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SUMMARY

Phosphatidylinositol phosphate (PIP) second mes-
sengers relay extracellular growth cues through the
phosphorylation status of the inositol sugar, a signal
transduction system that is deregulated in cancer.
In stark contrast to PIP inositol head-group phos-
phorylation, changes in phosphatidylinositol (PI)
lipid acyl chains in cancer have remained ill-defined.
Here, we apply a mass-spectrometry-based method
capable of unbiased high-throughput identification
and quantification of cellular PI acyl chain composi-
tion. Using this approach, we find that PI lipid chains
represent a cell-specific fingerprint and are unper-
turbed by serum-mediated signaling in contrast to
the inositol head group. We find that mutation of
Trp53 results in PIs containing reduced-length fatty
acid moieties. Our results suggest that the anchoring
tails of lipid second messengers form an additional
layer of PIP signaling in cancer that operates inde-
pendently of PTEN/PI3-kinase activity but is instead
linked to p53.

INTRODUCTION

The phosphatidylinositol phosphates (PIPs) emerged as central

to cellular signaling subsequent to the revelation that the pattern

of their phosphorylation status formed a code for intracellular

signal transduction (Whitman et al., 1988). They serve pivotal

roles in normal cellular processes and a broad spectrum of pa-

thologies (Aoyagi and Matsui, 2011; Courtney et al., 2010; Liu

and Bankaitis, 2010). The unphosphorylated phosphatidyli-

nositol (PI) forms the scaffold upon which multiple kinase and

phosphatase-dependent events occur, which generate the PIP

second messengers of growth control. They signal through mul-

tiple axes, including the phosphatidylinositol 3-kinase (PI3K)/

AKT pathway, which is aberrant in a majority of cancers. PIs

are glycerophospholipids, composed of a glycerol central moi-

ety with two fatty acid esters, a phosphate ester in the third

position, and an inositol ring (‘‘head group’’) bound to the phos-

phate group (Figure S1A). Variable and combined phosphoryla-

tion of PIs on the 30, 40, and 50 positions of inositol generates

seven distinct variants. Extracellular ligand-stimulated PI3K acti-
8 Cell Reports 10, 8–19, January 6, 2015 ª2015 The Authors
vation generates PI(3,4,5)P3, which promotes cell survival and

growth (Cantley, 2002). The tumor suppressor PTEN, frequently

inactive in cancer (Hollander et al., 2011), antagonizes PI3K func-

tion by its conversion of PI(3,4,5)P3 to PI(4,5)P2. In addition to

malignant scenarios, PIPs mediate growth cues in develop-

mental and other biological processes (Clague et al., 2009;

Comer and Parent, 2007; Moss, 2012). Thus, the head-group

status of these lipid second messengers has taken center stage

in investigations of PIP biology, while the lipid tails have been

assumed to play a limited role in signaling.

Here, we report the application of a mass spectrometry-based

high-throughput method for global analysis of PIs. With this

application, we dissected the dynamic nature of the PI signaling

scaffold upon which second messengers are formed, demon-

strating that in response to mutation of p53, reduced-length fatty

acid moieties are present in cellular PIs.

RESULTS

Global Assessment of Cellular PI-Lipid Content
To analyze global PI-lipid content, we adapted electrospray-ioni-

zation multiple reaction monitoring (MRM) methodologies for the

assessment of the total compliment of PI variants present in cells

and tissue. Identification of the most abundant PI species pre-

sent in each cell line was possible via interrogation of ions with

700–1,200 m/z with signals corresponding to anticipated PI

masses (Figures S1B andS1C) clearly identifiable. For prominent

PI species, both molecules containing minor differences in iso-

topic composition and molecules varying by differences in satu-

ration status could be discerned (Figure S2F). Identification of

the mono (phosphatidylinositol phosphate- PIP) and bis (phos-

phatidylinositol bisphosphate- PIP2) forms of the most abundant

PI species was achieved. We termed these phosphatidylinositol

families ‘‘triplets’’ (Figure S1C, left panel). Each additional phos-

phate moiety contributes an increased 80 m/z, such that the PI

for any particular species may be given as ‘‘N’’ m/z, the PIP as

N + 80 m/z, and the PIP2 N + 160 m/z. Of note, in our analysis,

phosphatidylinositol triphosphate (PIP3) was not apparent at

levels above those of background. However, subsequent frag-

mentation of ions with a predicted m/z (i.e., N + 240 m/z) corre-

sponding to anticipated PIP3 masses generated PIP3-specific

ions (Milne et al., 2005; Wenk et al., 2003), demonstrating the

presence of these molecules, although at abundances with

signal-to-noise ratios significantly below 3:1 (data not shown).

In order to positively identify lipid species, fragmentation of
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parent ions corresponding to anticipated PI m/z was performed

(Figure S1C, right panel). These detailed fragmentation spectra

allowed unambiguous identification of parent ions, with identifi-

cation of both the fatty acid and head-group components of

lipids, consistent with previous descriptions of PI fragmentation

spectra (Hsu and Turk, 2000; Ivanova et al., 2009). Fragmen-

tation patterns were compared to known phospholipid stan-

dards to confirm their phosphoinositide-derived nature (data

not shown).

