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I. INTRODUCTION 

Shooting methods, in which the numerical solution of a boundary value 
problem is found by integrating an appropriate initial value problem, have 
been the subject of a number of recent papers (for example, Roberts and 
Shipman [l]-[3]), and a book (Keller [4]). The attraction of these methods 
lies in the availability on most computers of reasonably adequate subroutines 
for the numerical solution of initial value problems [5], and the lack of an 
alternative systematic approach to the problem. 

Let the system of n differential equations be 

dx 
- = f(x, t) 
dt 

subject to the boundary conditions 

B,x(a) + &x(b) = c, (1.2) 

where B, and B, are n x n matrices. Provided f satisfies the usual conditions, 
the problem expressed by Eqs. (1.1) and (I .2) has a solution provided 
/ b - a 1 is small enough and B, + B, is nonsingular, and the limiting form 
of this solution as b --f a is just the solution to the initial value problem with 
x(u) = (B, + B&l c. In this case we say the conditions (1.2) are compatible. 
This is the case that is considered in detail in [4], and it appears to be the only 
one in which the existence of a solution can be guaranteed except for certain 
special equations of higher order. In other cases it is necessary to assume that 
the solution to the system (l.l), (1.2) is in some sense well determined, and 
this assumption is basic to our approach. 

The principal difficulties in the use of shooting methods are caused 

(i) by instability of the initial value problem for the system of differential 
equations (and this is not to be confused with instability of the numerical 
method), and 
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(ii) by the requirement for good starting values in the most common 
methods used for the iterative solution of nonlinear problems. 

It is hoped that this paper makes contributions to both these problems. 
The plan of the paper is as follows. In the next section a formal solution 

is given in the linear case for the problem of finding a vector of initial values 
such that the solution to the initial value problem for Eq. (1.1) satisfies also 
the boundary conditions (1.2). In Section 3 the problem of instability is 
considered for linear systems, and it is shown that the so called multiple 
shooting methods can be used for solving problems which are well determined 
in a certain sense and for which conventional shooting methods are unsuitable. 
This result complements the treatment given in [4], and an example given 
by Holt [6] is solved by this method. In Section 4 the reduction to an initial 
value problem is carried out for a nonlinear system, and it is shown that the 
problem reduces to that of solving a system of nonlinear equations. In 
practice these equations are usually solved by Newton’s method, and this is 
described in Section 5. Here the correction at each stage is found by inte- 
grating a system of linear equations so that the considerations of Section 3 
apply. The main problem is to achieve convergence from starting values 
which do not require too much care in their selection, and the suggested 
approach is illustrated by several numerical examples considered difficult by 
other authors. 

All computations reported were carried out using single precision arith- 
metic on an IBM system 360/50 computer. The programs were written in 
FORTRAN, and the RKGS subroutine (see [5]) was used to integrate the 
differential equations. This subroutine uses an absolute accuracy criterion 
for adjusting steplength, and this was set to 10”’ for all calculations. 

2. REDUCTION TO AN INITIAL VALUE PROBLEM IN THE LINEAR CASE 

Consider the linear system of differential equations 

$ + A(t) x = r(t). 

The fundamental matrix of this system satisfies 

$+A(t)X=O (2.2) 

(2.3) 

subject to the initial condition 

X(u) = E, 



ON SHOOTING METHODS FOR BOUNDARY VALUE PROBLEMS 419 

where the square matrix E is assumed to have its full rank. Let v(t) be any 
solution to Eq. (2.1) then the general solution can be given in the form 
(particular integral plus complementary function) 

x(t) = v(t) + x(t) d, (2.4) 

where d is an arbitrary vector. If Eq. (1.2) is to hold, then d must satisfy 

{B,E + B&(b)) d = c - &v(a) - B&J). (2.5) 

NOTE. If E is chosen to be the unit matrix then d is just the correction 
that must be added to v(a) to give the correct initial value of x(t). In this 
case we speak of a shooting method. 

