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a b s t r a c t

Most previous studies on soil microbial communities have been focused on species abundance and
diversity, but not the interactions among species. In present study, the Molecular Ecological Network
Analysis tool was used to study the interactions and network organizations of fungal communities in
yield-invigorating (healthy) and -debilitating (diseased) soils induced by prolonged potato monoculture,
based on the relative abundances of internal transcribed spacer sequences derived using pyrosequencing.
An emphasis was placed on the differences between the healthy and diseased networks. The constructed
healthy and diseased networks both showed scale-free, small world and modular properties. The key
topological properties and phylogenetic composition of the two networks were similar. However, major
differences included: a) the healthy network had more number of functionally interrelated operational
taxonomic units (OTUs) than the diseased one; b) healthy network contained 6 (4%) generalist OTUs
whereas the diseased contained only 1 (0.6%) marginal generalist OTU; and c) majority (55%) of OTUs in
healthy soils were stimulated by a certain set of soil variables but the majorities (63%) in diseased soils
were inhibited. Based on these data, a conceptual picture was synthesized: a healthy community was a
better organized or a better operated community than the diseased one; a healthy soil was a soil with
variables that encouraged majority of fungi whereas a diseased soil discouraged. By comparing the to-
pological roles of different sets of shared OTUs between healthy and diseased networks, it was found that
role-shifts prevailed among the network members such as generalists/specialists, significant module
memberships and the OTU sets irresponsive to soil variables in one network but responsive in the
counterpart network. Soil organic matter was the key variable associated with healthy community,
whereas ammonium nitrogen (NH4

þeN) and Electrical conductivity (EC) were the key variables associ-
ated with diseased community. Major affected phylogenetic groups were Sordariales and Hypocreales.

� 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY license.
1. Introduction

In most natural environments such as soils, individual organ-
isms do not live in isolation but rather form a complex system of
inter-species interactions that, to a large extent, determine the
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structure of an ecological community (Freilich et al., 2010), and
consequently the function of the ecosystem (Fuhrman, 2009).
However, interactions and the resulting ecological functions are
usually difficult to elucidate, especially for soils. Furthermore, most
previous analytical techniques can be used to describe community
composition, diversity and their changes across space, time, or
experimental treatments, but cannot be used to reveal interactions
among community members, which could be more important to
ecosystem functioning than abundance and diversity, especially in
complex ecosystems (Deng et al., 2012).

Network analysis is proven to be a powerful tool in revealing the
interactions among entities in a system, such as individuals in a
school (Moody, 2001), species in food webs (Krause et al., 2003;
Woodward et al., 2012), nodes on a computer network (Pastor-
Satorras and Vespignani, 2001; Volchenkov et al., 2002), proteins
.
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in metabolic pathways (Brohée et al., 2008; Guimera and Amaral,
2005), and genes in regulatory networks (Crombach and
Hogeweg, 2008). Yet, until recently, researchers begun to use this
tool to study complex microbial ecological systems such as marine
bacterioplankton (Gilbert et al., 2012), global environments in 16S
rRNA dataset (Chaffron et al., 2010), fully sequenced bacterial spe-
cies (Freilich et al., 2010), dental biofilm (Duran-Pinedo et al., 2011),
human microbiome (Faust et al., 2012; Greenblum et al., 2012),
bacterial communities in variety of soil samples (Barberan et al.,
2012), and the communities in soils influenced by elevated CO2
(Deng et al., 2012; Zhou et al., 2010, 2011). Despite its pitfalls (Faust
and Raes, 2012), the power and usefulness of network analysis in
revealing new information on community member interactions,
community organizations, keystone organisms, and their responses
to environmental factors that cannot be revealed by routine
analytical techniques is unequivocally demonstrated. For example,
Zhou et al. (2011) demonstrated that Actinobacteria were the
keystone bacteria connecting different co-expressed OTUs and
were significantly correlated with selected soil variables. Similarly,
Faust et al. (2012) predicted novel interactions involving members
of under-characterized phyla, providing valuable information on
further co-culturing of these organisms. Further, Duran-Pinedo
et al. (2011) were even able to identify a helper bacterium suc-
cessfully helping an uncultured bacterium to show up in petri
dishes. Network analysis probably represents a new direction in
microbial ecology research (Zhou et al., 2011).