To enable high-throughput identification and quantification of

individual PIs, we developed a method employing automated

sample injection, fragmentation, and ion measurement. MRM,

using anticipated PI fragment ions as parent masses and calcu-

lated daughter ions, corresponding to inositol head-group and

acyl chain configurations observed in preliminary PI fragmenta-

tion experiments, permitted broad assessment and quantifica-

tion of PI species (Figure S1E). The abundances of 20 anticipated

PI variants were measured in tandem to generate robust quanti-

fication data for each individual molecule. Initial experiments

interrogated ions in the 300–1,300 m/z range. In no experiments

did we observe PI species <800 m/z and >920 m/z, as deter-

mined by ion fragmentation of parent masses. Therefore, in sub-

sequent analyses, we restricted our analysis to PI molecules in

this mass range (Figure S1B). It should be noted, however, that

although in none of the initial tests of cultured cell lines were

PIs containing acyl chains of >20 carbons observed, some tissue

types, such as rat liver (Patton et al., 1982), have been shown to

contain low amounts of PIs with fatty acid components of more

than 20 carbons. Resultantly, for detailed assessment of previ-

ously unexamined tissues using this method, pilot scans interro-

gating masses greater than 900 m/z could be performed.

Total ion chromatograms (Figure S1D) highlight that the

extraction protocol employed does not generate PI-pure lipid

mixtures. However, assessment of PI-specific daughter ions,

and not putative parent ion masses, enables specific measure-

ment of PI abundance, providing the molecular specificity of

this method. All potential acyl chain saturation states (including

hypothetical variants) for each predicted PI are assessed with

no prior understanding of molecular configuration required. For

example, PI 889 m/z corresponds to the molecular configuration

38:2 (a total acyl chain composition harboring 38-carbon atoms

and two double bonds). From the empirical formula, it is not

possible to determine acyl chain length/saturation status. To

overcome this, all potential fatty acid configurations that the

molecule may comprise were measured simultaneously: 18:0,

18:1, 18:2, 20:0, 20:1, and 20:2. Of note, in our analysis, we failed

to observe acyl chains with odd-numbered carbon atoms. These

configurations are presumably not utilized or generated by cells

or, if so, in abundances below the level of detection. In summary,

this adapted method enabled unbiased, PI-specific lipid quanti-

fication in an automated, high-throughput manner and can be

performed in the absence of any prior molecular knowledge of

the target lipid(s) of interest. Fragmentation of lipid standards

comprising 16:0/18:1 and 18:0/20:4 fatty acids revealed compa-

rable fragmentation and ion generation, suggesting that PI frag-

mentation across molecular species did not vary as a function of

fatty acid length (Figure S1F), thereby allowing direct compari-

son of quantified ions between PI lipid species.
Electrospray ionization techniques have been employed previ-

ously with great success in identification of PI, PIP, PIP2, and

PIP3 (Milne et al., 2005;Wenk et al., 2003). However, previous re-

ports have not attempted to quantify these molecules. A more

advanced lipid extraction/analysis procedure with incorporation

of phosphate methylation steps and high-performance liquid

chromatography has also been developed for the assessment

of phosphatidylinositol phosphates, including PIP3 (Clark et al.,

2011). However, to date, the ability to globally quantify phospha-

tidylinositol phosphates has remained elusive. In our hands, the

quantification of PIP and PIP2 content was achieved, albeit with

large observed deviations between samples (data not shown). At

present, it is unclear whether these deviations are due to biolog-

ical phenomena or lower abundances of themolecules being as-

sessed. Furthermore, analysis of lipid standards demonstrated

that ionization of equivalent molar amounts of PI, PIP, PIP2,

and PIP3 did not generate equivalent ion abundances (data not

shown), further complicating the direct comparison of phospha-

tidylinositides of disparate phosphorylation status.

PI Lipid Tail Fingerprints
Assessment of Pl lipids was performed across multiple cells line

with high reproducibility achieved across biological replicates.

Analysis of cells of both human and mouse origin revealed that

disparate cancer cell lines possessed unique PI characteris-

tics—a PI-lipid fingerprint (Figure 1). In addition, it was apparent

that the cell lines tested did not harbor exclusive PI acyl chain

lengths but mostly also the closely related sibling molecules

differentiated by saturation state of the fatty acid moieties.

Quantification of the four most abundant PI-lipid species (Fig-

ure S2A) revealed that, strikingly, �40%–50% of the total PI

composition of cells is composed of just two PI-lipid masses.

Approximately 70% of the total PI content in cells contained

the four most abundant lipid masses in any single cell line. Hu-

man and murine cells demonstrated no remarkable differences

in this analysis.