An alternative reduction can be based on the use of the adjoint equation 
(Goodman and Lance [7]) 

If Eq. (2.1) is premultipiied by Y, and Eq. (2.6) postmultiplied by x, then we 
obtain by adding the two equations 

whence 

setting 

we have 

-$ (Yx) = Yr(t) 

Y(6) x(6) - Y(a) x(u) = Ib Yr(t) dt; 
a 

Y(6) = B, 

(2.7) 

(2.8) 

(2.9) 

B,x(b) = Y(a) x(u) + SD Yr(t) dt 
a 

whence 

(B, + Y(a)) X(Q) = c - 
s 

1 Yr(t) dt. (2.10) 

REMARK. That the two methods are closely equivalent is readily seen by 
considering the relation 

$ (YX) = 0. (2.11) 

However there can be substantial differences in the work required to extract 
numerical values. 

4Wi27/2- 13 
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To see this note that by the rank condition on E no column can vanish 
so the determination of X requires n forward integrations. However, if any 
row of B, is identically zero then so is the corresponding row of Y, and the 
corresponding integration need not be carried out. Of course, the condition 

Y(u) = Bl (2.12) 

could have been used in integrating Eq. (2.6), in which case an equation for 
x(b) results. The appropriate choice is that for which the work required to 
integrate equation (2.6) is least. 

The methods outlined above extend readily to the multipoint boundary 
condition 

iI B&i) = =. (2.13) 

If the representation (2.4) is used for the solution then 

(2.14) 

The adjoint equation can also be used. Let Yi(t) satisfy equation (2.6) and the 
initial condition 

Yi(ti) = Bi (2.15) 

then 

giving 

BiX(ti) = Yi(U) X(U) + J” Y$(t) dt, 
a 

(2.16) 

(2.17) 

Yet another class of problem is the two-point boundary value problem 
supplemented by the interface conditions 

x-(h) = x+(h) + Si 2 i = 1, 2,... 4, (2.18) 

where a < tl < t, --* < t, < b. Let v,(t,-,) = 0 and Xi(tiel) = I, then in 
the interval t,-r < t ,( t, we can write (we define a = to , b = t,+J 

x(t) = V<(t) + Xi(t) di . (2.19) 
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Substituting this expression into the conditions (1.2) and (2.18) leads to the 
system of equations for the di , i = 1,2,... Q + 1 

i 

4 B&,+,(4 
-wl) - z 

m&J - z . . . . . 4 . . . . . . . . . . . . 
X&J - 1 

(2.20) 

NOTE. (i) Although Eq. (2.20) can be recast using the adjoint differential 
equation, this appears to be an example where this is of little use. 

(ii) When & = 5s = .** = 5, = 0, then this problem reduces to the two- 
point boundary value problem already considered. In this case Eq. (2.20) 
provides a statement of the problem equivalent to that of Eq. (2.5), and we 
refer to this as a multiple shooting formulation. 

(iii) With th e s p ecialization of v,(t& and Xi(ti-r) given above, we have 
di = x(ti& so that Eq. (2.19) can be written 

x(t,) = v,(t,) + X&J x(tt-1) (2.21) 

(assuming & = 0, i = 1,2 ,..., a). This equation can be interpreted as an 
accurate finite difference formulation of Eq. (2.1) (see also [4], example 
(3.3.6)). This observation would appear to provide an excellent starting 
point for a comparison of finite difference and shooting methods. 

3. THE STABILITY PROBLEM 

The principal difficulty in computing numerical solutions to initial value 
problems is instability of the differential equation. We say a solution x(t) 
of the differential equation is unstable (E, K) if there exists another solution 
v(t) such that 

and 
(9 II 44 - v(a) II G 6 (3.1) 

(ii) 11 x(t*) - v(t*) JJ > K (3.2) 

for at least one t*, a < t* < b. (We assume the use of the maximum norm 
and the corresponding subordinate matrix norm unless otherwise stated.) 
In practical applications E would be of the order of the rounding error, 
say lo-’ (max(L II x(4 II>) on an IBM system 360, while K would be of the 
order of max,< tGb 11 x(t) 11 . In thii case the smallest value of t* such that the 
inequality (3.2) is true would be an upper bound to the interval on which any 
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information could be obtained about x(t) by forward integration using a stable 
numerical procedure. 