Crop monoculture has long been considered un-sustainable as it
often leads to yield decline (Shipton, 1977). The yield decline usu-
ally occurs after two or three years of monoculture (as in this
study), depending on crops, number of years and soil, and is usually
attributed to the increase of yield-debilitating populations and
switches of underground microbial communities (van Elsas et al.,
2002). However, to date, the questions, such as what species
compose yield-debilitating soil microbial community, how a yield-
invigorating community is shifted to a yield-debilitating one, and
what are the key soil factors responsible for the shift remain un-
clear. By farmers’ term, the soils under limited length of mono-
culture (2e3 years) still producing sound yields are called “healthy”
soils whereas those under prolonged monoculture producing un-
acceptably low yields are called “diseased” soils. Because the
farmers’ terms “healthy” and “diseased” are simpler than yield-
invigorating and yield-debilitating respectively, they are adopted
hereafter for concise purpose.

The purpose of present study is to address these questions by a
network analysis approach, using the “healthy” and “diseased” soils
induced by prolonged potato monoculture as model soils. It has
long been recognized that the yield decline under prolonged
monoculture is associated with soilborne pathogens (Shipton,
1977), many of which are fungi (Fiers et al., 2012). In present
study, major potato diseases found in field included fusarium dry
rots, late bright and black scurf/stem canker that are associated
with Fusarium sps., Phytophthora infestans, Rhizoctonia solani
respectively, all of which are soilborne fungal pathogens (Fiers
et al., 2012). Soil fungal community is thus the focus of present
study. We hypothesized that a healthy community is likely to be
better organized or better operated than a diseased community
with respect to network organization and keystone organisms.

2. Materials and methods

2.1. Field experiment description

The experimental sites were located in Tiaoshan Farm (103�330e
104�430E, 36�430e37�380N), Gansu Province, China. It is a warm
terrestrial arid area, with amean annual temperature 9.1 �C, a mean
annual precipitation 185.6 mm, and a mean annul evaporation
capacity 1722.8 mm. Mean annual frost-free days are 141 days,
sustaining only a single crop (corn or potato) per year. The soil
contains 10.1 g kg�1 organic matter, 0. 71 g kg�1 total N, 66 mg kg�1

alkaline hydrolyzable N, 14 mg kg�1 Olesen-P, and 193 mg kg�1

extractable K, with pH 8.08 (5:1water to soil ratio).
Field experiment began in 2005 on fields under corn-potato

rotations and was designed to collect year-series soil samples in
the year 2011. For this, the field was divided into 21 plots, each
being 9 � 6.1 m in size. Three plots were randomly selected each
year for potato monoculture, leaving other plots to continue corn-
potato rotation. The selection was done in such a way that the
previous crop of selected plots was always corn. After 7 years (by
year 2011), 21 plots in total were used up (3 replicates � 7 years).
This experiment design provides opportunity to collect soil samples
after culturing mono-crop from 1 to 7 years simultaneously.

Potato was typically seeded on April 25 every year with a few
days variation. Seed pieces (Atlantic cultivar, provided by Tiaoshan
Farm)were buried on the top of raised paths (w40 cm in height and
135 cm in bottom width) at 17 cm in between-plant space. Two
lines were planted on each raised path with 70 cm in between-line
space, resulting in a plant density at 84,075 plants ha�1. Blended
fertilizer (15-15-15) additionally supplemented with urea and
K2SO4 was used at the rate of 210 kg N ha�1, with the ratio
N:P2O5:K2O at 1.4:1.0:2.0. Nitrogen form in blended fertilizer is
(NH4)2SO4. All fertilizers were applied at the time of seeding by
machine. Once seeded and fertilized, the raised paths were covered
with plastic film. The field was irrigated three times during growth
period, typically on June 1 (seedling stage), July 1 (early flowering
stage) and July 20 (tuber enlargement stage), at the rate of
2700 t ha�1 each time. Potato was harvested in late August.

2.2. Soil sampling, variable measurements and grouping

Soil samples were collected in 2011 from 18 plots. The plots set
up for potato monoculture in 2007 (5 years) were not sampled.
From each plot, 15 sites were randomly sampled for 0e20 cm layer
soils and well mixed. Totally 18 samples were obtained. Samples
were put into sterile plastic bags, placed into ice box, transferred
to laboratory and used as soon as possible, or stored in a refrig-
erator at �80 �C if not immediately used. Selected soil variables
included organic matter (OM, by dichromate oxidation), total ni-
trogen (TN, by total Kjeldahl N), NH4

þeN, NO3
�eN (by 1 M KCl

extraction), pH and electrical conductivity (EC) (both at 5:1 water
soil ratio).

