Xg, then hW ;\;[;U; ;i is a completely dis-
tribute lattice.

Proof. The proof is analogous to that of Theorem 4.3. h

In Pawlak rough sets, for any subset X # U;RX ¼ X can imply RX ¼ X and vice versa. However, C�X ¼ X cannot imply C�X ¼ X.
This can be seen from the following example.

Example 4.3. Let U ¼ fa; b; c; dg be a universal set. K1 ¼ fa; b; dg;K2 ¼ fbg, K3 ¼ fcg and K4 ¼ fdg. Then C ¼ fK1;K2;K3;K4g
is a covering of U. Suppose that X ¼ fa; b; cg, by direct computation, RX ¼ X. But C�X ¼ fb; cg – X.

It is clear that sets S; T and W have the following properties:

(1) If X 2W , then XC 2 S and vice versa;
(2) T ¼ S \W .
Example 4.4. Let U ¼ fa; b; c; dg be a universal set. K1 ¼ fa; b; cg;K2 ¼ fb; cg, K3 ¼ fcg and K4 ¼ fdg. Then C ¼ fK1;K2;K3;K4g
is a covering of U. Moreover, W ¼ f;;U; fag; fdg; fa; bg; fa; dg; fa; b; cg; fa; b; dgg, S ¼ f;;U; fb; c; dg; fa; b; cg; fc; dg; fb; cg;
fdg; fcgg and T ¼ f;;U; fdg; fa; b; cgg.
5. Axiomatization of the operators C� and C�

Axiomatic approach is significant in rough set theory, the axiomatic approach aims to study the logical characters of
rough sets, which may help to develop methods for application. Zhu [38] gave the axiomatic systems for lower approxima-
tion Xþ and upper approximation Xþ. This section presents the axiomatic systems for the operators C� and C�.
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Theorem 5.1. Let U be a universal set and PðUÞ be the power set of U. If an operator H : PðUÞ ! PðUÞ satisfies the following
properties:

(1) Hð;Þ ¼ ;;
(2) For any index set I and Xi 2 PðUÞ; i 2 I;Hð[i2IXiÞ ¼ [i2IHðXiÞ;
(3) X [ HðHðXÞÞ ¼ HðXÞ.

Then there exists some covering C of U such that C� ¼ H.

Proof. By Theorem 1 in Kondo [8], axioms (1) and (2) guarantee that there exists some binary relation R on U such that
HðXÞ ¼ RX for all X # U. Since axiom X [ HðHðXÞÞ ¼ HðXÞ is equivalent to X # HðXÞ and HðHðXÞÞ# HðXÞ. This, in turn, implies
that R is reflexive and transitive. Consider
C ¼ frRðxÞjx 2 Ug;
where rRðxÞ ¼ fyjxRyg. It is obvious that C is a covering of U. Now we prove C� ¼ H. Since R is reflexive and transitive,
MdðxÞ ¼ frRðxÞg. According to the definition of C�, C�X ¼ RX ¼ HðXÞ. Thus C� ¼ H. h

For the covering lower approximation, we have the following dual result.

Theorem 5.2. Let U be a universal set and PðUÞ be the power set of U. If an operator L : PðUÞ ! PðUÞ satisfies the following
properties:

(1) LðUÞ ¼ U;
(2) For any index set I and Xi 2 PðUÞ; i 2 I; Lð\i2IXiÞ ¼ \i2ILðXiÞ;
(3) X \ LðLðXÞÞ ¼ LðXÞ.

Then there exists some covering C of U such that C� ¼ L.
Recall that in a topological space U [7], a closure operator on U is an operator which assigns to each X # U a subset cðXÞ of

U such that the following four statements are true. (1) cð;Þ ¼ ;, (2) For each X # U;X # cðXÞ, (3) For each X # U; cðcðXÞÞ ¼ cðXÞ
and (4) For each X # U and Y # U, cðX [ YÞ ¼ cðXÞ [ cðYÞ. Duality, an interior operator on U is an operator which assigns to
each X # U a subset iðXÞ of U such that the following four statements are true. (1) iðUÞ ¼ U, (2) For each X # U; iðXÞ# X, (3) For
each X # U; iðiðXÞÞ ¼ iðXÞ and (4) For each X # U and Y # U, iðX \ YÞ ¼ iðXÞ \ iðYÞ. From Theorems 4.1 and 4.2 the following
holds. h

Corollary 5.1. Let hU; Ci be a covering approximation space. Then C� is an interior operator and C� a closure one.

Note that if U is a finite universal set, by Theorems 4.1 and 4.2, a closure operator (or an interior one) f : PðUÞ ! PðUÞ can
be generated by C� (or C�) for some covering of U. However, if U is an infinite universal set, by Kondo [8], there exists some
closure operator f : PðUÞ ! PðUÞ such that f cannot generated by C� for any covering C of U. That is, f –C� for any covering C of
U. The reason is that, in a topological space, the union of the infinite closed sets may be not a closed set.
6. Conclusions

In [38], Zhu defined a new type of covering rough sets. In [30], Xu and Zhang defined another new type of covering rough
sets. Naturally, an important and interesting problem is to establish the connection between these two new type of covering
rough sets. This paper considered the problem. Thus this paper can be seen as the further exploration for these two new
types of covering rough sets.

By using rough sets induced by binary relations, we established the relationship between covering rough sets defined by
Zhu [38] and covering rough sets defined by Xu and Zhang [30]. We proposed a new concept of reduction of coverings. We
also proved that the set of all exact sets for covering rough sets defined by Xu and Zhang is a Boolean algebra. Finally, the
axiomatic systems for the lower and upper approximations defined by Xu and Zhang are constructed.
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