Computers and Mathematics with Applications 57 (2009) 1574-1582

Contents lists available at ScienceDirect L
mathematics

with appicat ione

Computers and Mathematics with Applications | &=

[ELEcTROmIC

journal homepage: www.elsevier.com/locate/camwa A

New families of nonlinear third-order solvers for finding multiple roots

Changbum Chun?, Hwa ju Bae?, Beny NetaP*

2 Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea
b Naval Postgraduate School, Department of Applied Mathematics, Monterey, CA 93943, United States

ARTICLE INFO ABSTRACT
Arfic{e history: In this paper, we present two new families of iterative methods for multiple roots
Received 16 September 2008 of nonlinear equations. One of the families require one-function and two-derivative

Accepted 16 October 2008 evaluation per step, and the other family requires two-function and one-derivative

evaluation. It is shown that both are third-order convergent for multiple roots. Numerical
ﬁeyw"”{s-' hod examples suggest that each family member can be competitive to other third-order
ewton’s metho methods and Newton’s method for multiple roots. In fact the second family is even better

Multiple roots :
Iterative methods than the first.

Nonlinear equations
Order of convergence
Root-finding

Published by Elsevier Ltd

1. Introduction

Solving nonlinear equations is one of the most important problems in numerical analysis. In this paper, we consider
iterative methods to find a multiple root o of multiplicity m, i.e, f?(@) =0, j = 0,1,...,m — 1and f™(a) # 0, of a
nonlinear equation f (x) = 0.

The well known Newton’s method for finding a multiple root « is given by

f(xn)
frxm)
which converges quadratically [1].

There exists a cubically convergent Halley method [2] which Hansen and Patrick [3] extended to multiple roots, which
is given by

(1)

Xny1 = Xp — M

F(xn)
Xny1 = Xnp — TG o) (2)

m+1
T) = e
In recent years, some modifications of the Newton method for multiple roots have been proposed and analyzed, see for
example [4-14] and references therein. These methods have been proven to be competitive to Newton’s method in their
performance and efficiency. There are, however, not yet so many methods known in open literature that can handle the case
of multiple roots, see [13]. To deal with the multiple roots case, one may use the observation that the functions
A
f/

* Corresponding author.
E-mail addresses: cbchun@skku.edu (C. Chun), bneta@nps.edu, byneta@gmail.com (B. Neta).

0898-1221/$ - see front matter. Published by Elsevier Ltd
doi:10.1016/j.camwa.2008.10.070

https://core.ac.uk/display/82428792?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:cbchun@skku.edu
mailto:bneta@nps.edu
mailto:byneta@gmail.com
http://dx.doi.org/10.1016/j.camwa.2008.10.070

C. Chun et al. / Computers and Mathematics with Applications 57 (2009) 1574-1582 1575

have only a simple zero at «, and any of the iterative methods for a simple zero may be used [15]. However, this approach
might become problematic due to higher computational costs. This being the case, development of iterative methods to
approximate a multiple root is required, and this is our motivation for this work.

In this paper, we present two new third-order families of methods for multiple roots. The first one is based on the
composition of Osada’s third-order multiple root-finding method [4]

fxg) 1 /(%)
— _ ‘l ,
Fow T2 VG

and the Euler-Chebyshev third-order multiple root-finding method [15]

m@—m) f(x)) m* fx)*f" ()
2 I/ (xn) 2 fr(xa)3 ’

This family proposed here is shown to be locally cubically convergent. Its performance is often a little better than the two
third-order methods from which this family is derived, and its practical utility is demonstrated by numerical examples.
The other method is based on one of the third order methods due to Dong [5], i.e.

(3)

1
Xnt1 = Xn — Em(m +1

(4)

Xn+1 = Xn —

Yn = Xp — Up, (5)
Unf (Yn)
n =Yn+ s 6
T e — (= D) ©
where
", = F(xn) 7)
F'(xn)
and a third order method due to Victory and Neta [6], i.e.
Yn = Xnp — Up, (8)
Yoot =y) fF(xn) +Af () (9)
I P) f () + Bf)
where
A= p2m_ me (10)
B:_um(m—Z)(m—l)—i-l, (1)
(m—1)?
p=—_ (12)
m—1

This family is also of third order but requires two-function and one-derivative evaluations.

