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Membrane protein structural biology is still a largely

unconquered area, given that approximately 25% of all proteins

are membrane proteins and yet less than 150 unique structures

are available. Membrane proteins have proven to be difficult to

study owing to their partially hydrophobic surfaces, flexibility

and lack of stability. The field is now taking advantage of the

high-throughput revolution in structural biology and methods

are emerging for effective expression, solubilisation,

purification and crystallisation of membrane proteins. These

technical advances will lead to a rapid increase in the rate at

which membrane protein structures are solved in the near

future.
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Introduction
Membrane proteins continue to be among the most

challenging targets in structural biology. All cells and

organelles are contained within a hydrophobic lipid

bilayer. Integral membrane proteins are embedded in

the lipid bilayer, often with additional domains outside

the membrane. These proteins are involved in a wide

variety of biological processes including photosynthesis,

respiration, signal transduction, molecular transport and

catalysis.

Membrane proteins represent between 20 and 30% of the

proteomes of most organisms [1] and more than 40% of

drug targets [2] and yet very few structures of these

molecules have been solved by X-ray crystallography or
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NMR. The first membrane protein structure was pub-

lished in 1985 [3] and since then the number has

increased slowly but steadily (Figure 1). To date there

are over 50 000 entries in the Protein Data Bank (PDB)

repository of protein structures, but less than 1% of these

entries represent membrane proteins. Of the 368 mem-

brane protein structures in the ‘Membrane proteins of

known 3D structure’ database [4,5] (http://blanco.biomo-

l.uci.edu/Membrane_Proteins_xtal.html), 148 belong to

unique proteins. Eukaryotic membrane proteins are

particularly underrepresented, with only 39 examples

(monotopic and multispanning).

Membrane proteins are difficult to study for a number of

reasons. Their surface is relatively hydrophobic and they

can only be extracted from the cell membrane with

detergents. They are also often flexible and unstable.

This leads to challenges at all levels, including expres-

sion, solubilisation, purification, crystallisation, data col-

lection and structure solution. This review highlights the

issues associated with membrane protein structural

biology and outlines recent approaches that have been

successful in determining new structures.

Expression and purification
Membrane proteins of known structure have been pur-

ified from natural sources, produced recombinantly or, in

the case of short peptides, synthesised chemically. They

have been successfully expressed in the bacteria Escher-
ichia coli and Lactococcus lactis, the yeasts Pichia pastoris
and Saccharomyces cerevisiae, in insect cells and in mam-

malian cell lines (reviewed in Junge et al. [6��]). There are

a number of factors that influence the success of an

expression system [7]. Production in E. coli is quick,

relatively inexpensive and easy to use enabling many

constructs to be screened quickly. Eukaryotic proteins

may, however, require the use of eukaryotic systems for

expression. Firstly, membrane proteins have to be tar-

geted to the host cell membrane before they can fold

correctly. Specific systems are required in the host cell

such as the SRP-Sec61 system that inserts membrane

proteins into the endoplasmic reticulum of eukaryotic

cells [8]. Secondly, membrane proteins are embedded in

lipid, and the composition of these lipids varies among the

systems. The nature of the lipids can affect the stability of

the protein and consequently its likelihood of crystal-

lisation. Thirdly eukaryotic proteins may undergo post-

translational modifications, such as glycosylation, and

only higher eukaryotic cell lines provide the necessary

machinery [6��]. It is often necessary to experiment with a

variety of expression systems for each protein. Most of the
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Figure 1

Growth of unique membrane protein structures deposited in the PDB.