The yield decline typically started at the fourth year and the
yield records of recent two years are shown in Fig. S1. The yields in
first three years were more or less the same (with yearly variations)
and are within the yield range of local farmers who practice rota-
tions (30e40 t ha�1). A sudden decline occurred at the fourth year
and thereafter, which is far below the yield range of local farmers.
Based on these results, soil samples were put into two groups, one
including the first year, the second year and the third year samples
(9 in total), which was herein termed as “healthy” group, and
another including the fourth year, the sixth year and the seventh
year samples (9 in total) termed as “diseased” group. This grouping
allowed us to construct and compare networks between healthy
and diseased fungal communities. Soil variables and their statistics
based on such grouping are shown in Table S1.

2.3. DNA extraction, amplification, sequencing and sequence
treatment

For each soil sample, bulk DNA was extracted in triplicate
from 0.5 g of soils (dry weight basis) with a FastDNA SPIN Kit for
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Soil (Bio 101, Carlsbad, Calif.) following the manufacturer’s in-
structions. The triplicate DNA samples were pooled together, and
thus 18 DNA samples represent 18 soil plots. The integrity of the
extracted DNA was confirmed by running on 0.8% agarose gel
with 0.5 TBE buffer (45 mM Tris-borate, 1 mM EDTA, pH 8.0).
The extracted DNA (as well as PCR products) was quantified
using TBS-380 Mini-Fluorometer (Turner Biosystems, CA, USA).
All DNA samples were diluted to 100 ng ml�1 and used as PCR
templates.

Primer pair ITS2 (50-GCTGCGTTCTTCATCGATGC-30) and ITS5 (50-
GGAAGTAAAAGTCGTAACAAGG-30) (Bellemain et al., 2010) was
used for amplifying the internal transcribed spacer (ITS) region 1
(ITS1, w180 bp in full length). This region is a universal DNA bar-
code marker for fungi (Schoch et al., 2012) and has been widely
used to characterize soil fungal communities (O’Brien et al., 2005;
Buée et al., 2009; Tedersoo et al., 2010) as well as for species
identification (Abarenkov et al., 2010). Besides, these primers had
least bias as well (Bellemain et al., 2010). Primer ITS2 anchors at the
highly conserved 18S rRNA gene upstream of ITS1 region and
primer ITS5 at the intercalary 5.8S rRNA gene downstream.
TransGen AP221 kit with TransStart Fastpfu DNA polymerase
(TransGen Biotech, Beijing, China) was used for PCR under the
following condition: 95 �C 2 min, 30 cycles: 95 �C 30 s, 55 �C 30 s,
72 �C 30 s; 72 �C 5 min; 10 �C forever. A second round of PCR was
performed under the same conditions using Amplicon Fusion
Primers as 50-A-x-IST2-30 and 50-B-ITS5-30, where A and B represent
the pyrosequencing adaptors (CCATCTCATCCCTGCGTGTCTCCGAC-
GACT and CCTATCCCCTGTGTGCCTTGGCAGTCGACT) and x repre-
sents an 8 bp-tag for the sample identification. For each sample,
three independent PCRs were performed. The triplicate products
were pooled in equal amounts and purified using AxyPrep PCR
Clean-up Kit (Axygen Biosciences, CA, USA). The purified PCR
products from different soil samples contained 1.50w 4.64 ng ml�1

DNA andwere pooled in equal quantities for pyrosequencing in one
run, which was performed commercially at Shanghai Majorbio Bio-
pharm Biotechnology Co., Ltd., on a Roche GS 454 FLX platform
(http://www.majorbio.com). Sequences were submitted to DDBJ
database under the accession number DRA000962.

Sequence treatment follows the established procedures
described by Jumpponen and Jones (2009) and Jumpponen et al.
(2010), with modifications of using a few other software pack-
ages. First, for quality control, sequences containing no valid
sequencing primer ITS2 (allowing 2 mismatches) and no source
tag were removed using the trim.seqs script in MOTHUR v. 1.29.2
(Schloss et al., 2009). This program was also used to bin se-
quences to each sample based on source tags when samples
were treated separately. Second, the residue sequences from the
highly conserved 18S and 5.8S genes that flank the ITS1 marker
were removed using Fungal ITS Extractor 1.1 (Nilsson et al.,
2010), as the presence of these fragments may distort
sequence clustering and similarity searches (Tedersoo et al.,
2010). Tags and adaptor A and B were also removed using this
software. After this step, only ITS1 region sequences remained
for further analyses. Third, sequences were filtered again using
MOTHUR to remove the sequences shorter than 100 bp. Fourth,
the sequences were aligned with CAP3 (Huang and Madan, 1999)
and the operational taxonomic units (OTUs) were assigned at
97% identity level using a minimum overlap of 100 bp, with
other parameters left at defaults. Last, the OTU sequences were
searched against NCBI database using BLAST to assign their
phylogenetic associations. On average, 12,266 reads per sample
were obtained, and after filtering 9136 high-quality sequences
per sample were left. Total number of OTUs assigned to healthy
and diseased soils was 181 and 210 respectively. The OTU
abundances were normalized into relative abundances (RA, %
in present study). All undetected/missing values were set to
zero.