EXAMPLE (3.1). Consider the system (with k > 0) 

dx 
-z= (3.1) 

The fundamental matrix is 

a+Y (P + W (a - Y) k (B - Q/k3 

x(t) = ‘5 
4 - 6) a + Y (B + W (01 - y) k2 
ke(, - y) k@ - 6) a+Y (B + W 

I 
’ 

(3.3) 

k3(13 + 8) k2b - y) 43 - 6) a + y 

where [Y = cash (kt), /3 = sinh (kt), y = cos (kt), and 6 = sin (kt), and it 
may be noted that 

cktX(t) + .25 (3.4) 

as kt -+ 03. 
To illustrate the perturbation of an exact integration scheme by round off 

error the results of computing x(t) numerically by means of the scheme 

x(a +pAt) = X(At) x(a + (p - 1) Al) (3.5) 

for initial vectors chosen so that the first component of x(t) should be, 
respectively ekt, e-kt, cos (kt), and sin (kt) are given in Table 3.1. The 
integrations were carried out with At = .l for k = .2 and 2, and the solutions 
are tabulated at p = 0, lo,20 ,..., 100. It will be seen that the calculation of 
the increasing solutions is perfectly satisfactory, but that the other calcula- 
tions can lead to erroneous results. 
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TABLE 3.1 

RFSULTS FOR EXAMPLE 3.1 

k = .2 

t (1) (11) (III) (IV) 

0 .lOOO El 
1 .1221 El 
2 .1492 El 
3 .1822 El 
4 .2225 El 
5 .2718 El 
6 .3320 El 
I .4055 El 
8 .4953 El 
9 .6049 El 

10 .7388 El 

.lOOO El 

.8187 EO 

.6703 EO 

.5488 EO 
A493 EO 
.3679 EO 
.3012 EO 
.2466 EO 
.2019 EO 
.1653 EO 
.1354 EO 

k=2 

- 

.lOOO El 

.9801 EO 

.9211 EO 

.8253 EO 

.6967 EO 

.5403 EO 

.3624 EO 

.1700 EO 
- .2918 E-l 
- .2272 EO 
-.4161 EO 

0.0 
.1987 EO 
.3894 EO 
.5646 EO 
.7173 EO 
.8415 EO 
.9320 EO 
.9854 EO 
.9995 EO 
.9738 EO 
.9093 EO 

0 .lOOO El 
1 .7389 El 
2 .5460 E2 
3 .4034 E3 
4 .2981 E4 
5 .2202 E5 
6 .1627 E6 
7 .1202 E7 
8 .8885 E7 
9 .6565 E8 

10 .4851 E9 

.lOOO El 

.1353 EO 

.1834 E-l 

.2655 E-2 

.1647 E-2 

.9722 E-2 

.7151 E-l 

.5284 EO 

.3904 El 

.2885 E2 

.2131 E3 

.lOO El 
- .4161 EO 
- .6536 EO 

.9604 EO 
-.1434 EO 
- .8236 EO 

.9581 EO 

.9810 EO 

.5281 El 

.4676 E2 

.3410 E3 

0.0 
.9093 EO 

- .7568 EO 
- .2795 EO 

.9884 EO 
- 3509 EO 
- .5876 EO 

.6136 EO 
- .3073 El 
- .2133 E2 
-.1511 E3 

As each of the columns of X(t) correspond to increasing solutions of Eq. 
(3.1), the above remarks indicate that for large Kt (say of order 15 or more on 
an IBM system 360) the computed approximation (say X(t)) will agree with 
X(t) given by Eq. (3.4) to high relative accuracy. By Eq. (2.5), the equations 
determining the initial vector have matrix B, + &X(b), and this not only 
has large elements, but it is nearly singular to working accuracy. 