Assessment of the saturation status of PI lipid chains demon-

strated that in the cell very few of these lipids are polyunsatu-

rated. These data also revealed that saturation of cellular PIs in

murine and human cells does not differ significantly. Of note,

however, NIH 3T3 and Capan-2 (a pancreatic cancer-derived

line) cells harbored fewer monounsaturated PI lipids and higher

levels of three or four double-bond-containing lipids than the

other lines assessed (Figure S2B).

Analysis of the carbon content, which reflects fatty acid chain

length, revealed that the majority of PIs possessed 34-, 36-, or

38-carbon atoms in their fatty acid components (Figure S2C).

NIH 3T3 and Capan-2 lines contained a higher proportion of

38-carbon PIs comparative to the other cells tested.

PI Acyl Chain Content Is Not Affected by Extracellular
Ligands but Is Dependent on Serum-Derived Essential
Fatty Acids
In order to assesswhether thePI-lipid fingerprint of each cultured

cell line was altered in response to extracellular ligands, cultured

cells were serum starved for 24 hr before PI lipid analysis. Unlike

in the case of PI head-group phosphorylation, removal of serum-

provided extracellular ligands had no effect on PI lipid chain
Cell Reports 10, 8–19, January 6, 2015 ª2015 The Authors 9
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composition (Figure 1B). Comparison of the abundances of the

20 quantified PI masses in normal culture and 24 hr serum-

starved conditions identified no change in PI-lipid abundances

at a statistically significant level (Figure S2D, HCT116 cells

shown). Testing of PI-lipid characteristics in response to 24 hr

serum withdrawal in multiple additional cell lines confirmed the

lack of response to extracellular ligands (data not shown).

We then sought to investigate PI-lipid composition when cells

are grown in the absence of fatty acids, another component pro-

vided by fetal bovine serum (FBS) in tissue culture contexts. To

this end, three cultured cell lines (HeLa, NIH 3T3, and PC3)

were grown in medium supplemented with delipidated FBS.

Subsequent to 3 days growth in delipidated medium, all cell

types exhibited a reduced proliferation compared to control ex-

periments supplemented with normal FBS (Figure S3A). In the

case of NIH 3T3 cells, lack of lipid supplementation led to an

overall reduction in cell number with most of the plated cells per-

ishing. PI acyl chain characteristics were then investigated. For

all lines, in both lipidated and delipidated scenarios, the 38:3 PI

species was in the vast majority composed of PIs containing

18:0 and 20:3 fatty acids, with a limited amount of 18:1/20:2 var-

iants detectable (data not shown). For the 38:4 species, all cells

harbored mostly 18:0/20:4 PIs, but with some 18:1/20:3 acyl

species present in both lipidated and delipidated contexts

(data not shown).

Some fatty acid molecules incorporated into PIs, such as lino-

leic acid (18:2), are not produced by the cell and in tissue culture

scenarios must be provided in serum. Linoleic acid, for instance,

is utilized as a precursor in the production of arachidonic acid

(20:4) (Steinberg et al., 1956). Although some variations in total

cellular PI-lipid content (Figure S3B) are observed after removing

lipids from culturemedium, the greatest effect appeared to be on

cell viability/proliferation. Our initial studies suggest that cells

lack a large degree of plasticity regarding their fatty acid compo-

sition in response to environmental changes, and when cells are

unable to acquire the optimal fatty acid configurations for lipid

production, their viability is compromised. In the absence of lino-

leic acid in culture medium, we assume that levels of this acid,

and arachidonic acid, were remnants from the original cell mate-

rial plated at the start of the experiment.

Testing the Conservation of PI-Lipid Fingerprints
In order to determine some of the underlying parameters respon-

sible for a cell’s PI-lipid fingerprint, we generated cultured

cell lines with known genetic lesions and well-characterized ori-

gins. Genetically engineered mice were generated harboring

pancreas-specific Kras and Trp53 mutations. These genetic le-
Figure 1. PI Characteristics Are Unique to Disparate Cancer Cell Lines

(A) Representation of quantification of phosphoinositide abundances in the com

independent lipid preparations and measurements. Individual sample measurem

carbon content of both lipid fatty acids is displayed as ‘‘number of carbon atoms

highest abundance (right vertical axis).

(B) Assessment of PI the characteristics of the HCT116 cells in both normal (10%

(C) Assessment of two genetically engineered cell lines derived from mouse pan

Trp53 mutations) from independent mice with identical backgrounds.

(D) Assessment of two independent and distinct human pancreatic adenocarcinom

displayed (error bars, ±SD).
sionswere sufficient to generate pancreatic neoplasia in thesean-

imals, and from these malignancies, culture lines were generated

from two animals with identical strain background and identical

tumor-initiating/driving genetic lesions (Figure 1C).

Using these two lines,wewere able to address thequestion: do

tumor cell lines, from the same genetically modified cancerous

organ, but different individuals, retain the same lipid fingerprint?