2.4. Network analysis

Network analysis was performed using the Molecular Ecolog-
ical Network Analyses Pipeline (http://ieg2.ou.edu/MENA/main.
cgi). More information on theories, algorithms, pipeline struc-
ture and procedures can be found in references (Deng et al., 2012;
Zhou et al., 2010, 2011). Major practical steps are described as
follows. First, an RA matrix, a matrix of soil variable and an OTU
annotation file were prepared in the formats as guided in the
pipeline. Second, the RA matrix was submitted for network con-
struction. Using default settings, a cutoff value (similarity
threshold, st) for the similarity matrix was automatically gener-
ated. A link between a pair of OTUs is assigned when the corre-
lation between their RAs exceeds this threshold value. Third,
calculations on “global network properties”, the “individual
nodes’ centrality”, and the “module separation and modularity”
were performed. A module (or a cluster) is a group of nodes more
densely connected to each other than to nodes outside the group.
Modularity is a value measuring how well a network is divided
into modules. Fourth, the “output for Cytoscape visualization”was
run by choosing “greedy modularity optimization mode”. Three
files were generated for network graph visualization. Detail uses
of Cytoscape can be found elsewhere (Shannon et al., 2003). Fifth,
the “randomize the network structure and then calculate
network” was run. Properties of random and empirical networks
were compared. Sixth, the gene/OTU significances (GS) with
environmental traits were calculated. A table showing significance
values of each OTU against each soil variable was downloadable.
Mantel test to correlate GS and network connectivity was run
after the soil variable matrix was uploaded and the option of
Euclidean distance was selected. The correlation coefficient and
the significance between network connectivity and GS of soil
variables were shown. Options are available for selecting different
combinations of soil variables and phylogeny level of OTUs in the
annotation file. In present study, all soil variables and three phy-
logeny levels (genus, family and order) were included individually
as well as in combinations. Finally, the “module eigengene anal-
ysis” was performed. Small modules with less than 5 nodes were
ignored. Graphs and heatmaps showing the module-eigengenes of
each module, the hierarchy structure of module eigengene, and
the correlations between modules and soil variables were shown.
The significant module memberships (MMs) were also available.

3. Results

3.1. Key topological properties of the networks

As shown in Fig. 1, networks with 150 and 171 nodes were
constructed from healthy and diseased soil samples respectively.
The connectivity fitted the power-law quite well, with R2 values
being 0.90 and 0.84 for healthy and diseased networks respec-
tively, indicating the scale-free property of the networks. The
average path length (GD, a value measuring the efficiency of in-
formation or mass transport on a network) was 4.90 and 3.64 for
healthy and diseased networks respectively, which were com-
parable to those of networks that displayed small-world
behavior, as summarized by Brown et al. (2004) and Deng et al.
(2012), indicating that the networks constructed in present
work had the property of small world. Furthermore average
clustering coefficients of empirical networks (0.21w0.24) were
significantly higher than the values of corresponding random
networks (0.03w0.06), suggesting again the small-world
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Fig. 1. An overview of fungal networks in healthy (A) and diseased (B) soil samples (left panel) and the key parameters of network topology (C). Right panel is the correlations and
heatmap showing module eigengenes of respective networks. The upper part is the hierarchical clustering based on the Pearson correlations among module eigengenes and the
below heatmap shows the coefficient values (r). The F value marked on the left side of heatmaps is the percentage of the total variance explained by the eigengene of respective
module. Red color means higher correlation whereas green color signified lower correlation. Modules larger than 5 nodes are labeled with "H" (healthy) or "D" (diseased) followed
by a number. Node colors indicate different major phylogenetic lineages.
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behavior of the constructed networks. In present work, the
modularity values were from 0.61 to 0.64, which were higher
than the suggested threshold value 0.4 for a modular structure
(Newman, 2006), higher than the values of corresponding ran-
domized networks, and were also similar to the values of most
modular networks as summarized by Deng et al. (2012), sug-
gesting that the constructed networks were also modular. All
these key topological properties qualified the constructed net-
works for further analysis.
3.2. Structure and composition are similar between healthy and
diseased networks

A large proportion of nodes (107) was shared between healthy
and diseased networks (Fig. 2 A). Nodes belonging to Hypocreales
and Sordariales genera dominated in both networks. Furthermore,
the connectivity and clustering coefficient of total nodes between
two networks were not significantly different by paired t test (with
respective p values 0.403 and 0.486), and those of the shared nodes



A

B

Total No of MMs 150

Total No of nodes 321

Proportion (%)

Healthy
55 unshared

24
shared

Diseased
47 unshared

Healthy
43

unshared

107
shared

Diseased
64

unshared

Fig. 2. Proportion of phylogenetic lineages of total nodes (A) and significant module memberships (B) in healthy and diseased networks. The Venn diagrams show number of nodes
shared and unshared in respective networks.
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were also not significantly different (with respective p values 0.169
and 0.943). These data suggested that the node composition of two
networks was similar.