2. Development of methods and convergence analysis

To derive the first method, let us consider the composition of the methods (3) and (4) in the form

e fa) o f ()
Xnt1 = Xn 5 |:m(m + Uf’(xn) (m-—1) f”(Xn)i|
=0T o) oS0 (k)
e m g) ()
where 6 € R, from which we suggest the following one-parameter family of methods for multiple roots
m[(20 —)m+3 —20] f(xa) | O(m—1* f'(xa) (1 —60)m* f(x2)*f" (xa)
Xn+1 = Xpn — -) (14)

2 f'(xn) 2 f"(xa) 2 fxn)?

For the family of methods defined by (14), we have the following analysis of convergence.

Theorem 2.1. Let o € I be a multiple root of multiplicity m of a sufficiently differentiable function f : I — R for an open interval
I. If xq is sufficiently close to «, then the methods defined by (14) are cubically convergent for any real value of 6, and satisfies
the error equation

ent1 = Kse2 + 0(ed), (15)

1576 C. Chun et al. / Computers and Mathematics with Applications 57 (2009) 1574-1582

where e, = x, — « and the error constant K3 is given by

_ R () D ()2 1 f2 (a)
=0V T Fme? T mroms hm fm@)
_2(1— O)ym®> + 26 — Hm* + (260 — Hm? + (100 — 9)m? + (19 — 200)m + 86 — 9

2(m + 1)2m2(m — 1)2

Proof. Using Taylor expansion of f (x,) about «, we have

f“")(a)
fx) = "1+ Cren + Goe2 + 0(e))]
2 f(m)()2 Zm
[y == e [1+42Cieq + [CF + 2Gole; + O(ep)]
(m) o
f'xa) = H el "' [1+ Diey + Dsel + 0(e))]
" f("”() o2 3
f(xn) = 2! en 1+ Sien + S62 4+ 0(e))] .
Fx)?f" (%) = M 3M=211 4 (2C; 4 S1)ey + (C? 4 2C; 4 25,C; + Sy)e? + 0(e2)]
n n—(2)'(m‘)2n 1 1)€n 1 2 1-1 2)C, n’l
3 f<m)(0‘) 3m—3 A N2 N.\p2 3
f'xn)’ = = = DHIP [1+3Dse, + (3D% + 3Dy)e2 + 0(ed)]
~_om f"@ 5 _(m=1! fMH@) S _ _(m=2) fMH))
Wherecj - (mrij)! £ (@) b= (m’T-:—j—l)! £ () ,ande - (mn-:—j—z)! FO (@) *

Dividing (18), (20) and (22) by (20), (21) and (23), respectively give us

}‘((zn)) = %" [1+4 (C; — Dy)en + (G, — D, — C1Dy + DY)e} + O(ey)]

j]:u(();n)) = mei 1 [1 + (D1 — S1)en + (D2 — So — D1Sy + S)es, + O(eﬁ)] ,
2 _ B B ~

f(x;/)(){)gxn) = mm2 eﬂ[l + (2Cl +Sl - 3D])en

+ (612 + 262 + 26151 + §2 =+ 6[_)% — 3[_)2 — 66151 — 3D1§1)€ﬁ + O(eﬁ)]
Now, substituting (24)-(26) into the error equation

m[(26 — m + 3 —20] f (xn) N Om—1?% f'(xa) (1 =60)m? f(xa)*f" (xa)
2 [(xn) 2 f(x) 2 frexn)?

€ny1 =€y —
we have

ent1 = Kien + Kze2 + Kse] + 0(e})

where
k=1 @G- m+3-201 Om-1) (A=-OHm-1 _,
2 2 2
and
20 — 1 3-20] - - O(m—1) - -
= EZIEI= 6 by + " Dep, -5
_a-o9m-1

5 (2C; +S1 — 3Dy),

which, after some simplification, can easily be shown to be zero.