Proteins were found by inspection of the ‘Membrane proteins of known

3D structure’ database [4,5] (http://blanco.biomol.uci.edu/

Membrane_Proteins_xtal.html), In blue, the number of structures of

prokaryotic membrane proteins, and in yellow, the total number of

eukaryotic structures. Both monotopic and multispanning proteins are

included. For this study proteins are regarded as unique if they come

from the same family but for different species. Structures are not

counted in these statistics if they represent mutants, alternative

conformations or ligand complexes of a previously counted structure.
structures of bacterial membrane proteins that are present

in the PDB were successfully expressed in E. coli. Eukar-

yotic membrane proteins, however, are most commonly

purified from native sources. Of the 39 unique eukaryotic

membrane proteins, only 17 were produced using recom-

binant methods, nine of these in yeast systems (Pichia
pastoris and Saccharomyces cerevisiae) [9–17], four in insect

cells [18,19��,20] and four in E. coli [21–24].

Membrane proteins are extracted from the host cell

membrane by the addition of detergents, which cover

the hydrophobic surface of the protein, allowing solubil-

isation. The choice of detergent is a crucial part of the

purification process. Often a series of detergents are

tested and the detergent that extracts the largest quantity

of soluble, active, homogeneous, stable protein is used,

provided that the cost of the detergent is not limiting.

However, it should be noted that some strong detergents

like FOS-Choline are very efficient at extracting proteins

from the membrane, but this does not guarantee stably

solubilised membrane proteins. The detergent dodecyl

maltoside (DDM) is often used to extract membrane

proteins from the lipid bilayer as it is relatively cheap

and can give stably solubilised membrane proteins [25�].
Protein can subsequently be exchanged into a variety of

different detergents for crystallisation trials [26].
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Advances are being made in developing methods that can

assess the expression and purification of membrane

proteins in a high-throughput manner [27,28�]. The use

of a cleavable green fluorescent protein (GFP) with a his-

tag fused to the C-terminus of the protein has proved to

be very effective as a way of following the protein during

purification, a technique pioneered by Prof. Jan-Willem

De Gier [27] and Eric Gouaux [29�]. For this system to be

successful in E. coli expression systems, the target mem-

brane protein must have a cytoplasmic C-terminus, since

the GFP can only be correctly folded and become fluor-

escent in the cytoplasm [30,31]. Prokaryotic and eukar-

yotic GFP fusion proteins expressed in E. coli [32��] and

S. cerevisiae [33��,34��] allow rapid selection of targets with

the highest expression yields for large-scale purification.

In-gel fluorescence analysis and fluorescence size-exclu-

sion chromatography (FSEC) of GFP fusion proteins

clearly show whether a protein is monodisperse in particu-

lar detergents without the need for prior purification

[29�].

An alternative method has been described to rapidly

screen many constructs and conditions for expression

and solubilisation of membrane proteins. The method

was initially described for proteins expressed in 96-well

plates, with small-scale purification in a 96-well format

and detection of proteins blotted onto filters using

antibodies to the purification tag [28�]. This method

has since been modified to detect protein expression in

colonies, using the colony filtration blot method [35] in

which colonies are blotted onto membranes, expression

is induced and the cells are lysed with test detergents.

Detergent solubilised proteins are filtered through

membranes and detected with antibodies against the

tag.

Membrane proteins are often unstable in detergent

micelles. Finding constructs or conditions where the

protein is more stable can lead to improved crystallisation

[36]. Sometimes, addition of lipids is essential to obtain

stably solubilised samples [12,37,38��,39]. Screening

different buffer and detergent conditions is often necess-

ary and the aggregation state of the material can be

monitored using gel filtration, electron microscopy or

ultracentrifugation [40]. Another way to assess the state

of a protein is to monitor the thermal stability. Stevens

and co-workers have adapted a method for soluble

proteins monitoring the fluorescence of a covalently

bound dye attached to accessible cysteine residues

[41�]. In a recent study Tate and co-workers [42��]
improved the stability of the b1-adrenergic receptor by

making point mutations and testing the resulting mutants

for activity as a function of temperature. A number of

mutations gave increased thermostability and a combi-

nation of six of these mutations gave a protein with an

increase in Tm of 21 8C. This subsequently enabled the

structure of this protein to be solved [43].
www.sciencedirect.com
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Crystallisation
Protein crystallisation is a process of testing a large

number of possible crystallisation reagents. Once initial

crystallisation conditions are found, further optimisation

is usually necessary to obtain well-diffracting crystals.