The numerical difficulties described above are extreme, and unfortunately 
the situations in which they occur are not uncommon. The problem here 
is that certain solutions to the differential equation are increasing so rapidly 
in magnitude that they cause all information concerning the other solutions 
to be lost in calculations carried out using finite precision. This is a somewhat 
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different aspect of the problem of instability to that illustrated in table 3. I. 
Of course information can bc lost by solutions decreasing in magnitude 
relative to others, and this would bc more difficult to determine. Ifowcvcr 
the relation 

det (X(r)) := det (X(a)) cxp (1: trace (A) dr) (3.6) 

cnsurcs that rapid dccreasc must to some extent be balanced by rapid increase, 
and provides a justification for using the size of I: X(t) 1 to indicate instability 
problems. 

When a stable numerical integration scheme is used, then the error can, 
in gcncral, be bounded by an expression of the form 

E(I) .. K,(dr)’ w-y (3.7) 

where K, , K, , s arc positive constants (for linear multistcp methods set for 
cxamplc Hcnrici [S]). The stability of the method is indicated by the cxpo- 
ncntial term which detcrmincs the error growth depending on I but not on 
dl so that it is independent of the number of steps required to reach 1. 
Equation (3.7) can be interpreted in two ways: (i) that arbitrarily high accur- 
acy can bc obtained by working with small enough dr (requiring arithmetic 
facilities of arbitrarily high precision), and (ii) that reasonable accuracy an 
be obtained for modcratc values of df provided ; i - a : is small enough. It 
is strcsscd that Eq. (3.7) is valid for differential equations unstable in the 
scnsc used here. 

Although ; X(b) ” is a function of the problem, the magnitude of 1’ X,(l,) ‘. 
in the intcrfacc formulation is also a function of the number and disposition 
of the interface points which can clearly bc chosen to restrict its growth 
(as 11 X,(f,-,) :, - I). From Eq. (3.7), a suitable distribution of the interface 
points will cnsurc that the elements of S, can bc computed to desired 
accuracy. Thus, given S :. 0 and y >+ 1, there is a multiple shooting formula- 
tion of the boundary value problem such that 

(i) I :13’. . 7 and (ii) ; M - ,&I ,. L: 6, 

where M is the matrix of the equations determining the vector of initial 
values (Eq. (2.20)), and .u is the computed approximation to it. 

kMARK . In general it is not difficult to arrange for conditions (i) and (ii) 
to bc satisfied. 3Iost gcncral purpose subroutines attempt to satisfy (ii), and 
this only makes scnsc if some condition similar to (i) is imposed. In the 
subroutines in (51 this must bc done through the use of a special user provided 
output routine. 
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If now the solution to this multiple shooting problem is well determined, 
and if a stable method is used to solve the set of linear equations (2.20) for 
the vector of initial values, then it can be expected that this computation will 
give results which are a good approximation of the true solution. 

EXAMPLE (3.2). In Holt [6] the differential equation 

25 - (1 + t”)y = 0 

Y(0) = 1, Y(L) = 0 

is considered. According to Holt the solution cannot be obtained for L > 3.5 
by conventional shooting methods. In our treatment the differential equation 
was turned into a first-order system, and a multiple shooting formulation 
was used with 50 equispaced interface points in 0 < t < 10.2 (dt = .2). 
In Table 3.2 values of xi(t), x2(t), and 11 X(t + dt) 11 are tabulated for 
t = O(l)10 and X(t) = I. The solution obtained is in excellent agreement 
with that given by Holt. 

TABLE 3.2 

RESULTS FOR EXAMPLE 3.2 

t Xl X2 II x II 

0 .lOOO El 

1 .2593 EO 

2 .3455 E-l 

3 .1987 E-2 

4 .4590 E-4 

5 .4188 E-6 

6 .1409 E-8 

I .1821 E-11 

8 .8825 E-15 
9 .1597 E-18 

10 .1058 E-22 

-.1128 El 1.22 
- .4250 EO 1.50 
--.8355 E-l 2.24 
- .6565 E-2 3.50 
-.1945 E-3 5.38 
-.2138 E-5 8.03 
- .8685 E-8 11.62 
-.1300 E-10 16.42 
-.7169 E-14 22.75 
-.1455 E-17 31.05 
-.1106 E-21 41.86 

The method used for solving the linear equations is of particular import- 
ance. Here it would seem to be attractive to partition the matrix of Eq. (2.20) 
and express each of the di in terms of di . However this procedure is just the 
unstable recurrence relation illustrated in example (3.1), and we have already 
argued that this should be avoided. Note that if this elimination could be 
carried out exactly Eq. (2.5) results. Thus ordinary shooting methods can be 
thought of as resulting from the application of a potentially unstable elimina- 
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tion process to Eqs. (2.20). Both complete and partial pivoting strategies 
have been used successfully to solve the system of linear equations. It is 
particularly important that partial pivoting is successful as it is not difficult 
to organize this method to economise on storage. This is an important con- 
sideration in using multiple shooting techniques even for quite small values 
of n. 

