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a  b  s  t  r  a  c  t

Rhipicephalus  microplus  is one  of  the  most  widely  distributed  and  economically  impor-
tant  ticks,  transmitting  Babesia  bigemina,  B.  bovis  and  Anaplasma  marginale.  It  was  recently
introduced  to  West  Africa  on  live  animals  originating  from  Brazil.  Knowing  the precise
environmental  suitability  for  the  tick  would  allow  veterinary  health  officials  to  draft  vector
control  strategies  for different  regions  of  the  country.  To  test  the performance  of modelling
algorithms  and  different  sets  of environmental  explanatory  variables,  species  distribution
models  for  this  tick  species  in Benin  were  developed  using  generalized  linear  models,  lin-
ear discriminant  analysis  and  random  forests.  The  training  data  for  these  models  were  a
dataset  containing  reported  absence  or presence  in  104  farms,  randomly  selected  across
Benin.  These  farms  were  sampled  at  the  end of the  rainy  season,  which  corresponds  with  an
annual  peak  in  tick  abundance.  Two  environmental  datasets  for  the  country  of Benin  were
compared:  one  based  on  interpolated  climate  data  (WorldClim)  and one  based  on remotely
sensed  images  (MODIS).  The  pixel  size  for both  environmental  datasets  was  1 km.  Highly
suitable  areas  occurred  mainly  along  the  warmer  and  humid  coast  extending  northwards
to  central  Benin.  The  northern  hot  and  drier areas  were  found  to be unsuitable.  The  models
developed  and  tested  on  data  from  the  entire  country  were  generally  found  to perform  well,
having an  AUC  value  greater  than 0.92.  Although  statistically  significant,  only  small  differ-
ences  in  accuracy  measures  were  found  between  the  modelling  algorithms,  or  between
the  environmental  datasets.  The  resulting  risk  maps  differed  nonetheless.  Models  based  on
interpolated  climate  suggested  gradual  variations  in  habitat  suitability,  while  those  based

on remotely  sensed  data  indicated  a sharper  contrast  between  suitable  and  unsuitable
areas,  and  a patchy  distribution  of the  suitable  areas.  Remotely  sensed  data  yielded  more
spatial detail  in  the predictions.  When  computing  accuracy  measures  on  a subset  of data
along  the  invasion  front,  the  modelling  technique  Random  Forest  outperformed  the  other
modelling  approaches,  and  results  with MODIS-derived  variables  were  better  than  those
using WorldClim  data.
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The  high  environmental  suitability  for R.  microplus  in  the  southern  half  of Benin  raises  con-
cern  at  the  regional  level  for animal  health,  including  its potential  to substantially  alter
transmission  risk  of Babesia  bovis.  The  northern  part  of  Benin  appeared  overall  of low  envi-
ronmental  suitability.  Continuous  surveillance  in the  transition  zone  however  remains
relevant,  in  relation  to  important  cattle  movements  in  the  region,  and  to the  invasive
character  of R.  microplus.
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. Introduction

The cattle tick Rhipicephalus microplus (Canestrini) is
ne of the most important disease vectors for livestock in
ropical and sub-tropical countries. The largest challenge
or control is its reported resistance to common acari-
ides. This tick transmits Babesia bovis and B. bigemina, as
ell as Anaplasma marginale (Madder et al., 2011). Bovine

abesiosis is considered globally amongst the most signif-
cant tick-borne diseases of cattle (Hoch et al., 2012). The
riginal distribution range of R. microplus covers southern
nd southeastern Asia. However, during the second half
f the nineteenth century it was transported with live-
tock to eastern and southern Africa, the Comoro Islands,
nd Mascarene Islands. The approximate date and route of
ntroduction and spread into Central and South America
s unknown. This tick was also reported in northern and
astern Australia, New Caledonia and French Polynesia for
bout 100 years, but recent research has acknowledged this
o be a different species, and renamed it Rickettsia australis
uller, after its original name in Australia (Estrada-Peña
t al., 2012). About a decade ago, the confirmed records
f R. microplus in Africa were restricted to southern and
outh eastern Africa (Estrada-Peña et al., 2006). However,
. microplus has recently established viable populations in
est African countries, namely Ivory Coast and Benin (De

lercq et al., 2012; Madder et al., 2012), Burkina Faso, Mali
nd Togo (Adakal et al., 2013), and Namibia (Nyangiwe
t al., 2013). All four species of the Rhipicephalus Boophilus
roup (Rhipicephalus annulatus,  Rhipicephalus decoloratus,
hipicephalus geigyi and R. microplus)  are thus currently
resent in the West-African region.

R. microplus is believed to have been introduced to Benin
n 2004 from Brazil by imported Girolando cattle (Madder
t al., 2012). The farm that first imported Girolando cattle,
pinnou state farm, is situated in southern Benin and is
ssumed to be the original site of introduction.