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

C. Chun et al. / Computers and Mathematics with Applications 57 (2009) 1574-1582 1577

The coefficient K3 is given by,

20 —1)m+3 —20] - - - - - O(m—1) - _ - - o
K = (2D L&~y &b+ + "D, 5, - 5.5 +5)
A=m—1) -, = - o= o oo -
- f(q + 2G, + 25:C; + S, + 6D7 — 3D, — 6C1Dy — 351Dy). (31)
By a simple manipulation, it may be shown that (31) reduces to
(m+1) (o (m+1) ()2 1 (m+2) (o
K@@ @2 @) 32)
fm(a) fM(@)? (m+2)(m+ 1)m [(a)
21 =60)m’ 4+ 2(0 — ym* 4 (20 — HYm’ + (100 — 9m* 4 (19 — 200)m + 86 — 9 (33)
v= 2(m + 1)2m2(m — 1)? :
Therefore, we obtain
enp1 = Kse, + 0(ep), (34)

which indicates that the order of convergence of the methods defined by (14) is at least three. This completes the proof. O

The family (14) includes, as particular cases, the following.
For & = 1 and 6 = 0, we obtain the Osada method (3) and the Euler-Chebyshev method (4), respectively.
For & = 1/2, we obtain a new third-order method for multiple roots

fO) | m=1f'(xa) m*f(xa)*f" (xn)

Xni1 = Xp — M + , (35)
o f/x) 4) 4)’
For &6 = —1, we obtain another new third-order method for multiple roots
1 fl) 1) f () f (%)
X = x, — —m(5 — 3m) —=(m-=1) -_m—. (36)
AR fiea) 2 s [/ (a3

In a similar fashion, the proposed approach can be continuously applied to other multiple roots iterative methods, to
derive methods for multiple roots. Clearly if we combine two different methods using the exact same information, then the
efficiency (see [15]) will not be affected.

The second family is based on a composition of Dong’s third-order method (6) and the Victory-Neta third-order
scheme (9)

Yn = Xn — Up, (37)

u X A
L o 0) (- gL [HATO (38
fm) — A =)™ (xa) f'(xn) f(xn) + Bf (yn)

The scheme (38) reduces to Dong’s method if & = 1 and the Victory-Neta third-order scheme if & = 0. Neta [13] has
shown that Dong’s method (6) has the following error term

1, m—1_1Y\ 4
en+1 = ﬂCl - 7Cz en. (39)
For the Victory-Neta scheme, the error term is given by
—, m—1_ 3
eny1 = | KiCF — — Gle, (40)
where
m?4+2)(m—1) —m(m+42)pu™™
g, = P2 = 1) —m(m +2)" "
2m3(m—1— pu=m)
Notice that the composite scheme (38) will have the following error term
T\z3
€n+1 = (] - 9)1{] + 9% Cl en (42)

i.e. the terms with G, were annihilated.

1578 C. Chun et al. / Computers and Mathematics with Applications 57 (2009) 1574-1582

Table 1
Comparison of various third-order multiple-roots iterative schemes and the Newton method.