The most usual application of multiple shooting methods has been to 
particular problems for second-order equations where to achieve stable 
computations the equation is integrated from each boundary point and mat- 
ched at a suitable interior point (for example Fox [9]). Morrison, Riley and 
Zancanaro [lo] suggest multiple shooting methods as an elaboration of this 
device, and in both [4] and [lo] the device of reversing the direction of 
computation is suggested. While it is not difficult to include this here, it has 
not been used in example (3.2) which is typical of the type of problem to 
which this device applies; and it is suggested that the interface points be 
chosen (i) to limit the size of 11 Xi 11, and (ii) to provide a convenient tabulation 
of the solution. This second consideration again reflects the close connection 
between multiple shooting methods and finite difference methods. 

4. REDUCTION TO AN INITIAL VALUE PROBLEM, THE NONLINEAR CASE 

As the ordinary shooting method is a special case of multiple shooting 
methods only the latter are considered here. 

Let the solution to equation (1.1) satisfying the initial condition 

x(t,-,) = di (4-l) 

be written x(t, t+r , di) or, more briefly, x,(t), then the condition that 
Eqs. (1.2) and (2.18) be satisfied gives 

44 + 4xa+d4 = (4.2) 

x,(b) = di+i + & , i = I, 2,..., q (4.3) 

a set of nonlinear equations for dl , d, ,... d,+l . 
In this case instability of the differential equation is a factor in determining 

the accuracy to which the x,(tJ can be computed. If we assume that f is 
twice continuously differentiable as a function of its arguments, and if we set 

where 

Qij = g (C x), 
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then, by using the inequality 

where the bar indicates that an appropriate mean value is taken and y satis- 
fies Eq. (l.l), it is easy to show that if 

II x(L) - YP-I> II e E (4.5) 
then 

II x(h) - y(h) II d ce r,(ti-t<-l) -t KE2($ - &), (4.6) 

where K is a constant. Thus, as in the previous section, a suitable choice of 
the interface points will ensure that accurate approximations to Eqs. (4.2) 
and (4.3) can be computed. 

5. SOLUTION OF THE NONLINEAR EQUATIONS 

The most frequently used technique for solving the nonlinear Eqs. (4.2) 
and (4.3) is Newton’s method (or a variant in which derivatives are estimated 
by finite differences). Let the current approximation to the solution of Eqs. 
(4.2) and (4.3) be denoted by d:j’, i = 1,2,..., Q + 1, then the corresponding 
corrections ez!j) given by Newton’s method satisfy the linear equations 

Blelj) + B J(j) e(d 2 a+l q+l = c - B,dij’ - B,x$(b) (5.1) 
and 

Jf)e!j) - & = pi + d$, - xV’(t .) 2 z z 7 i = 1) 2 )...) Q, (5.2) 

where the matrix Jjj) has elements 

To compute Jij’ note that it is equal to X(ti) where X(t) satisfies the differen- 
tial equation 

dX 
z = Q(t) x (5.3) 

and the initial condition 
X@-1) = 1) (5.4) 

where Q(t) is the matrix with components (ajJ&,) (t, x?‘(t)). It will be 
noted that the Jj” are computed by solving systems of linear differential 
equations, and that they play a role formally identical to that of the Xi in the 
linear case. In particular we must here choose the interface points to ensure 
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that the Jjj) are reasonably bounded in norm. By comparing the inequality 
(4.4) with the result of taking norms in Eq. (5.3), it will be seen that a choice of 
interface points that ensures that the 11 Jjj) (/ are reasonably bounded can be 
expected to be suitable for the calculation of Eqs. (4.2) and (4.3). 