Quantification of thePI abundances in the two lines andstatistical

testing revealed that the PI lipid fingerprints were not statistically

significantly different (Figures 1C and S2E). Furthermore, com-

parison of the saturation status and acyl chain carbon content

of thePIs confirmedan unalteredPI content in thesedisparate tu-

mor-derivedcell culture lines. Thesedata suggested that cancers

from different individuals, but triggered by the same mutations,

share common PI acyl chain characteristics, thereby indicating

the potential use of PI fingerprints in diagnostic contexts.

Our analysis also includes the study of the HCT116 and KO22

culture lines (Figures 1B and S2G). HCT116 cells were originally

derived from a colorectal cancermetastasis. KO22 cells were en-

gineered fromHCT116 cells by knockout of the PTEN tumor sup-

pressor gene (Lee et al., 2004). These two cell lines also showed

the same PI-lipid profile. This result suggested that PTEN status,

responsible for regulation of PIP head-group phosphorylation,

had no effect on PI lipid tail features. In addition, the finding sug-

gested that two closely related but genetically distinct cancer cell

lines,whichwerecultured independently for adecadesincediver-

gence, retained similar lipid profiles. On the whole, these data

support the notion that the PI-lipid content of cells is fixed and

not significantly altered by extensive passaging in tissue culture.

Next, we tested two human pancreatic cancer-derived lines,

Capan-2 and MiaPaCa-2, both classified as pancreatic carci-

nomas (Kyriazis et al., 1986; Yunis et al., 1977), which showed

distinct PI fingerprints (Figure 1D). This observation suggests

that organ of origin does not dictate cellular PI characteristics

for cancer cells. It is plausible in the instance of these two

pancreatic carcinomas that independent genetic events, which

contributed to their malignant development, precipitated the

divergence of disparate lipid profiles. Conversely, the genetically

engineered cell lines, obtained from mouse pancreas adenocar-

cinomas (Figure 1C) of identical genetic lineage, presented indis-

tinguishable PI-lipid fingerprints.

Nonmalignant Cells Harbor Primarily 38-Carbon PIs
To disentangle factors that may cause cells to harbor PIs specific

acyl chain composition, we used primary mouse embryonic fi-

broblasts (MEFs; note that the protocols for mouse experiments

were in accordancewith institutional guidelines and approved by
and Are Dictated by Genetics and Not Growth Factors

mon laboratory cell lines NIH 3T3 and HeLa. Graphs are derived from two

ents were derived from three measurements of the same sample. The sum

’’ (left vertical axis). Relative ion counts are normalized to the ion of observed

serum) and serum-starved (0.1%) conditions.

creas tumors. Cancers were initiated with identical genetic lesions (Kras and

a cell lines. For all graphs, meanmeasurements of two biological replicates are
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Figure 2. PI Fingerprint of Noncancerous Tissue and Cells

Assessment of PI characteristics from primary wild-type MEFs and mouse tissue obtained a resection. For MEFs, mean measurements of two biological rep-

licates are displayed (error bars, ±SD). For tissues, mean measurements of technical triplicates are displayed (error bars, ±SEM). Animals from which tissue was

taken were healthy, 7-week-old wild-type males. Blood was entire fluid containing both serum and cellular components.
the Institutional Animal Care and Use Committee [IACUC]). Strik-

ingly, assessment of wild-type primary MEFs revealed that they

harbored a PI-lipid profile dominated by 38-carbon acyl chain

content (Figure 2), highly similar to that seen in NIH 3T3 cells

and in stark contrast to all cancer cell lines tested (Figures 1A,

right panel, 1B–1D, and S2G). Most primary tissues from mouse

displayed the same type of dominant 38-carbon lipid chain con-

tent in their PIs (Figure 2), suggesting that it represents a normal

state with the exception of brain and testicle (Figure S2F), which

also possessed a single, unique, additional PI-lipid m/z (835 and

809 m/z, respectively).

p53 Mutation Status Dictates Changes in PI-Lipid
Fingerprints
We then went on to analyze mouse-derived pancreatic cancer

cell lines, as shown in Figure 1C, but in a comparative context

of other genetic lesions and normal, noncancerous pancreas tis-

sue (Figure 3). Normal mouse pancreas demonstrated a PI-lipid

fingerprint similar to wild-type MEFs and NIH 3T3 cells: almost

exclusively 38-carbon acyl chain content. In contrast, the pancre-

atic cancer cells, generated frompancreas engineered to achieve

pancreas specific expression of KrasG12D and Trp53 R172H muta-
12 Cell Reports 10, 8–19, January 6, 2015 ª2015 The Authors
tion from the endogenous alleles demonstrated a significant shift

to lower PI carbon content. Analysis of pancreas-derived tumor

lines generated harboring solely the oncogenic KrasG12D muta-

tion, in the absence of Trp53 alteration, retained a PI-lipid profile

indistinguishable from normal pancreas tissue.