IT NFE f(xs)
fi,% =3
NM 7 14 6.10e—56
HM 5 15 1.07e—81
OM 5 15 1.30e—46
ECM 5 15 1.79e—57
CM1 5 15 1.35e—51
CM2 5 15 4.11e—74
NM1 1 3 4.11e—74
NM2 1 3 4.11e—74
fiix =—1
NM 25 50 3.63e—63
HM 10 30 —1.84e—39
OM 15 45 4.75e—56
ECM 17 51 —3.29e—35
CM1 15 45 7.27e—67
CM2 7 21 9.94e—41
NM1 1 3 9.94e—41
NM2 1 3 9.94e—41
fo,% =23
NM 7 14 7.31e—52
HM 5 15 4.84e—57
oM 5 15 2.07e—38
ECM 5 15 1.73e—47
CM1 5 15 2.25e—42
CM2 5 15 7.14e—70
NM1 5 15 3.11e—62
NM2 5 15 1.10e—54
f2, % =2
NM 7 14 5.11e—64
HM 5 15 7.43e—77
oM 5 15 3.53e—51
ECM 5 15 1.53e—63
CM1 5 15 1.44e—56
CM2 5 15 2.44e—98
NM1 5 15 1.06e—80
NM2 5 15 9.31e—71
f3.% =0
NM 4 8 1.03e—55
HM 3 9 1.68e—53
oM 3 9 5.83e—62
ECM 3 9 4.31e—58
CM1 3 9 8.95e—60
CM2 3 9 1.49e—55
NM1 1 3 1.49e—55
NM2 1 3 1.49e—55
f3.% =1
NM 4 8 3.46e—52
HM 4 12 1.39e—85
OM 4 12 2.01e—91
ECM 4 12 2.24e—89
CM1 4 12 2.24e—90
CM2 4 12 1.68e—87
NM1 1 3 1.68e—87
NM2 1 3 1.68e—87
f4, Xo = 1.7
NM 5 10 6.04e—47
HM 4 12 9.12e—43
OM 4 12 1.17e—39
ECM 4 12 5.25e—41
CM1 4 12 —2.69e—40
CM2 4 12 9.74e—43
NM1 1 3 —9.74e—43
NM2 1 3 —9.74e—43

C. Chun et al. / Computers and Mathematics with Applications 57 (2009) 1574-1582 1579

Table 1 (continued)

IT NFE Fx)
faxo=1
NM 5 10 1.22e—60
HM 4 12 1.78e—85
OM 4 12 1.42e—78
ECM 4 12 1.43e—81
CM1 4 12 —5.35e—80
CcM2 4 12 2.59e—85
NM1 1 3 —2.59e—85
NM2 1 3 —9.74e—43
f5.% =3
NM 6 12 2.70e—45
HM 4 12 7.44e—45
oM 5 15 3.12e—85
ECM 5 15 1.89e—94
CM1 5 15 1.16e—89
CM2 4 12 6.54e—34
NM1 1 3 6.54e—34
NM2 1 3 —9.74e—43
f5.% = —1
NM 10 20 5.23e—49
HM 11 33 2.22e—65
oM 24 72 7.70e—44
ECM 23 69 1.87e—52
CM1 26 78 4.35e—67
CM2 32 96 8.76e—49
NM1 1 3 8.76e—49
NM2 1 3 8.76e—49
fo,% = =2
NM 8 16 5.60e—37
HM 5 15 1.60e—61
oM 6 18 5.09e—45
ECM 6 18 3.21e—64
CM1 6 18 8.66e—54
CM2 6 18 7.73e—94
NM1 1 3 7.73e—94
NM2 1 3 7.73e—94
fo, X = —1
NM 6 12 5.61e—60
HM 3 9 4.75e—35
oM 5 15 1.56e—103
ECM 4 12 1.47e—47
CM1 4 12 1.05e—38
CM2 4 12 1.98e—89
NM1 1 3 1.98e—89
NM2 1 3 1.981e—89
f7‘ X0 = 1.7
NM 6 12 3.80e—57
HM 4 12 7.40e—47
oM 5 15 1.81e—76
ECM 4 12 1.01e—37
CM1 5 15 8.04e—90
CcM2 4 12 2.26e—44
NM1 1 3 2.26e—44
NM2 1 3 2.26e—44
f1.% =2
NM 5 10 2.09e—40
HM 4 12 1.55e—65
oM 4 12 3.45e—53
ECM 4 12 1.67e—59
CM1 4 12 6.64e—56
CM2 4 12 6.75e—77
NM1 1 3 6.75e—77
NM2 1 3 6.75e—7

(continued on next page)

1580 C. Chun et al. / Computers and Mathematics with Applications 57 (2009) 1574-1582

Table 1 (continued)