Spatially explicit knowledge of environmental suitabil-
ty can contribute to an efficient allocation of resources
or control. In an attempt to predict the likely spread of R.
icroplus, a number of approaches using spatially explicit

ata are available to estimate the potential species distri-
ution (Elith et al., 2006). The majority of these approaches
ompare the known distribution of a species to eco-climatic
ariables and derive statistical associations, which are then
xtended to areas with unknown species occurrence. Dif-
erent techniques vary in how they model the distribution
f the response variable, select relevant predictor variables,

efine functions for each variable, and predict geographic
atterns of occurrence (Guisan and Zimmermann, 2000).
ome studies use general linear models (GLM) to predict
lished  by  Elsevier  B.V.  This  is an  open  access  article  under  the  CC
D  license  (http://creativecommons.org/licenses/by-nc-nd/3.0/).

the distribution of disease and their vectors (Klingseisen
et al., 2013) or linear discriminant analysis (LDA) (Ayala
et al., 2009), while the number of papers using machine-
learning methods (such as RandomForests – RF) is rising
(Elith et al., 2011, 2006).

Not only the modelling approach, but also the envi-
ronmental information sources used to explain species
distribution is evolving. Eco-climatic variables are rou-
tinely used as predictor variables for tick distribution; like
many other arthropods, ticks are sensitive to high tem-
peratures and drought (Zeman and Lynen, 2010). The local
climate can promote or inhibit several critical parts of their
life cycle (Corson et al., 2004). Survival of the eggs and
larvae depends largely on saturation deficit, regulated by
temperature and relative humidity (Corson et al., 2004;
Zeman and Lynen, 2010). Data layers describing vegetation
characteristics can be a valuable addition to the predictor
variables, since vegetation patches can locally provide shel-
tered habitats for ticks where climatic conditions are too
harsh (Corson et al., 2004).

Two major approaches have been developed to mon-
itor the factors creating favourable conditions for tick
activity and survival, one involving the interpolation of
weather station data, and another involving a diversity
of remotely sensed data. While weather station data
have been processed to produce biologically meaningful
climate-related variables, the remotely sensed data have
provided a broader diversity of environmental descrip-
tors, including information on vegetation cover. Data layers
describing vegetation characteristics (such as the Normal-
ized Derived Vegetation Index, NDVI) can be a valuable
addition, since a description of the vegetation could replace
data on relative humidity, a key factor for tick survival. In
the late nineties, pioneering work has been done on the
biological link between disease vector distributions and
NDVI as measured by satellite sensors (Randolph, 1997;
Rogers et al., 1996). Distribution models for Ixodes ricinus
have identified NDVI as the best performing single vari-
able describing its habitat (Estrada-Peña, 1999). Data on
climate have been collected and distributed by meteorolog-
ical networks on the internet, and remotely sensed datasets
have become available for download (Calistri et al., 2013;
Klingseisen et al., 2013) and are being rapidly adopted by
epidemiologists for characterising vector habitats (Kalluri
et al., 2007).

Given the increasing use of species distribution
modelling techniques and growing accessibility of envi-
ronmental data layers of high spatial resolution, a clear

need exists for comprehensive analyses of the predictive
performance of species distribution modelling techniques
and the effect of different environmental data layers on the

http://creativecommons.org/licenses/by-nc-nd/3.0/
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Table 1
Code and description of all used variables.

Code Description Source

bio 01 Annual mean temperature Worldclim
bio 02 Mean diurnal range Worldclim
bio 03 Isothermality Worldclim
bio 04 Temperature seasonality Worldclim
bio 05 Max  temperature of warmest month Worldclim
bio 06 Min  temperature of coldest month Worldclim
bio 07 Temperature annual range Worldclim
bio 08 Mean temperature of wettest quarter Worldclim
bio 09 Mean temperature of driest quarter Worldclim
bio 10 Mean temperature of warmest quarter Worldclim
bio 11 Mean temperature of coldest quarter Worldclim
bio 12 Annual precipitation Worldclim
bio 13 Precipitation of wettest month Worldclim
bio 14 Precipitation of driest month Worldclim
bio 15 Precipitation seasonality Worldclim
bio 16 Precipitation of wettest quarter Worldclim
bio 17 Precipitation of driest quarter Worldclim
bio 18 Precipitation of warmest quarter Worldclim
bio 19 Precipitation of coldest quarter Worldclim
dLST a0 Average day temperature MODIS
dLST a1 Annual variability in day temperature MODIS
dLST a2 Biannual variability in day temperature MODIS
dLST a3 Triannual variability in day temperature MODIS
NDVI a0 Average NDVI MODIS
Fig. 1. (a): Situation of Benin in West Africa and (b) the location of the
sampled points.

performance of these techniques (Zeman and Lynen, 2006).
This study aims at evaluating the predictive performance
of different modelling algorithms and different environ-
mental datasets. The results produced also highlight the
environmental suitability for R. microplus in Benin.

2. Materials and methods

2.1. Study area

The study was conducted in Benin (Fig. 1). Benin cov-
ers a land area of 112,622 km2 and is located between
1◦00′–3◦51′E and 6◦14′–12◦24′N. The country is divided in
two latitudinal climatic zones. The southern climatic zone
has an equatorial type of climate with four seasons; both
the dry and wet seasons occur twice a year. In the north, the
wet and dry seasons occur only once a year. About 65% of
the whole territory of Benin is covered by bushy vegetation
suitable for grazing.