To confirm that shifts in PI lipid composition are not simply the

result of increased proliferation, we analyzed the PI fingerprint of

the primary Trp53D/DMEFcell line (Figure 3B; generated using the

Cre-loxP/viral system; Chen et al., 2005). As a result of this p53

loss-dependent immortalization, these cells have significantly

enhanced proliferation compared to wild-type MEFs (Chen

et al., 2005). Irrespective of their increasedgrowth rates, however,

Trp53 null MEFs did not share the PI-lipid fingerprint of

Trp53 +/R172H, Kras+/G12D cells; these data suggested that

changes in the population of cellular PI acyl chain moieties corre-

lates with p53 mutation, but not loss.

To further explore the relationship between p53 mutation and

PI characteristics, we sought to correlate human p53 mutation

status with cellular PI content. In all cell lines harboring TP53mu-

tation, we identified a corresponding high level of 36-carbon PIs.

Two cell lines absent of TP53mutation did not exhibit this shift in

PI-lipid composition: the prostate cancer metastasis-derived
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line PC3, and the pancreatic cancer-derived line Capan-2.

Sequencing of PC3 DNA demonstrated heterozygous loss of

one allele of TP53 and a frameshift mutation in the remaining

allele, rendering this line TP53 null (Figure 4B). Sequencing of

the mutation cluster region of TP53 (exons 5–8) of Capan-2

DNA revealed no TP53mutations (data not shown), in agreement

with previous reports describing the TP53 wild-type nature of

this line (Caldas et al., 1994; Loukopoulos et al., 2004). The lipid

fingerprint of this line lacked high levels of 34- and 36-carbon PIs

(Figure 1D, left panel). Resultantly, genetic analysis of cultured

cancer cells pointed to a link between TP53 mutation status

and increased 34- and 36-cabon PI-lipid content.

In order to assess if p53mutation alone could cause the transi-

tion of cellular Pl lipids from 38- to 36-/34-carbon acyl chain

length, we employed a lox-stop-lox Trp53R270H MEF system.

Cre recombinase causes recombination at the Trp53 locus to ex-

press the mutant Trp53 gene from the endogenous Trp53 pro-

moter (Tuveson and Hingorani, 2005). We harvested a panel of

littermate primary MEFs of the two genotypes Trp53+/+, which

served as wild-type control MEFs before and after Cre-mediated

recombination, and Trp53lslR273H/+. A total of 12 primary cells of

these two genotypes were cultured and independently infected

or not at passage 2. The PI content of the cells was then deter-

mined 6 days subsequent to infection and analyzed in blinded

experiments on 24 samples (12 littermate MEF samples with or

without viral addition).When lipiddata fromCre-recombinedcells

were plotted stratified by Trp53 status, variability in 36-carbon

acyl chain content (relative to 38-carbon content) became

apparent (Figure 5A). Unblinding revealed that the eight Trp53

mutant MEF lines had higher 36-carbon content lipids than their

Cre-infectedTrp53wild-type littermate controls.Whenassessing

the recombination effect on a line-by-line level (Figure 5B), we

found that mutant Trp53 expression induced an approximate

50% increase in 36-carbon content PI lipids on average, an in-

crease observed in every before/after Cre paired comparison.

Importantly, no significant effect on the relative abundance of

the dominant 36-carbon PIs was observed after viral infection

of thewild-type cells. Furthermore, the uninfectedTrp53 +/ lslR273H

MEFs, which express only one copy of wild-type Trp53, also

showed no significant change in 36-carbon PI-lipids compared

to either treated or untreated wild-type controls (Figure 5C). Of

note, fragmentation of the 36-carbon PI-lipids that were enriched

subsequent to expression of mutant Trp53 showed that >80% of

this lipid were 18:1/18:1 with <15% of 18:0/18:2 composition

(data not shown). This observation is suggestive of an increase

in production of, or incorporation of, oleic acid (18:1) into PI-

destined molecules as being prominent in the shift we observe.

Shifts to Shorter Acyl Chain Content Subsequent to p53
Mutation Do Not Occur in All Phospholipids
To further shed light on the mechanism of the shift to 36-carbon

PIs seen in malignancies subsequent to p53mutation, we devel-
Figure 3. Initiating Genetic Events Contribute to Changes in PI Charac

(A) Comparison of PI characteristics from normal mouse pancreas (mean mea

pancreas-cancer-derived tumor lines of each of two distinct genotypes, initiated w

are displayed; error bars, ±SD).

(B) Assessment of the PI characteristics of Trp53 null MEFs. Mean measuremen
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oped a method for the analysis of phosphatidylcholine (PC) (Fig-

ure S4). Analysis of a panel of cultured cell lines, including those

that harbored almost exclusively 38-carbon PI content (NIH 3T3,

PC3, Capan-2), demonstrated no remarkable difference be-

tween the lines tested in terms of PC-lipid spectra. Unlike Pl

lipids, PC-lipid content in all the cells tested was primarily

composed of 34- and 36-carbon lipids (Figure S5). No apparent

change across cell lines was observed, irrespective of TP53 sta-

tus. These data suggest that the observed alterations in acyl

chain content subsequent to p53mutation are not characteristic

of all phospholipids.

PC and PI share a common precursor: phosphatidic acid (PA).