IT NFE Fx)
fa. %0 =4
NM 6 12 1.18e—61
HM 4 12 2.33e—60
OoM 4 12 2.70e—36
ECM 4 12 1.82e—39
CM1 4 12 7.80e—38
CM2 4 12 4.85e—43
NM1 1 3 4.85e—43
NM2 1 3 4.85e—43
fs. % =3
NM 5 10 1.10e—54
HM 4 12 2.10e—113
oM 4 12 6.75e—80
ECM 4 12 1.57e—84
CM1 4 12 3.83e—82
CM2 4 12 8.47e—90
NM1 1 3 8.47e—90
NM2 1 3 8.47e—90
fo. X0 =3.5
NM 12 24 1.17e—46
HM 7 21 2.07e—57
OM 9 27 1.63e—61
ECM 8 24 8.16e—36
CM1 9 27 7.39e—82
CM2 8 24 2.76e—61
NM1 1 3 2.76e—61
NM2 1 3 2.76e—61
Jo, X0 = 4.5
NM 27 54 1.62e—44
HM 15 45 2.19e—100
OM 20 60 1.58e—64
ECM 18 54 2.33e—34
CM1 19 57 1.77e—48
CM2 17 51 8.95e—46
NM1 1 3 8.95e—46
NM2 1 3 8.95e—46
fio, %0 = 11
NM 5 10 —2.38e—65
HM 3 9 2.34e—36
OM 3 9 1.7e—36
ECM 3 9 4.53e—53
CM1 3 9 2.50e—40
CM2 3 9 4.46e—36
NM1 1 3 4.46e—36
NM2 1 3 4.46e—36
fio. %0 =7
NM 5 10 —1.00e—48
HM 4 12 3.04e—79
OM 4 12 —1.06e—82
ECM 3 9 —3.18e—45
CM1 4 12 —5.98e—95
CM2 4 12 9.29e—82
NM1 1 3 9.29e—82
NM2 1 3 9.29e—82
fi1, %0 =35
NM 6 12 6.67e—33
HM 4 12 2.48e—38
OoM 5 15 1.18e—58
ECM 5 15 2.44e—80
CM1 5 15 1.33e—67
CM2 4 12 4.20e—36
NM1 1 3 4.20e—36
NM2 1 3 4.20e—36

C. Chun et al. / Computers and Mathematics with Applications 57 (2009) 1574-1582 1581

Table 1 (continued)

IT NFE Fx)

fi1, %0 =5

NM 8 16 6.45e—38
HM 5 15 2.13e—42
oM 6 12 9.04e—36
ECM 6 12 6.53e—64
CM1 1 3 1.64e—47
CM2 5 15 5.30e—35
NM1 1 3 5.30e—35
NM2 1 3 5.30e—35
fi2,% =6

NM 5 10 9.91e—60
HM 3 9 1.29e—33
oM 4 12 4.82e—102
ECM 3 g 9.08e—40
CM1 3 9 4.95e—35
CM2 3 9 3.80e—40
NM1 1 3 3.80e—40
NM2 1 3 3.80e—40
fr2:%0 =11

NM 5 10 1.42e—59
HM 3 9 4.48e—36
OM 3 9 4.72e—33
ECM 3 9 1.63e—41
CM1 3 9 4.57e—36
CM2 3 9 2.76e—39
NM1 1 3 2.76e—39
NM2 1 3 2.76e—39

3. Numerical examples

We present some numerical test results for various third-order multiple root-finding methods and the Newton method
in Table 1. Methods compared included the Newton method (1) (NM), Halley-like method (2) (HM), Osada’s method (3)
(OM), the Euler-Chebyshev method (4) (ECM), the methods (35) (CM1), (36) (CM2), (38) with# = 1/2 (NM1) and (38) with
6 = —1 (NM2) introduced in this contribution.

All computations were done using the MAPLE using 128 digit floating point arithmetics (Digits := 128).