3.3. Difference in eigengene network between healthy and diseased
networks

Module eigengene is a representative value summarizing a
module expression profile by singular value decomposition (SVD).
Eigengene network analysis calculates the correlations among
module eigengenes and thus shows the higher-order organizations
of a network structure. In present work, module eigengenes (the V
values shown in Fig. 1) explained 38e63% of the variations of RA
across different samples in healthy network and 37e63% of that in
diseased network. Six module eigengenes explained more than
50%. These values were similar to those found in human (Langfelder
and Horvath, 2007) as well as in soil bacteria eigengene networks
(Deng et al., 2012), suggesting that the eigengenes in present work
represent the module profiles relatively well and thus are qualified
for eigengene network analysis.

Eigengene network analysis revealed an obvious difference of
higher-order organization between two networks (Fig. 1, right
panel of A and B). In healthy network, the eigengenes of module H6,
H8 and H7 showed significant correlations (r � 0.78, p � 0.05;
equivalent to a clustering height at w0.4 as marked by the dash
line) and clustered together as one meta-module and those of H3
and H4 as another (Fig. 1). These two meta-modules comprised 92
nodes, accounting for 61% of total number of nodes in the healthy
network. In diseased network, however, only one meta-module
consisting of D1 and D3 was recognized. This meta-module con-
tained 63 nodes, accounting for only 37% of total number of nodes
in the diseased network. Because a module can be regarded as a
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group of co-expressed genes and a meta-module as a group of
modules functionally interrelated (Langfelder and Horvath, 2007;
Oldham et al., 2008), our data suggested that more number of
OTUs in healthy network were functionally interrelated than in
diseased network. This property is important for us to perceive how
well a community is operated.

3.4. Difference in presence of generalists between healthy and
diseased networks

Using the threshold values of Zi (measuring how well a node is
connected to other nodes in its ownmodule) and Pi (measuring how
well a node is connected to nodes in different modules) proposed by
Guimera andAmaral (2005) and simplified byOlesen et al. (2007), all
nodes fell into three categories (Fig. 3).Majorityofnodes (>96%) from
bothnetworkswere categorized as peripherals (specialists) that have
only a few links and almost always link to the nodeswithin their own
modules. Three nodesbelonging toGibellulopsis nigrescens (OTU464),
Schizothecium inaequale (OTU839) and Humicola grisea (OTU491)
fromhealthy networkwere categorized asmodule hubs (generalists)
that are highly connected to many nodes in their ownmodules. Four
nodes were categorized as connectors (generalists) that are highly
connected to several modules, three belonging to uncultured Geo-
myces (OTU1064), Fusarium sp. gM-156 (OTU432) and Fusarium sp.
P47E2 (OTU424) from healthy network and one belonging to un-
culturedCortinarius (OTU1058) fromdiseasednetwork.Note that this
single connector fromdiseasednetworkwasonlymarginal according
to the threshold values. There was no node falling into network hub
(supergeneralists) category that acts as both module hub and
connector. Obviously more generalists existed in healthy network
than in the diseased. As their connectivity speaks, generalists bridge
Module hubs

Peripherals

D

D3
D2

Fig. 3. ZiePi plot showing the distribution of OTUs based on their topological roles. Each sym
threshold values of Zi and Pi for categorizing OTUs were 2.5 and 0.62 respectively as propo
OTUs identified as generalist OTUs in healthy network but presented as specialist OTUs in
different nodes within their own modules and/or among different
modules whereas specialists link to only a few nodes. Thus the gen-
eralists are the key organisms to the communities. It is interesting to
note that the nodes identified as generalists in healthy networkwere
not absent in diseased network. Rather, they were present as spe-
cialists in diseased network instead (Fig. 3), suggesting that the same
OTUs exhibited different functions in the two different sets of soils.
This role-shift was not limited to generalist/specialist OTUs but was
observed in many other OTUs (see below).