Synthesis of PI fromPA occurs via two enzymatic steps involving

first cytidine diphosphate diacylglycerol synthase and then cyti-

dine diphosphate diacylglycerol inositol phosphatidyltransferase

(‘‘phosphatidylinositol synthase’’). Generation of PC from PA in-

volves two sequential enzymatic steps requiring phosphatidic

acid phosphatase then cholinephosphotransferase (Holthuis

and Menon, 2014). It is unclear as to how exactly the latter syn-

thesis steps of PC and PI might contribute to different acyl chain

moieties being present in these different lipid types subsequent

to p53 mutation. It might be plausible, however, that incorpora-

tion of different fatty acids into PA leads to accumulation of

distinct pools of this precursor lipid, localized in different mem-

brane regions in the cell. If enzymes required for the synthesis

of PI and PC have differential access to different PA pools, this

may in part explain differences in the fatty acid content seen in

these lipid types in the context of p53 mutation. Alternatively,

PI remodelling does occur such that the composition of mature

PIs can be altered also after their formation (Darnell et al.,

1991). Investigation of the influence of p53 mutation on enzymes

responsible for such remodelling may further define the step at

which acyl chain composition changes in PI molecules occurs.

DISCUSSION

The PIP second messengers consist of lipid tails linked to the

inositol head group, upon which information is presented. In

the case of phosphoinositide biology, research into the func-

tional roles of the lipid tails has lagged behind the study of how

information is encoded. Many biological information systems,

most famously nucleic acids, consist of structural backbones

that carry chemically coded additional information. As was the

case in understanding and correlating DNA backbone methyl-

ation to disease progression (Feinberg and Vogelstein, 1983),

quantitative, reproducible technology is a critical prerequisite

for the deciphering of biological roles that can be attributed to

the PIP scaffolds. It is intriguing that the PIP acyl chains have

the potential for far greater molecular flexibility than the inositol

sugar head group: only seven discrete phosphorylation states

are known for PIPs. In contrast, the variety of lipids that can be

added to two positions on the glycerol linker, considering
teristics in Cancer Progression

surements of technical triplicates are displayed; error bars, ±SEM) and two

ith the genetic lesions shown (meanmeasurements of two biological replicates

ts of two biological replicates are displayed (error bars, ±SD).



30 

35 

40 

45 

32:2 32:1 32:0 34:2 34:1 34:0 36:4 36:3 36:2 36:1 36:0 38:5 38:4 38:3 38:2 38:1 38:0 40:6 40:5 40:4 
0 

1 

A
cy

l c
ha

in
 c

ar
bo

n 
co

nt
en

t 

PI configuration 

Ion count (norm
alised) 

PC3 

30 

35 

40 

45 

32:2 32:1 32:0 34:2 34:1 34:0 36:4 36:3 36:2 36:1 36:0 38:5 38:4 38:3 38:2 38:1 38:0 40:6 40:5 40:4 
0 

1 

A
cy

l c
ha

in
 c

ar
bo

n 
co

nt
en

t 

PI configuration 

Ion count (norm
alised) 

BT549 

30 

35 

40 

45 

32:2 32:1 32:0 34:2 34:1 34:0 36:4 36:3 36:2 36:1 36:0 38:5 38:4 38:3 38:2 38:1 38:0 40:6 40:5 40:4 
0 

1 

A
cy

l c
ha

in
 c

ar
bo

n 
co

nt
en

t 

PI configuration 

Ion count (norm
alised) 

A431 

30 

35 

40 

45 

32:2 32:1 32:0 34:2 34:1 34:0 36:4 36:3 36:2 36:1 36:0 38:5 38:4 38:3 38:2 38:1 38:0 40:6 40:5 40:4 
0 

1 

A
cy

l c
ha

in
 c

ar
bo

n 
co

nt
en

t 

PI configuration 

Ion count (norm
alised) 

SUIT-2 

30 

35 

40 

45 

32:2 32:1 32:0 34:2 34:1 34:0 36:4 36:3 36:2 36:1 36:0 38:5 38:4 38:3 38:2 38:1 38:0 40:6 40:5 40:4 
0 

1 

A
cy

l c
ha

in
 c

ar
bo

n 
co

nt
en

t 

PI configuration 

Ion count (norm
alised) 

MiaPaCa-2 

A

B

p53 exon 5 (367 bp) p53 exon 6 (295 bp)

PC3
SUIT

2
A43

1
MiaP

aC
a2

BT54
9

no
 D

NA

PC3
SUIT

2
A43

1
MiaP

aC
a2

BT54
9

no
 D

NA

1500  bp -
1200  bp -
1000  bp -

  500  bp -
  400  bp -
  300  bp -

  200  bp -

  100  bp -

p53 exon 7 (295 bp) p53 exon 8 (305 bp)