2.2. Data

Observed presence or absence of the cattle tick was

collected in 104 randomly selected farms throughout the
country. Each farm was visited once at the end of the rainy
season in 2011 (De Clercq et al., 2012). Geographic coordi-
nates on latitude and longitude in the WGS84 system were
NDVI a1 Annual variability in NDVI MODIS
NDVI a2 Biannual variability in NDVI MODIS
NDVI a3 Triannual variability in NDVI MODIS

recorded using smart phones equipped with the EpiCol-
lect application for the Android platform (Aanensen et al.,
2009). Two  animals were sampled at each farm, selecting
those with the highest tick load. Ticks of the R. Boophilus
genus were found at all farms, with an average 55 ticks per
animal (median 42 ticks per animal), varying between 2
and 250 R. microplus ticks per infested animal. This upper
limit was probably an underestimation since from heavily
infested animals not all ticks were collected because of time
constraints. Most cattle herders had applied tick control
measures one month prior to sampling, and thus only pres-
ence/absence at the herd level was used in further studies.
More information on sampling and tick identification pro-
tocols can be found in De Clercq et al. (2012). R. microplus
was  found in 50% of the sampled herds, which were
mostly located in the southern half of the country, while
it was largely absent from the northern half of the country
(Fig. 1).

Environmental data layers were collected from dif-
ferent sources. A list of all variables is included in
Table 1. The Worldclim and MODIS datasets are the most
widely used datasets in the species modelling litera-
ture. Worldclim data are based on interpolated weather
station data, while the data based on MODIS imagery
are not interpolated, but derived from satellite observa-
tions. Bioclimatic data were obtained from the WorldClim
database (http://www.worldclim.org/current). WorldClim
data layers were generated through interpolation of aver-
age monthly climate data from weather stations at spatial
resolution of 30 arc-second (Hijmans et al., 2005). Based

on average monthly measurements from 1950 to 1990,
this dataset contained layers describing the mean annual
temperature, as well as the maximum and minimum
temperature. Other layers included the minimum and

http://www.worldclim.org/current
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aximum monthly precipitation, as well was the mean
emperature during the rainy season. Since these data

ight be considered outdated, the result obtained using
he WorldClim data were compared with a more timely
emotely sensed alternative derived from the MODIS sen-
or. The MODIS constellation has been described in detail in
lingseisen et al. (2013). The products used in the present
tudy were the daytime land surface temperature (dLST)
nd the Normalized Difference Vegetation Index (NDVI),
oth with a spatial resolution of 1 km2. These MODIS prod-
cts were downloaded for the year 2011 from the LP
AAC website (USGS, 2013); both the dLST as the NDVI

mages were subjected to a temporal spline interpolation to
emove noise. The dLST-derived data were distributed with

 time interval of 8 days, while NDVI had a time interval
f 16 days. After spline interpolation, yearly averages and
easonal trends (referred to as harmonics) were extracted
rom the dataset using Fourier decomposition (Rogers and
andolph, 2006; Rogers et al., 1996). For the dLST variable,
he first three harmonics explained 73% of the variance,
hereas for the NDVI variables, the first three harmonics

xplained 79% of the variance. The mean values, as well as
he amplitude of the annual, bi-annual and tri-annual cycle
ere used.

Both ArcGIS (ESRI, 2009) and QuantumGIS (Quantum
IS Development Team, 2013) were used to process spatial
ata, project the data in geographic coordinates (datum:
GS84), resample all raster layers to 1 km resolution and

repare the maps.

.3. Variable preprocessing

Both datasets contained variables describing patterns
n temperature and precipitation, which can be highly cor-
elated. Including highly correlated variables in a model
akes it difficult to determine exactly how each vari-

ble influences the species distribution. The correlation
etween variables was computed for the two  sets of
redictor variables by a Spearman rank correlation test.
orrelation between variables was handled using Principal
omponents analysis (PCA). PCA is a standard method to
nalyse the pattern of variation in a dataset and translates
he data into independent axes—referred to as princi-
al components (Cumming, 2000). The resulting principal
omponents were screened for multivariate normality
sing QQ plots. Also, the distribution of the sampling points

n the environmental feature space was assessed by cal-
ulating the Mahalanobis distance of each pixel to the
ultivariate mean for both the WorldClim and the MODIS

ataset. The first five PCA components of the WorldClim
nd the MODIS datasets were used for modelling.

.4. Modelling

As R. microplus has been present in this region for a lit-
le less than a decade, it may  not yet have filled its entire
cological niche. The only way to assess this would be to

onitor the realized tick distribution continuously over a

ong time period. However, this tick has an invasive char-
cter (Madder et al., 2012) and the extensive livestock
ovements taking place in Benin from the north to the
ary Medicine 118 (2015) 8–21 11

southern part of the country and vice versa facilitate a rapid
expansion of the tick, leading to the assumption that it is
indeed possible that the tick has filled the majority of its
ecological niche after a decade.

Three modelling techniques were used: generalized lin-
ear models (GLM), linear discriminant analysis (LDA) and
random forests (RF). All analyses were implemented in
R statistical package version 2.15.3 (R Development Core
Team, 2013).

The observations were randomly divided into five parts;
each model was  run five times using respectively four parts
to train the model (i.e. the training set) and the fifth part
to validate the model (i.e. the validation set), each of the
five parts becoming the validation set in turn. This proce-
dure was repeated 100 times, resulting in 500 iterations for
each of the models (GLM WC,  LDA WC,  RF WC,  GLM MOD,
LDA MOD, RF MOD). The predicted probabilities by each
model run were referred to as suitability maps, indicating
the degree to which the local environment is suitable for R.
microplus.  The 500 runs for each model and dataset were
aggregated into mean and standard deviation suitability
maps.