The convergence of Newton’s method is guaranteed only for a sufficiently 
good first approximation. However a useful weakening of this often stringent 
requirement can frequently be obtained by the following device [ll]. 
Let R(d) be defined by 

R(d) = II c - &A - &x,,(b) iI: + i II Pi + di+l - xi(h) II; 3 (5.5) 
i=l 

where the norm is the euclidean vector norm. Then R has a minimum of zero 
when d satisfies Eqs. (4.2) and (4.3), and the problem of solving these equa- 
tions is equivalent to finding the minimum of R. The result that justifies 
introducing R is that, provided the matrix of Eqs. (5.1) and (5.2) is nonsingular 
and e does not vanish identically then for some w > 0 

R(d(i) + we(g)) < R(d(j)). (5.6) 

This result is usually expressed by saying that the Newton correction e is 
downhill for minimizing R, and in this case we take 

d(j+l) = d(i) + we(i) (5.7) 

as the approximation to the solution for the next step of the iteration. 
Note that ultimately we expect to be able to use the full Newton correction 

so that 1 is a sensible initial estimate for w. If this value is compatible with the 
inequality (5.6), it is accepted; otherwise w must be reduced and bisection 
provides a particularly simple strategy. 

EXAMPLE 5.1. In [6] the following boundary value problem is given as a 
diacult example. It is also used by Roberts and Shipman [2]. The problem is 
to solve the system of differential equations 

!.kzx 
dt ’ 

dx,- 
dt - x3 

dx,- 
dt 

- - 1.55X,X, + .1X,2 + 1 - x42 + .2x, 

dx, _ 
z - x5 

dx 5- 
dt - - 1.55x,x, + 1.1x2x, + .2x, - .2 
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subject to the boundary conditions 

XI(O) = x2(0) = x4(0) = 0, 

%2(b) = 0, X*(b) = 1. 

This example corresponds to a boundary layer problem, and it is desirable 
for b to be large compared with the boundary layer thickness. Roberts and 
Shipman [2], not without difficulty, computed the solution for b = 11.2. 

In the calculations reported here a multiple shooting approach was used 
with nine equispaced interface points in 0 < t < 10. The results are reported 
in table 5.1 for three different choices of dj”, i = 1,2,..., 10. 

(i) die’ estimated roughly from the curves gives in [6], 

(ii) die’ = 0, and 

(iii) dj”’ = (- 1.) 0, 0, 1.) 0)r. 

The results give the iteration number and the value of R and w for each set of 
d’a’. 

TABLE 5.1 

RFSULTS FOR EXAMPLE 5.1 

I.C. (9 (ii) (iii) 

ICOUNT W R W R w R 

0 .1162 E2 
1 1. .6133 El 
2 1. .2019 E-l 
3 1. .8138 E-5 
4 1. .3235 E-9 
5 .5 .1144 E-9 
6 
I 
8 
9 

10 

.I8 E-2 

.I8 E-2 

.625 E-l 

.625 E-l 

.5 

.5 

..J 

.125 

.125 

.156 E-l 

.I382 E2 

.1316 E2 

.1309 E2 

.1299 E2 

.9281 El 

.8636 El 

.I211 El 

.4711 El 

.4468 El 

.4426 El 

.4352 El 

.2000 El 
.5 .I531 EO 
.5 .2695 EO 

1. .1231 E-l 
1. .I981 E-2 
1. .3521&-S 
1. .6900 E-9 
1. .1417 E-9 

From Table 5.1 it will be seen that no convergence was obtained for the 
second set of initial conditions (the crudest guess), while excellent conver- 
gence was obtained for the others. The convergence for the third set is of 
particular interest because the values given to each dj”’ can be interpreted 
as an estimate of the free stream values. This information is generally avail- 
able in problems of this type. It is clear that, by comparison with the difficul- 
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ies reported in [2], the use of the multiple shooting method has simplified 
the choice of the initial approximation to d even when, as in this case, 
comparatively few interface points are used. 