PC3
SUIT

2
A43

1
MiaP

aC
a2

BT54
9

no
 D

NA

PC3
SUIT

2
A43

1
MiaP

aC
a2

BT54
9

no
 D

NA

TGAACTGGAGG

TGAACCGGAGG
M--N--R--R-

M--N--W--R-

*

WT sequence
WT translation

MiaPaCa-2 translation

MiaPaCa-2 sequence

GGTGCATGTTT

GGTGCGTGTTT
--V--R--V--

--V--H--V--

*

WT sequence
WT translation

SUIT-2 translation

SUIT-2 sequence

GGTGCATGTTT

GGTGCGTGTTT
--V--R--V--

--V--H--V--

*

WT sequence
WT translation

A431 translation

A431 sequence

CTGGCAAGACC

CTGGCCAAGAC
-L--A--K--T

-L--A--R--P

*

WT sequence
WT translation

PC3 translation

PC3 sequence

R248W

R273H

R273H

A138 fs

transactivation
1-50

proline-rich
63-97

DNA binding
102-292

tetramerisation
323-356

negative regulation
363-393

p53 protein

Tp53 allele(s) present PI status

mutant only

mutant only

mutant only

none

p53 protein present

mutant only
CGGAGCCCCAT

CGGAGGCCCAT
-R--R--P--I

-R--S--P--I

*

WT sequence
WT translation

BT549 translation

BT549 sequence

R249S

T T

T T

(legend on next page)

Cell Reports 10, 8–19, January 6, 2015 ª2015 The Authors 15



saturation status, double-bond position, as well as carbon con-

tent, is in far excess of the combinatorial possibilities that are

mediated by the currently known PIP modifying kinases and

phosphatases.

Using mass spectrometry, we have defined the spectrum of

phosphoinositide second messenger lipid tails in a rapid, repro-

ducible, and high-throughput manner. Our results show that (1)

cultured cancer cell lines present their own unique PI character-

istic ‘‘fingerprints’’; (2) the PI lipid tails of cells are limited to very

few species by mass, which have a total acyl chain carbon con-

tent of 34, 36, or 38 atoms; (3) noncancerous tissue exhibits

largely 38-carbon species; (4) in contrast, malignant cells contain

the shorter acyl chain lipids totaling 34 and 36 carbons; and (5)

the shift to lower carbon content PI lipid tails can be caused by

p53 mutation.

We observed the shift to low carbon content when comparing

the two pancreatic cancer cell lines MiaPaCa-2 and Capan-2. It

has been reported that the Capan-2 cells, which show dominant

38-carbon content PIs, retain wild-type p53 status (Caldas et al.,

1994; Loukopoulos et al., 2004), a finding that we confirmed in

our analysis. In contrast, the MiaPaCa-2 cells with high 34-

and 36-carbon PI lipid content harbor a point mutation in the

Tp53 gene codon 248 and loss of the remaining wild-type allele.

Note that both cell lines harbor mutant KRAS (Aoki et al., 2000;

Berrozpe et al., 1994; Kita et al., 1999; Loukopoulos et al.,

2004; Moore et al., 2001). Furthermore, sequencing of a panel

of cancer cell lines has provided further evidence that Tp53

mutation is correlated to modulatory effects on cellular PI com-

position. Employing a lox-stop-lox mutant Trp53 MEF system

allowed the unambiguous identification of mutant Trp53 as a

modulator of cellular PI content. Our studies in no way indicate

that p53 is the sole effector molecule responsible for alterations

in PI characteristics, but they are indicative of this gatekeeper

gene regulating lipid-specific pathways. HCT116 cells are Tp53

wild-type (Lee et al., 2004) and yet possess abundant 36-carbon

PIs. Similarly, HeLa cells also possess wild-type p53 genes and a

significant amount of 36-carbon PIs. However, this cervical can-

cer cell line is positive for human papillomavirus 18, which is

known to induce outcomes that are similar to p53mutation itself

(Kessis et al., 1993). Resultantly, it is likely that multiple aberra-

tions, which may be acquired during malignancy, can give rise

to alterations in PI cellular content of which p53 mutation is

one. Although p53 activity has hitherto not been linked to PIP

biology and the associated signaling, mutant p53 protein has

been described to increase the expression of genes encoding

components of themevalonate pathway, thereby altering cellular

cholesterol levels and promoting breast cancer (Santos and

Schulze, 2012). Whether the effects of mutant p53 on PIs

observed in our studies is due to aberrant target gene promoter

binding remains to be shown. Of note, all mutation types

observed in the DNA-binding domain of p53 seem associated

with the lipid-changing activity observed in our study.
Figure 4. p53 Mutation Is Associated with Modulation of PI Content

(A) PCR amplification of p53 exons 5–8 in selected human cancer cell lines. Sequ

(B) Sequence traces of selected cancer cell lines showing identifiedmutations and

DNA-binding domain of p53.
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The PI analysis methodology we present can be achieved

within minutes, e.g., during an ongoing operation (Balog et al.,

2013), which is in stark contrast to the time frame for gene

sequencing. Thus, it could assist intraoperative pathology calls

with molecular information on tissue to guide surgeons on the

needed extent of resection around a lesion.