2.4.1. Generalized Linear Models (GLM)
Generalized Linear Models (GLM) describe the relation-

ship between the response variable and a set of predictor
variables by looking for the best fitting and most parsi-
monious model (Pohar et al., 2004). Models were fit using
maximum likelihood and by allowing the linear model to
be related to the response variable via its link function. We
used the R package dismo (Hijmans et al., 2013), and the
‘binomial’ family with a ‘logit’ link.

2.4.2. Linear Discriminant Analysis (LDA)
Linear Discriminant Analysis (LDA) is commonly used

to determine which variables better discriminate between
two or more classes (here between presence and absence
sites) by finding combinations of variables that make the
groups as statistically distinct as possible. To discriminate
between the presence and absence sites, a linear discrimi-
nant function that passes through the centroids of the two
groups is used. The statistical computation of LDA is further
discussed by Kachigan (Kachigan, 1991). For linear discrim-
inant analysis, we used the R package MASS (Venables and
Ripley, 2007).

2.4.3. Random Forests (RF)
Random Forests (RF) is a machine learning technique

which generates multiple classifications or regression trees
which are aggregated afterwards to compute a classifica-
tion based on majority voting. The forest is grown by a
procedure called bootstrap aggregation. Each tree in the
forest is created using a random sample with replacement
of the full data set. A randomly selected subset of predic-

tor variables is used to split each node. More details on
RF computation can be found in Peters et al. (2011). We
implemented this modelling approach using the R package
randomForest (Liaw and Wiener, 2002).
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2.4.4. Model evaluation
All models were checked for residual spatial auto-

correlation using Moran’s I (Haining, 2003). A five-fold
cross-validation was used to assess the performance of
the models. As 500 training-validation runs were per-
formed, we obtained 500 sets of accuracy measures for
each of the six combinations of modelling approaches and
datasets (GLM WC,  LDA WC,  RF WC,  GLM MOD, LDA MOD,
RF MOD). Five measures of model performance were used
to assess the accuracy of the models: percentage correctly
classified (PCC), sensitivity (Se), specificity (Sp), Kappa
index of agreement (KIA), and Area under the Receiver
Operating Characteristic (ROC) curve (AUC).

The first four measures of model performance (PCC, Se,
Sp, KIA) require a threshold value in order to convert the
probability of species occurrence into absence/presence
classes. Jiménez-Valverde and Lobo (2007) pointed out
the importance that prevalence be taken into consider-
ation when selecting the criterion to set this threshold.
This threshold was therefore set at 0.5, which was  the
prevalence of R. microplus in the dataset. PCC is the per-
centage of test observations that are correctly classified.
Se and Sp express respectively the proportion of correctly
predicted presences and the proportion of correctly pre-
dicted absences. KIA measures the proportion of correctly
predicted sites after the probability of chance agreement
has been removed (Moisen and Frescino, 2002). KIA values
are negative when the agreement between prediction and
observation is worse than expected by chance, and reaches
1 in case of perfect agreement. The ROC plot is obtained by
plotting Se against 1-Sp at varying values of the threshold.
The area under the ROC curve (AUC) measures the ability of
the model to discriminate between presence and absence
sites, regardless of a probability threshold. The AUC ranges
from 0 to 1, a score of greater than 0.5 indicates a model
better than random guessing (Peters et al., 2011).

Accuracy measures were analysed for two datasets:

1. Based on the validation set in the five-fold cross-
validation. The entire set of 104 points was randomly
divided into four parts (making a total of 84 points) for
fitting the model, and one part (consisting of 20 points)
for model validation. These accuracy measures provided
information on the overall predictive performance of the
model.

2. Considering the apparent north-south gradient in the
presence or absence of the tick (Fig. 1), points in the
extreme north or south of the country are expected to be
easily predictable. In a second phase, the accuracy meas-
ures were therefore computed taking only the 33 points
in the transition zone, between 9.26 and 10.42 degrees
latitude. These values corresponded respectively with
the most southerly absence and the most northerly pres-
ence of the cattle tick.

The accuracy measures of these six models (GLM WC,

GLM MOD, LDA WC,  LDA MOD, RF WC,  RF MOD) were
tested for significant differences. As these values did not
follow a normal distribution, we used a Kruskall–Wallis
test to detect a difference between models, and a Ta

b
le

 

2
Sp

ea
rm

an

 

R
a b

bi
o

01
bi

o  

02

 

−
bi

o
03

bi
o  

04

 

−
bi

o
05

bi
o

06
bi

o  

07

 

−
bi

o
08

bi
o 

09

 

bi
o

10
bi

o
11

bi
o 

12

 

−
bi

o
13

−
bi

o 

14

 

bi
o

15
−

bi
o  

16

 

−
bi

o  

17

 

bi
o 

18

 

bi
o 

19

 

−



e Veterin

M
p
t

3

3

3

d
a
v
c
0
(
B
w
d
t
w
c
(

3
c

i
c
t
a
b
a

3

v
p
t
t
h
l
(
S
m
F
B
c
W
c
t
T
B
D
C
w
t
m

E.M. De Clercq et al. / Preventiv

ann–Whitney U test as a post-hoc test for a pairwise com-
arison of all models. The Bonferroni correction was used
o allow for multiple comparisons.