3.5. Difference in phylogenetic distribution of module memberships
between healthy and diseased networks

Module eigengene analysis showed that all modules had sig-
nificant (p� 0.05)modulememberships (MMs), also key organisms
in correspondingmodules. The number of MMs ranged from 5 to 18
in different modules, resulting in 79 and 71 MMs in total in healthy
and diseased networks respectively. Phylogenetically the pro-
portions of MMs belonging to Hypocreales (21.5%) and Sordariales
(20.3%) were similar in healthy network, but were substantially
different in diseased network (36.6% and 11.3% respectively) (Fig. 2
B). When total nodes were considered, however, the corresponding
proportions were not substantially different between the two
networks (Fig. 2 A). These data suggested that the MMs belonging
to Sordariales were enriched in healthy network and those
belonging toHypocrealeswere enriched in diseased network. Of the
150 total significant MMs, 24 were shared between the two net-
works (Fig. 2 B), accounting for 30% and 33% in respective networks.
The majority unshared (w70%) either presented as MMs in one
network but as non-MMs (p> 0.05) in the other, or was phased out
of the interactions, suggesting that a large portion of the MMs
Network hubs

Connectors

4

D4

D3

bol represents an OTU in healthy (green circle) or diseased (red triangle) network. The
sed by Guimera and Amaral (2005) and simplified by Olesen et al. (2007). The shared
diseased network were marked.
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changed their functions as their habits were changed. These data
also suggested that the composition of MMs was substantially
different between the two networks.

3.6. Difference of OTUs’ responses to soil variables between healthy
and diseased networks

Majority of module eigengenes in both networks were signifi-
cantly (p � 0.05) correlated with one or more soil variables, either
positively or negatively (Table 1). As for the positive, correlations of
OMvsH6,OMvsH7, TNvsH3,NH4

þeNvsH1,NO3
�eNvsH7andECvs

H8 in healthy network were significant. These involved modules
contained 83 OTUs, accounting for 55% of total number of OTUs in
healthy network. In contrast, only one correlation EC vs D3 in
diseased network was significant. This module contained 33 OTUs,
accounting for only 19% of total OTUs in diseased network. As for the
negative, correlations of EC vs H8, OM vs H1, NO3

eeN vs H1, EC vs H6
and pH vs H6 in healthy network were significant. The involved
modules contained 55 OTUs, accounting for 37% of total OTUs in
healthy network. In contrast, correlations of OM vs D5, pH vs D1, EC
vs D4, TN vs D3 and NH4

þeN vs D3 were significant in diseased
networkwith negative correlation. The involvedmodules contained
108 OTUs, accounting for 63% of total OTUs. Collectively, these data
suggested thatmajority of fungi inhealthy soilswere stimulated bya
certain set of soil variables but in diseased soils were inhibited.

The correlation between module eigengenes and soil variables
can be applied to analyze nodes’ role-shift and responsible soil
factors. Generalist-specialist shift is particularly interesting because
of their key importance to the overall community. OTU491
belonging toHumicola grisea and OTU424 belonging to Fusarium sp.
P47E2 as generalists resided in H2 and H5 modules both irrespon-
sive to soil EC in healthy network (Fig. 2, Table 2), but became spe-
cialists residing inD4module thatwas negatively correlatedwith EC
only in diseased network (Table 2). Although insignificant, EC was
higher in diseased soil than that in healthy soil (Table S1), itwas thus
the increase of EC that suppressed their expressions and conse-
quently caused their role losses as generalists. Similarly, OTU432
belonging to Fusarium sp. gM-156 and OTU464 belonging to Gibel-
lulopsis nigrescens as generalists resided in the H6 and H5 modules
both irresponsive to TN, NH4

þ-N and EC in healthy network, but
became specialists residing in D3 module that was negatively
correlated with TN and NH4

þeN and positively correlated with EC in
diseased network. Since TN and NH4

þ-N were significantly lower in
healthy soils than those in diseased soils (Table S1), the decreases of
TN andNH4

þ-N and the increase of EC stimulated the growth of these
OTUs, which consequently became specialists in diseased soils.
OTU1064 belonging to uncultured Geomyces resided in H3 module
thatwas positively correlatedwith TNbut resided inD2module that
was irresponsive to soil variables. It was thus the decrease of TN that
Table 1
Correlation coefficients and significances (in parenthesis) between module eigengenes a

Network Module TN OM

Code No of node

Healthy H1 14 �0.79(0.01)
H2 23
H3 19 0.73(0.03)
H6 18 0.87(0.003)
H7 24 0.83(0.006)
H8 8