It still remains to be determined if and how the different lipid

chain lengths could be causally involved in malignancy. Lipid

‘‘packing defects’’ contribute to the identity of lipid membranes

(Bigay and Antonny, 2012). Thus, the change in PIP lipid tails

could cause differential cellular localization of PIP signaling.

Another intriguing hypothesis could involve the phosphatidylino-

sitol transfer proteins (reviewed in Cockcroft, 2012), which are

among the proteins that can selectively interact with PIPs based

on their lipid composition. Phosphatidylinositol transfer protein a

is an intracellular lipid transporter that transfers both PIP and

phosphatidylcholine and has been shown to preferentially use

PIs with shorter acyl chains (Hunt et al., 2004).

The alterations in PI acyl chain configuration measured in our

studies raises the intriguing question of how these changes

are, if at all, represented in the primary signaling phosphoinosi-

tides; primarily PIP3. Stimulation of cells by different agonists

results in different molecular configurations of PIP3 being

generated, which is highly suggestive of phosphoinositides of

specific acyl configuration being converted to the triple-phos-

phate form by specific head-group-catalyzing enzymes (Wake-

lam, 2014). It has also been hypothesized that alternate acyl

chain compositions on phosphoinositides confer different ori-

entation of the lipid head group relative to the membrane

(Wakelam, 2014). Although singular lipid-binding domains

may not realize altered binding tendencies in different cases

of head-group orientation, the interaction of domains such as

the phosphoinositide 3 phosphate-binding FYVE motif, which

in the case of Hrs, for example, functions in tandem, may expe-

rience differing binding characteristics in such scenarios.

Further understanding of the specific functional relevance of

PI acyl chain configuration and determination of the prevalence

of these molecules being converted into signaling-active PIP3

via subsequent head-group modifications would provide a

fascinating insight into the role of PI tail chemistry in signaling

and disease.

Taken together, our findings identify a rapid and reliable high-

throughput method to test the value of PI lipid tails as biomarkers

for p53 status in tissue. Seeing these effects in pancreatic malig-

nancies, where PI3K/AKT signaling through PIPs is thought to

play a minor role next to K-RAS and p53 alterations, points to

a second, lipid-driven layer of PIP signaling in cancer. Our obser-

vations point to mutation of Tp53 as an important factor in re-

modeling of cellular PIs. Investigation of the exact mechanism

by which this genetic change gives rise to this phenomenon

would provide fascinating insight into the effects of tumor sup-

pressor mutations in lipid composition. If an exact enzyme can
encing primers produced a single amplicon used for subsequent sequencing.

corresponding PI characteristics. All identifiedmutations were identified in the
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Figure 5. p53 Mutation Modulates PI Fingerprints

(A) Infection of Trp53 wild-type and Trp53wild-type/lslR270H MEFs with adenovirus encoding Cre recombinase and lipid analysis was performed blinded. In total, 12

cell lines were generated to form genetic biological replicates. Correlation of Trp53 genotype with lipid status demonstrates that levels of 36-carbon PIs (861m/z)

increase subsequent to Trp53 R270H expression.

(B) Analysis of eight biological replicates of Cre-treated Trp53wild-type/lslR270H MEFs demonstrates that all lines exhibit an increase of PI 861 m/z; 861 m/z

abundance in Cre-treated cells is displayed as fold-change relative to the same line prior to Cre addition.

(C) Quantification of PI 861 m/z relative to the most abundant PI species (885 m/z) pre- and post-Cre addition (two-tailed t test; whiskers, ±SD).
be identified which is responsible for mediating such changes,

inhibition of this protein and observation of the cellular response

in terms of malignant transformation may provide a hitherto-un-

considered approach for treating Tp53 mutant malignancies.
Furthermore, elucidation of the exact influence that regulation

of PI backbones has on PI3K/AKT-mediated signaling will create

a new understanding of how p53 mutation modulates this can-

cer-related signaling axis.
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EXPERIMENTAL PROCEDURES

Generation of Murine Pancreatic Tumor-Derived Cell Lines

Cell lines were derived from animals transgenic for Pdx1-Cre, carrying the

Kras lsl-G12D/ + alleles. Double-mutant mice also harbored the Trp53 lsl-R172H/ +

alleles (Tuveson and Hingorani, 2005). All protocols for mouse experiments

were in accordance with institutional guidelines and were approved by the

IACUC.

Lipid Analysis

Lipid extraction from tissue culture material has been described previously

(Milne et al., 2005). Extracted lipids were analyzed by a Vantage triple-stage

quadrupole mass spectrometer (Thermo Scientific) in negative ion mode

with the heated electrospray ionization (HESI-II) ion source.

PCR Amplification and Sequencing of p53 Exons 5–8

PCR reactions, primer sequences, and amplification conditions and Sanger

dideoxysequencing methodology have been described previously (Park

et al., 2010).

Extensive descriptions of methodology are included in the Supplemental

Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and five figures and can be found with this article online at http://dx.doi.org/

10.1016/j.celrep.2014.12.010.
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