. Results

.1. Variable preprocessing

.1.1. Correlation in the Worldclim dataset
Since the bioclimatic variables within Worldclim

escribed the climate in alternative manners, these vari-
bles were highly correlated (Table 2). Nearly all pairs of
ariables featured a significant correlation, and some had a
orrelation coefficient with an absolute value higher than
.9, such as Bio 01 (mean annual temperature) and Bio 11
mean temperature of the coldest quarter). The variable
io 07 (temperature annual range) was highly correlated
ith no less than seven other variables: Bio 02 (mean
iurnal range), Bio 03 (isothermality), Bio 04 (tempera-
ure seasonality), Bio 05 (maximum temperature of the
armest month), Bio 06 (minimum temperature of the

oldest month), Bio 15 (precipitation seasonality), Bio 17
precipitation of coldest quarter).

.1.2. Correlation in the dataset containing the Fourier
omponents of the MODIS data

Although Fourier components were assumed to be
ndependent, the results in Table 3 show that they were
orrelated. Nearly all pairs had significant correlation, but
he values were lower than with the Worldclim vari-
bles. The highest (absolute) value (−0.81) was observed
etween dLST a0 (average yearly daytime temperature)
nd NDVI a0 (average yearly vegetation greenness).

.1.3. Principal components of the WordClim datasets
Because of the high correlation between WorldClim

ariables, we transformed this dataset into principal com-
onents. The first five components explained 96% of the
otal variance. The loadings of the original variables for
hese factors are listed in Table 4. The first component
ad its highest loading for Bio 04 (Temperature Seasona-

ity), Bio 05 (Max Temperature of Warmest Month), Bio 07
Temperature Annual Range) and Bio 15 (Precipitation
easonality). The second component was largely deter-
ined by Bio 08 (Mean Temperature of Wettest Quarter).

or component three, the most influencing variables were
io 09 (Mean Temperature of Driest Quarter), Bio 13 (Pre-
ipitation of Wettest Month) and Bio 16 (Precipitation of

ettest Quarter). Bio 13 was an important variable for
omponent four, and its loading (0.49) was opposed to
hat of Bio 19 (Precipitation of Coldest Quarter) (−0.40).
he fifth component had its highest negative loadings for
io 02 (Mean Diurnal Range) and Bio 14 (Precipitation of
riest Month). Overall, all features included in the World-

lim dataset regarding temperature and precipitation were
ithheld in the first five principal components. Fig. 2 shows

hat this dataset did not diverge significantly from a normal
ultivariate distribution.
ary Medicine 118 (2015) 8–21 13

3.1.4. Principal components of the MODIS-derived
dataset

Although collinearity in this dataset was not as high
as in the Worldclim dataset, PCA was  also performed on
this dataset. The first five components explained 91% of the
total variance. The loadings of the original variables for the
first five factors can be found in Table 5. The first compo-
nent had its highest loading for the mean day temperature
(dLST a0). The second component was largely determined
by the difference between the hottest and coolest tem-
peratures (dLST a1). The third component was determined
mainly by tri-annual fluctuations in vegetation greenness
(NDVI a3). Tri-annual variability in temperature (dLST a3)
was the main contributing variable for the fourth compo-
nent. Finally, the fifth component could be attributed to
bi-annual variability in vegetation greenness. Fig. 2 shows
that this dataset did not diverge significantly from a normal
multivariate distribution.

3.2. Modelling

The models developed did not feature residual auto-
correlation and were generally found to have good
performance when the entire country was considered
(Table 6). All models had a mean PCC and AUC value of
greater than 0.92, which indicated a very good fit. The val-
ues for KIA were lower, but still higher than 0.83, which was
very good. Overall, all three modelling techniques thus per-
formed well and had a comparable modelling performance.
Pairwise comparison showed significant differences for all
accuracy measures (Table 7). The model LDA WC  had a
significantly lower value for PCC, AUC and KIA than the
other models, while the model RF MOD  scored signifi-
cantly higher on these accuracy measures. The models on
the WordClim dataset performed worse than those on the
MODIS dataset when Se was  considered, and better when
Sp was  considered.

No difference was  found between GLM and RF (except
for Sp), but when using LDA, Se was  significantly lower,
while Sp was significantly higher. The difference between
LDA and the other modelling techniques (GLM & RF) was
less pronounced when the MODIS variables were used as
predictor variables. Regardless of their statistical signif-
icance, the difference in accuracy between models was
small (<0.05).