EXAMPLE 5.2. This problem was suggested to the author by Dr G. N. 
Lance, and derives from a similarity solution to the flow between two infinite 
rotating discs [12]. The system of differential equations is 

dx, 2x -=- 
dt 2 

dx,- 
dt - X3 

dx3- 
dt 

- x,x, + x22 - x4” + k 

dx,- 
dt - x5 

dxg- 
dt - 2x,x* + x1x5 

and the boundary conditions are 

x,(O) = x40) = 0, x4(0) = 1, 

x,(b) = x,(b) = 0, X4(b) = s. 

This problem corresponds to a generalized eigenvalue problem [4] as K 
has to be determined so that all six boundary conditions are satisfied. It can 
be treated in the same way as the previous example by replacing K by a new 
dependent variable x,, and adding the extra equation (dx,/dt) = 0. The 
constant s appearing in the boundary conditions depends on the ratio of the 
speeds of rotation of the two discs, while 6, the distance between the discs, 
corresponds to the square root of the Reynolds number for the problem (the 
scaling of the problem is described in [12]). 

Calculations were carried out for three of the cases considered in [12] 
(s = .5,0, -.3). A gain a multiple shooting method was employed using nine 
equispaced interface points in 0 < t < b, and in this case the spacing of these 
points determined the Reynolds number for the problem. Initially d = 0 
was taken as a first approximation, and R and w are tabulated in Table 5.2 
for Reynolds numbers of 81 and 324. It is clear from these results that the 
calculations increase in difficulty as b is increased, and the modified Newton 
method here shows its value. 
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An interesting feature of these calculations is that the results for s = 0, 
b = 18 do not correspond to those given in [12]. The results in [12] were 
duplicated by recomputing the solution for b = 9, and then solving problems 
for b = 9.9, 11.7, 14.4, and 18, at each stage using the solution to the previous 
problem as an initial estimate for d. This device was also used to compute 
the solution for s = -.3, b = 18 which did not give satisfactory convergence 
in Table 5.2, and to follow the new solution found for s = 0, b = 18 to 
smaller values of b. This second set of calculations became very difficult for 
b < 15 and the solution was here changing very rapidly. This new solution 
appears to correspond to the solution found by Rogers and Lance [13] for the 
flow due to a single rotating disc. 

The technique whereby the solution to the problem of interest is found by 
solving a sequence of problems depending on a parameter, using the solution 
for one value of the parameter as an initial estimate for the solution at the 
next, has occurred quite frequently in the literature. In this context it has been 
called the method of continuation by Roberts and Shipman [2], [3] who 
apply it in solving the problem in example 5.1, and it has been used in 
precisely similar fashion to solve a closely related problem by Rogers and 
Lance 1131. The method of continuation is always available when the bound- 
ary conditions are compatible. This is not the case in any’ of the examples 
considered here, so that difficulties could possibly occur for values of b which 
are too small. 

6. IN CONCLUSION 

For linear boundary value problems it is suggested that the interface points 
be chosen so that the computed approximation @ to the matrix M of the 
multiple shooting formulation satisfies 

(9 II ml1 <r and (ii) ((M - JZll <S, 

where 6 is an appropriate absolute accuracy parameter and y > 1. In the 
examples considered a partial pivoting strategy has proved satisfactory in 
solving the resulting set of linear equations, and this is significant because this 
technique can be programmed to economize on storage. 

Similar considerations have proved satisfactory in determining the inter- 
face points in the nonlinear case. Here they are chosen to ensure that funda- 
mental solution matrices of the variational equation (5.3) are suitably bounded 
in norm. The integration of this equation is a necessary step in the application 
of Newton’s method. 

In applying Newton’s method it is often necessary to choose the initial 
approximation carefully to ensure convergence, and example 5.1 is one in 
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which multiple shooting has proved less exacting than ordinary shooting 
in this respect. A modification to Newton’s method which improves its 
convergence behaviour has been exemplified, and a method of continuation 
indicated. It can be seen that the combination of a suitably chosen multiple 
shooting technique with the modified Newton’s method and a method of 
continuation provides a powerful problem solving tool. 
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