Diseased D1 30
D3 33 �0.81(0.009)
D4 33
D5 12 �0.68(0.05)

a Data with p > 0.05 were not shown.
led the role-shift of this species. Collectively, TN, NH4
þeN and EC

were the key soil variables that caused generalist-specialist shifts.
Similar analysis applied to the OTUs in H4 and H5 (OTUH4 þ H5)

and in D2 and D6 (OTUD2 þ D6) would also reveal their role-shifts.
These two sets of OTU resided in the modules whose eigengenes
were significantly correlated with none of the selected soil vari-
ables in their respective networks (Table 1). OTUH4þH5 had 34
members in total (Fig. 4), 28 (82%) of which were also found in
diseased network and were associated with the modules whose
eigengenes were significantly correlated with one or more soil
variables. OTU379 belonging to Fusarium solani, for example, was
one of the H4members. The same OTU resided in diseased network
in D1 whose eigengene was significantly negatively correlated with
soil pH. OTUD2þD6 contained 35members in total, 17 (49%) of which
overlapped with the total number of OTUs in healthy network.
OTU910 belonging to Trichoderma stromaticum, for example, was
one of D2 members, and was found in healthy network in module
H7 whose eigengene was positively correlated with soil OM and
NO3

�eN.When OTUH4 þ H5 were matched against OTUD2 þ D6, it was
found they were two different sets of OTUs (with only 2 overlaps).
In other words, majority of thesemembers were irresponsive to any
selected soil variables in their respective networks but were
responsive in their counterpart networks.

3.7. Correlations between gene significances of soil variables and
network connectivity

Overall, OM was the only variable affecting Sordariales-associ-
ated OTUs in healthy community but not affecting any groups of
OTUs in diseased community (Table 2). In contrast, NH4

þeN and EC
were the variables affecting Glomerellales- and Hypocreales-asso-
ciated OTUs in diseased community but not affecting any OTUs in
healthy community. These results were not only consistentwith the
results based on the module membership analysis (Sordariales-
associated OTUs were enriched in healthy soils whereas Hypo-
creales-associated OTUs were enriched in diseased soils), but also
further explained the major soil variables responsible for the
respective enrichments and role shifts of OTUs (see Discussion).

4. Discussion

Synthesized from above results, a conceptual picture appeared
on what a healthy or a diseased soil fungal community was, what a
healthy or a diseased soil was, how a healthy community became
diseased, and what was the major cause(s) leading to the com-
munity shift in soils under prolonged potato monoculture.

A healthy community could be viewed as a better organized or a
better operational community with more functionally interrelated
members (92 nodes, accounting for 61% of total nodes) than a
nd measured soil variables.a

pH NO3eeN NH4
þeN EC

�0.68(0.04) 0.7(0.04)
�0.8(0.01)

�0.78(0.01)
0.71(0.03)

0.71(0.03)
�0.87(0.002)

�0.8(0.01) 0.70(0.04)
�0.73(0.02)



Table 2
Correlation coefficient (rM) and significance (p) between network connectivity and the gene significances (GS) of soil variables by Mantel tests.a

Network Phylogeny level
in Mantel test

GS taxon Number
of node

Soil variables all
included in test

Soil variables tested eachb

TN OM pH NH4
þeN EC

rM p rM p rM p rM p rM p rM p

Healthy Genus Chaetomium 9 0.349 0.043
Fusarium 13 0.419 0.019

Order Sordariales 24 0.362 0.003
unclassified Fungic 11 0.529 0.049

Diseased Genus Fusarium 18 0.513 0.001 0.430 0.004 0.425 0.003 0.632 0.001
Doratomyces 5 0.897 0.047

Family Plectosphaerellaceae 6 0.678 0.008 0.512 0.026 0.725 0.015
Chaetomiaceae 15 0.230 0.025
Nectriaceae 10 0.407 0.022 0.527 0.009 0.498 0.007 0.335 0.037

Order Glomerellales 7 0.575 0.015 0.726 0.004 0.597 0.010 0.788 0.007
Hypocreales 47 0.301 0.002 0.339 0.002 0.234 0.004 0.421 0.001
Sordariales 23 0.299 0.011
Unclassified
Ascomycotac