In a second phase, we focussed on the accuracies in
the transition zone. When doing this, the PCC and AUC
measures dropped by more than 0.1 for the GLM and LDA
models (Table 8). For Se and KIA, only the RF models yielded
good results. When compared to GLM, LDA yielded signif-
icantly worse results for Se, Sp, Kappa and AUC (Table 9).
The RF models on the contrary yielded significantly bet-
ter results than the GLM and LDA models for all accuracy
measures in the transition zone. The comparison between
the two  datasets was less straightforward. For the RF mod-
els, no significant differences were found between the
WorldClim and the MODIS dataset in PCC, Sp and AUC

values. For KIA and Se, the RF model on MODIS variables
gave slightly better results. For the GLM and LDA models,
the choice of predictor variables had a significant impact
on all accuracy measures. The use of the MODIS dataset
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Table  3
Spearman Rank correlation for the MODIS-derived variables. Significant values are indicated by “*” (  ̨ = 0.05).

dLST a0 dLST a1 dLST a2 dLST a3 NDVI a0 NDVI a1 NDVI a2 NDVI a3

dLST a0 1
dLST a1 0.52* 1
dLST a2 0.77* 0.35* 1
dLST a3 0.32* 0.42* 0.19* 1
NDVI a0 −0.81* −0.33* −0.69* −0.24* 1
NDVI a1 0.54* 0.79* 0.34* 0.39* −0.33* 1
NDVI  a2 −0.54* −0.43* −0.45* −0.28* 0.52* −0.57* 1
NDVI  a3 −0.32* 0 −0.31* 0.06* 0.3* −0.09* 0.17* 1

Table 4
Loadings for the first five principal components for the dataset containing the WorldClim variables. The largest loadings for each component are printed in
bold.

Variables Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Cumulative Variance Explained (%) 57 79 88 94 96
bio  01 −0.22 −0.30 0.23 0.02 −0.08
bio 02 −0.26 0.18 −0.05 −0.20 −0.45
bio 03 0.28 -0.04 0.02 −0.23 −0.01
bio  04 −0.29 −0.01 −0.07 0.16 0.02
bio  05 −0.29 −0.02 0.07 −0.09 −0.29
bio  06 0.23 −0.26 0.20 −0.08 0.24
bio  07 −0.29 0.12 −0.06 −0.01 −0.29
bio  08 −0.10 −0.43 0.08 0.20 −0.02
bio 09 0.11 −0.24 0.51 −0.31 0.01
bio  10 −0.28 −0.17 0.13 0.09 −0.07
bio  11 −0.15 −0.34 0.34 0.03 −0.17
bio  12 0.26 0.18 0.18 0.12 −0.21
bio  13 −0.03 0.31 0.41 0.49 0.14
bio 14 0.25 −0.14 −0.11 0.33 −0.43
bio  15 −0.29 0.06 0.03 0.11 0.13
bio  16 0.00 0.37 0.43 0.25 0.02
bio  17 0.26 −0.17 −0.09 0.28 −0.31
bio  18 0.26 −0.10 −0.06 0.23 −0.24
bio  19 0.16 0.27 0.29 −0.40 −0.32

Table 5
Loadings for the first five principal components for the dataset containing the MODIS derived variables. The largest loadings for each component are printed
in  bold.

Variables Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Cumulative Variance Explained (%) 46 65 75 84 91
dLST  a0 −0.46 0.14 0.09 0.00 −0.28
dLST  a1 −0.36 −0.43 −0.22 0.14 −0.38
dLST  a2 −0.38 0.36 0.22 0.05 −0.35
dLST  a3 −0.22 −0.41 0.37 −0.79 0.12
NDVI  a0 0.36 −0.39 −0.36 −0.05 −0.15

−0.40
0.06

−0.42
NDVI  a1 −0.38 

NDVI  a2 0.39 

NDVI  a3 0.18 
improved Se, KIA, AUC for both GLM and LDA models, but
decreased Sp. For PCC, the use of remotely sensed data
improved for the LDA approach, but decreased for the GLM
approach.

Table 6
Accuracy statistics of the different models. All accuracy measures were determine
values  and standard deviation were computed for 500 iterations.

Approach Variables PCC Se 

Mean Sd Mean Sd 

GLM WC 0.93 0.05 0.90 0.09 

LDA  WC 0.92 0.05 0.85 0.10 

RF  WC 0.93 0.05 0.89 0.09 

GLM  MOD  0.93 0.06 0.92 0.09 

LDA  MOD  0.93 0.05 0.90 0.09 

RF  MOD  0.94 0.05 0.92 0.08 
 −0.33 0.19 0.00
 0.00 −0.27 −0.78

 0.72 0.49 −0.11
The predicted distribution of R. microplus for the dif-
ferent models is visualised in Figs. 3 and 5. As these are
the mean predicted values for 500 iterations, the standard
deviation around the mean is shown in Figs. 4 and 6.

d on the fifth fold, which was  not used for the fitting of the model. Average

Sp KIA AUC

Mean Sd Mean Sd Mean Sd

0.95 0.08 0.85 0.11 0.93 0.05
0.98 0.04 0.83 0.11 0.92 0.05
0.96 0.07 0.85 0.11 0.93 0.05
0.93 0.08 0.85 0.12 0.93 0.06
0.96 0.06 0.86 0.10 0.93 0.05
0.95 0.06 0.87 0.10 0.94 0.05
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Fig. 2. QQ plots assessing multiva

he general spatial trends in these six maps were simi-
ar. The southern and central parts of the country, subject
o relatively moderate temperature and higher precipita-
ion values, were considered suitable for the establishment
f R. microplus.  The northern hot and dry areas were less
uitable. When using the Worldclim dataset (Fig. 3), the

hoice of the modelling algorithm slightly changed the
hape of the transition zone between suitable and non-
uitable areas. The transition zone from GLM and LDA
odelling was smooth and gradual. Using RF, the transition
rmality of the respective datasets.

zone was wider; a yellow strip indicating medium suit-
ability descended almost to the coast along the mountain
range in the west of Togo. When looking at the maps on
variability between model runs (Fig. 4), GLM yielded rel-
atively high variability along the transition zone, as well
as in three other spots: around the middle of Togo, east-

wards along the coast, and towards the north of Benin.
Most of these spots were outside or on the country border
of Benin. As is illustrated by the map  of the Mahalanobis
distances in feature space (Fig. 7), these areas did not
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Table  7
Pairwise comparison of the accuracy measures determined on the fifth fold, which was not used for the fitting of the model. Significant differences at a
0.05  level are indicated by ‘* ’. Combinations not tested are indicated by blanks.