The following functions are used for the comparison and we display the approximate zeros x, found, up to the 28th
decimal place

Function m Xy

fix) = (X + 4> — 10)° m=3 1.3652300134140968457608068290
f(x) = (sinx — x* + 1)° m=2 1.4044916482153412260350868178
fi(x) = (& —e* —3x+2)° m=5 0.25753028543986076045536730494
fa(x) = (cosx — x)° m=3 0.73908513321516064165531208767
0 =((x=1>-1° m=6 2

fo(0) = (xe’ —sin®x+3cosx+5)* m=4 —1.2076478271309189270094167584
f(x) = (sinx — x/2)? m=2 1.8954942670339809471440357381
fe(x) = (x> — 10)® m=28 2.1544346900318837217592935665
folx) = (730 _ 1) m=4 3.0

fio(®) = (Vx — % —3)3 m=3 9.6335955628326951924063127092
fi1(x) = (¢ +x — 20)? m=2 2.8424389537844470678165859402
fi2(x) = (In(x) + /x — 5)4 m=4 8.3094326942315717953469556827

Displayed in Table 1 are the number of iterations (IT) required, such that |[f(x,)| < 10732, the number of functional
evaluations (NFE) counted as the sum of the number of evaluations of the function itself plus the number of evaluations of
the derivative, and the value f (x,) after required iterations.

The results presented in Table 1 show that, for the functions we tested, the first family introduced here has at least
an equal performance when compared to the other multiple root-finding methods of the same order. It is often a little
better than the two third-order methods from which it was derived, and converges more rapidly than Newton’s method for
multiple roots. The second family is much better because, in all cases apart from NM1 and NM2, it requires only one iteration
to achieve the required accuracy.

1582 C. Chun et al. / Computers and Mathematics with Applications 57 (2009) 1574-1582

References

[1] E.Schréder, Uber unendlich viele Algorithmen zur Auflésung der Gleichungen, Math. Ann. 2 (1870) 317-365.
[2] E.Halley, A new, exact and easy method of finding the roots of equations generally and without any previous reduction, Phil. trans. R. Soc. London 18
(1694) 136-148.
[3] E. Hansen, M. Patrick, A family of root finding methods, Numer. Math. 27 (1977) 257-269.
[4] N. Osada, An optimal multiple root-finding method of order three, J. Comput. Appl. Math. 51 (1994) 131-133.
[5] C.Dong, A family of multipoint iterative functions for finding multiple roots, Int. J. Comput. Math. 21 (1987) 363-367.
[6] H.D. Victory, B. Neta, A higher order method for multiple zeros of nonlinear functions, Int.]. Comput. Math. 12 (1983) 329-335.
[7] M. Frontini, E. Sormani, Modified Newton’s method with third-order convergence and multiple roots, J. Comput. Appl. Math. 156 (2003) 345-354.
[8] J. Kou, Y. Li, X. Wang, A composite fourth-order iterative method for solving non-linear equations, Appl. Math. Comput. 184 (2007) 471-475.
[9] B. Neta, Extension of Murakami’s High order nonlinear solver to multiple roots, Int. J. Comput. Math. (in press).
[10] B. Neta, New Third Order Nonlinear Solvers for Multiple Roots, Appl. Math. Comput. 202 (2008) 162-170. doi:10.1016/j.amc.2008.01.031.
[11] C.Chun, B. Neta, A third-order modification of Newton’s method for multiple roots, Appl. Math. Comput. AMC-S-08-01123 (submitted for publication).
[12] B. Neta, A.N. Jhonson, High-order nonlinear solver for multiple roots, Comput. Math. Appl. 55 (2008) 2012-2017.
[13] B. Neta, Numerical Methods for the Solution of Equations, Net-A-Sof, California, 1983.
[14] E.Hansen, M. Patrick, A family of root finding methods, Numer. Math. 27 (1977) 257-269.
[15] J.F. Traub, Iterative Methods for the Solution of Equations, Chelsea Publishing Company, New York, 1977.

doi:10.1016/j.amc.2008.01.031
doi:10.1016/j.amc.2008.01.031
doi:10.1016/j.amc.2008.01.031
doi:10.1016/j.amc.2008.01.031
doi:10.1016/j.amc.2008.01.031
doi:10.1016/j.amc.2008.01.031
doi:10.1016/j.amc.2008.01.031
doi:10.1016/j.amc.2008.01.031

	New families of nonlinear third-order solvers for finding multiple roots
	Introduction
	Development of methods and convergence analysis
	Numerical examples
	References