5 0.894 0.021 0.816 0.009

a Data with p > 0.05 were not shown.
b Data on soil NO3

�eN was not listed in the table because it showed p > 0.05 with all GS taxa.
c The GS taxon that does not have taxonomic order rank but was taken as if an order for Mantel test.
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diseased community (63 nodes, accounting for 37% of total nodes),
as revealed by eigengene network analysis (Fig. 1 A, right panel).
Regardless of specific functions, the presence of more interrelated
members is good for the overall community. Analog to a human
society, presence of more interrelated individuals in the society
means more cooperation and exchange events occur. Consequently,
the society works more efficiently and the society goal is more
likely to be achieved. In this case, an obvious output can be
observed that crop-yield was significantly higher (Fig. S1).
Furthermore, only one marginal generalist (0.6%) was present in
diseased network, but six generalists (4.0%) were present in healthy
network, as revealed by Zi-Pi relationship of each individual OTU
(Fig. 3). Generalists typically occupy a small fraction only, for
example, 2.5% in soil bacterial networks (Zhou et al., 2011) and 15%
in pollination networks (Olesen et al., 2007). The presence of gen-
eralists is important. Nodes within and/or among modules would
be otherwise poorly connected or not connected at all to each other,
consequently, the community would be chaotic without ordered
structure, and fluxes of energy, material and information inside/
through the whole community would not be efficient. Analog to a
human society again, presence of individuals who link different
members within and/or among different tribes will very likely
make the overall society ordered, stable and efficient.
Healthy 133

17 18

Diseased 143

286

Irresponsive to soil variables in their
respective network

Responsive
in healthy
network

Responsive
in diseased

network

OTUH4+H5OTUD2+D6

Fig. 4. Venn diagrams show the module members of D2 plus D6 (OTUD2 þ D6) in
diseased network shared with healthy network members (left), and of H4 plus H5
(OTUH4þH5) in healthy network shared with the diseased network members (right).
Eigengenes of module H4, H5, D2 and D6 were significantly correlated with none of the
selected soil variables in their respective networks. The shared members resided in the
modules in their counterpart networks whose eigengenes were significantly correlated
with one or more soil variables.
A conceptual picture on what was a healthy or a diseased soil
could be perceived by looking at the responses of majority of fungal
community members to soil variables. Majority (55%) of OTUs in
healthy soils were stimulated (encouraged) by a certain set of soil
variables but the majorities (63%) in diseased soils were inhibited
(discouraged) (Table 1). For a complex natural community, it is
impossible that every environmental element encourages every
community member: majority makes senses. With this view, a
healthy soil was likely a soil with variables that encouraged ma-
jority of fungal community, whereas a diseased soil was a soil with
variables that discouraged majorities. Any society that encourages
majority of its members will be more likely to become a vigorous
and successful society.

The role-shifts of OTUs were major events when the healthy
community changed to a diseased one. Three lines of evidences
supported this generalization. Firstly, the generalist OTUs in healthy
network were found to be specialist OTUs in diseased networks
(Fig. 3), suggesting their role-shifts. Secondly, majority of MMs
(w70%) were not shared between healthy and diseased networks
(Fig. 2 B). The unshared presented either asMMs in one network but
as non-MMs (p > 0.05) in the other, or phased out of interactions,
demonstrating the functional shifts of these MMs. Thirdly, module
members OTUH4 þ H5 and OTUD2 þ D6 were irresponsive to any
measured soil variables in their respective networks but majority of
which were found to be responsive in the counterpart network
(Fig. 4). Collectively, these data demonstrated that role-shifts were
commonly happened in network OTUs. It is worthwhile mentioning
that role-shift means that the capacity of an organism to exhibit a
novel function must have already existed before a successful shift
was initiated. In this context, many fungi possessed diverse func-
tions/physiologies, some of which were able to exhibit in one envi-
ronment but not in another. Such predicted physiological/metabolic
flexibility is consistent with the well-documented, cosmopolitan
distribution of many fungi (Managbanag and Torzilli, 2002).

Major soil factor(s) leading to the community shift can be
summarized as follows. Soil OM was the key variable associated
with the healthy community, as it stimulated members of H6 and
H7 modules in healthy network but stimulated no module mem-
bers in diseased network (Table 1). NH4

þeN and EC were the key
variables associated with the diseased community, as their signif-
icant correlations with GS taxa were found only in diseased soils
(Table 2). Furthermore, NH4

þeN and EC were the major factors
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leading to generalist-specialist shift, as discussed above. Major
affected phylogenetic groups were Sordariales and Hypocreales
(Fig. 2 B and Table 2).

5. Conclusion

By using the network analysis tool, what a yield-invigorating
(healthy) or -debilitating (diseased) soil fungal community was,
what a healthy or a diseased soil was, how a healthy community
became diseased, and what was the major cause(s) for the com-
munity shift were conceptualized. A healthy fungal community was
a better organized or a better operated community than the
diseased one. A healthy soil was a soil with variables that encour-
aged majority of fungi whereas a diseased soil discouraged. Soil
organic matter was the key variable associated with healthy com-
munity, whereas NH4

þ-N and EC were the key variables associated
with diseased community. Role-shifts prevailed among the OTUs
when the healthy community changed to a diseased one. Major
affected phylogenetic groups were Sordariales and Hypocreales.
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