PCC GLM WC LDA WC RF WC GLM MOD LDA MOD  RF MOD

GLM WC
LDA WC *

RF WC – *

GLM MOD  – * –
LDA MOD  – * – –
RF  MOD * * * – –

SE
GLM  WC
LDA WC *

RF WC – *

GLM MOD * * *

LDA MOD  – * – *

RF MOD * * * – *

SP
GLM WC
LDA WC *

RF WC – *

GLM MOD * * *

LDA MOD – * – *

RF MOD – * – * –

KIA
GLM  WC
LDA WC *

RF WC – *

GLM MOD  – * –
LDA MOD  – * – –
RF  MOD * * * – –

AUC
GLM  WC
LDA WC *

RF WC – *

–
– 

*

GLM MOD  – *

LDA MOD  – *

RF  MOD * *

have environmental conditions (temperature and vegeta-
tion patterns) similar to the locations sampled during the
field sampling. The results for LDA appeared to be more
stable, with lower standard deviations throughout, and
variability only along the transition zone and eastwards
along the coast. Variability in the RF model was generally
low, and distributed in a patchy manner over the study
area.

Using the MODIS dataset (Fig. 5), the prediction maps
seemed to better fit the invasion front. It was difficult

to see a difference between the maps obtained from the
different modelling approaches. There was a small differ-
ence in width of the suitable strip along the Niger River
in the north of the country, and the area indicated as

Table 8
Accuracy statistics of the different models. These accuracy measures were deter
values and standard deviation were computed for 500 iterations for each model.

Approach Variables PCC Se 

Mean Sd Mean Sd 

GLM WC 0.82 0.02 0.38 0.13 

LDA  WC 0.80 0.01 0.14 0.01 

RF  WC 0.95 0.03 0.85 0.13 

GLM  MOD  0.81 0.03 0.51 0.11 

LDA  MOD  0.81 0.03 0.36 0.14 

RF  MOD  0.96 0.03 0.88 0.11 
–
– –

‘medium suitability’ (in yellow) occupied a larger part for
the RF approach. The variability around the predicted mean
suitability was generally lower than with the WorldClim
dataset (Fig. 6). GLM results showed most variability, LDA
and RF appeared to be more robust techniques. Most vari-
ability was  observed in the transition zone, and along the
Niger River along the northern border of Benin. This feature
was  also present in the map  of the Mahalanobis distances
in Fig. 7.
4. Discussion

The inference of the abiotic niche of the tick R. microplus
and its projection over territories at country scale are

mined on the points between 9.26 and 10.42 degrees latitude. Average

Sp KIA AUC

Mean Sd Mean Sd Mean Sd

0.94 0.03 0.37 0.11 0.73 0.02
0.98 0.02 0.17 0.03 0.74 0.01
0.98 0.03 0.86 0.11 0.94 0.06
0.90 0.02 0.42 0.1 0.72 0.06
0.93 0.01 0.33 0.13 0.66 0.02
0.98 0.03 0.88 0.09 0.95 0.05
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Table  9
Pairwise comparison of the accuracy measures, determined on the points between 9.26 and 10.42 degrees latitude. Significant differences at a 0.05 level
are  indicated by ‘* ’. Combinations not tested are indicated by blanks.

PCC GLM WC LDA WC RF WC GLM MOD  LDA MOD  RF MOD

GLM WC
LDA WC *

RF WC * *

GLM MOD * * *

LDA MOD * * * –
RF  MOD * * – * *

SE
GLM WC
LDA WC *

RF WC * *

GLM MOD * * *

LDA MOD – * * *

RF MOD * * * * *

SP
GLM WC
LDA WC *

RF WC * *

GLM MOD * * *

LDA MOD * * * *

RF MOD * * – * *

KIA
GLM WC
LDA WC *

RF WC * *

GLM MOD * * *

LDA MOD * * * *

RF MOD * * * * *

AUC
GLM WC
LDA WC *

RF WC * *

*

* 

–

n
t
s
c

F
(

GLM MOD * * 

LDA MOD * * 

RF MOD * *
ecessary steps to evaluate the vulnerability of those terri-
ories to the invasive spread of the tick. An effective control
trategy at the national level would spatially divide the
ountry in a surveillance zone where the environment is

ig. 3. Maps of mean predicted abiotic suitability for R. microplus developed usin
b)  LDA; (c) RF.
*

* *
unsuitable, a zone along the invasion front where spread
prevention is attempted, and a control zone in the areas
with high environmental suitability. If the survival of R.
microplus is localized, eradication or control of this tick

g the WorldClim data set and different modelling techniques: (a) GLM;
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uitabilit
Fig. 4. Maps of standard deviation around the mean predicted abiotic s
modelling techniques: (a) GLM; (b) LDA; (c) RF.

becomes feasible. Predictive modelling can provide such
cartographic information.

In this study we assessed the influence of modelling
techniques and the type of environmental data used on
the prediction of environmental suitability and its accu-
racy measures. Overall, when predicting disease risks, and
especially the potential risk for invasive species, presence
data are more reliable than absence data (Dicko et al.,
2014). Sites where the tick was not observed might rep-
resent suitable areas which were not yet invaded or where
the sampling method failed to catch an individual of the
present population. It thus makes more sense to prioritize
Se (i.e. true positive rate) over Sp (true negative rate).

During the preliminary study where different assump-

tions were verified, it was quite surprising to observe a high
correlation between the MODIS-derived variables, since it
is generally assumed that Fourier decomposition results in
independent variables. In ecological suitability modelling

Fig. 5. Maps of the mean predicted abiotic suitability for R. microplus developed
(b)  LDA; (c) RF.
y for R. microplus developed using the WorldClim data set and different

as in this study, not the coefficients of the Fourier harmon-
ics, but rather the derived amplitude and phase were used
since they allow for a better biological interpretation. Also
from a biological point of view, it is evident that vegeta-
tion greenness would be correlated with temperature. We
would therefore like to stress the importance of carefully
checking the correlation between the explanatory variables
before modelling.

The performance of the modelling techniques and
datasets tested over the entire country was  comparable;
significant differences were found, but they were rela-
tively small (<0.05). Differences in accuracy between the
models became apparent when zooming in to the tran-
sition zone, the area where the frontier of tick spread

may  change from year to year, and where the uncertainty
observed in our results suggests large changes in the suit-
ability for the tick. It is important to note that this transition
zone is actually the main area of interest, both from a

 using the MODIS data set and different modelling techniques: (a) GLM;
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ig. 6. Maps of standard deviation around the mean predicted abiotic suita
echniques: (a) GLM; (b) LDA; (c) RF.

iological and from a disease management point of view.
ere, RF came out as the best performing modelling

echnique with the highest values for various accuracy
easures, and the use of remotely sensed variables yielded

etter results.
The areas of high abiotic suitability predicted by the

odels in this study were in the southern part of the
ountry featuring an equatorial climate. This corresponds
ith the environmental requirements of R. microplus as

eported in other studies (Estrada-Peña et al., 2006). While

he differences in the maps produced by different mod-
lling approaches were mainly seen in local spatial details,
he differences in the maps obtained by using two different
ypes of explanatory variables were more striking.

Fig. 7. Maps of the Mahalanobis distances in the dataset containing
r R. microplus developed using the MODIS data set and different modelling

No gradual transition between suitable and non-
suitable was  seen in the MODIS-based maps, but rather a
varying density of suitable areas. This clearly reflects the
nature of the input data; the remotely sensed data gave a
more fragmented result simply because they contain more
spatial detail, since they were not based on interpolated
data but yielded an explicit measurement for each pixel.
MODIS imagery can detect thus smaller land cover ele-
ments that are not suitable for tick presence, such as water
bodies. This makes MODIS imagery better suited for cap-

turing the invasion front. Our results draw attention to the
fact that visual patterns may  differ widely between models
and input data, even if the values for the accuracy measure
do not reflect this.

 (a): WorldClim variables, and (b) MODIS-derived variables.
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A second advantage is that the timing of the MODIS
data fitted more closely to the sampling period. If data
on tick abundance would be collected longitudinally and
over different years, this could be put in relation with envi-
ronmental data collected during the respective sampling
period, and provide insight in intra- and inter-annual vari-
ability in tick presence and tick abundance.

We must consider the possibility that other datasets
might have given yet better results. For instance, the
Worldclim data give climate averages over the period
1950-1990, which does not coincide with the sampling
period (September–December 2011). The reason for not
using weather station data from the year 2011 is mainly
that they are not readily available in a format suitable
for modellers. Also, the value of specific conditions on a
particular year is limited for spatial prediction purposes.
Secondly, temperatures have risen by about 0.3 ◦C since the
second half of the 20th century (Hulme et al., 2001; Sarr,
2012). No evidence has been found indicating significant
increase or decrease in rainfall. Given the high accuracy
of the obtained models, it is unlikely that more recent cli-
mate data would have improved the predictions. Finally,
predictive models would probably improve when includ-
ing information about movements of cattle and details of
the life cycle processes of the tick.

5. Conclusions

We  compared the ability of several modelling algo-
rithms and datasets of explanatory variables (either climate
interpolated or remotely sensed information) to describe
the potential distribution of the tick R. microplus in parts
of West Africa. In this study the overall performance of the
modelling techniques and datasets tested was comparable.
Predicted probabilities differed most in the transition zone,
which is by definition the most difficult area to predict.
In the transition zone, the models using remotely sensing
data (MODIS) did better in capturing the invasion front.
All models and dataset concurred in the high environmen-
tal suitability of the southern half of the Beninese territory
for R. microplus.  This raises concern at the regional level
for animal health, including in regard to its potential to
substantially alter transmission risk of B. bovis. The north-
ern part of Benin appeared overall of low environmental
suitability; however, continuous surveillance in the transi-
tion zone is highly relevant, in relation to important cattle
movements in the region, and to the invasive character of
R. microplus.
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