The initial screen is generally completed using 96-well

plates and the vapour diffusion method. In the past 10

years, the volumes required for these crystallisation

experiments have been greatly reduced, so that now

routine screening for crystals is achieved with 100 nl

drops. Although there are more than 30 different 96-well

sparse matrix screening systems available for soluble

proteins, they contain many conditions in which mem-

brane proteins are unlikely to crystallise. The Iwata group

have designed crystallisation screens, which are opti-

mised for membrane protein crystallisation. These in-

clude two sparse matrix screens based on the available

crystallisation conditions at the time of publication

(MemStart [26] and MemGold [44�]), and a systematic

screen (MemSys [26]). Screening the detergent used

during crystallisation has proven to be a particularly

important aspect of the process [25�]. Often crystal qual-

ity may also be improved with additional detergents

present in the crystallisation drop. Crystallisation of mem-

brane proteins can also be achieved in the presence of

lipidic cubic or sponge phases or bicelles instead of

detergent micelles [45–47,38��]. In the 3D continuous

lipidic phases like the cubic and sponge phases, mem-

brane proteins can freely diffuse in the lipid, instead of

being enclosed in detergent micelle. The proteins mol-

ecules can therefore be concentrated and ordered so that

they can form crystals. These techniques have been

automated so that even viscous lipidic cubic phase

samples can be dispensed in nanodrop quantities [48].

Another technique that is gaining popularity within the

membrane protein community is the use of microfluidics

to combine very small quantities of protein samples, of

the order of 10 nl of protein and crystallisation agent in

50 mm diameter tubes [49,50].

These methods can often lead to crystals that do not

diffract beyond 5 Å and are highly anisotropic. Whereas

sometimes optimisation of the conditions with the use of

additives or other detergents can lead to improved resol-

ution, there remain a large number of crystals for which

optimisation is difficult. For these cases it may be necess-

ary to extend the available surface for crystal contacts.

This has been achieved in some cases by forming a stable

complex with the Fab and Fv fragments of an antibody

[51–53,19��]. Antibody fragments suitable for co-crystal-

lisation should bind to the protein in its native confor-

mation, have high binding affinity and most importantly

bind to a discontinuous epitope. Fab fragments can be

produced by proteolytic cleavage of monoclonal anti-

bodies though this sometimes generates heterogeneous

products. Since Fabs can also have a high degree of

flexibility at the elbow regions between the variable
www.sciencedirect.com
and constant domains [54], Fv fragments may be more

suitable for co-crystallisation since they are globular

25 KDa proteins. Another approach to improving the

likelihood of crystallisation was taken by Mackinnon

and his colleagues in solving the structure of the Kir3.1

K(+) channel. They used chimeras in which part of a

eukaryotic protein was replaced by a prokaryotic counter-

part [22].

Data collection and structure solution
Data collection on soluble protein crystals in a high-

throughput environment is becoming increasingly rou-

tine, with crystals mounted with a sample changer, data

collected automatically and structure solution often semi-

automated (reviewed in [55�]). For membrane protein

crystals, the situation is often more challenging. These

crystals usually have a high solvent content owing to the

detergent micelle, which covers the hydrophobic part of

the protein. Consequently, the crystals are often fragile,

difficult to handle, diffract to low resolution and suffer

from radiation damage during the diffraction experiment.

In addition, crystal quality can vary considerably, even

between crystals from the same drop. This means that a

large number of crystals have to be screened at the

synchrotron before data can be collected. The presence

of automatic sample changers at most synchrotron beam-

lines has helped address this issue, enabling many crystals

to be screened quickly and efficiently. The use of modern

microfocus beamlines with low background scatter and

beam sizes of less than 50 mm has also greatly improved

the situation [56�]. These beamlines can be used to

collect datasets from very small crystals and from well

diffracting regions in heterogeneous crystals. They can

also be used to collect segments of datasets along the

length of a crystal, when individual regions suffer from

radiation damage [56�,43].

The issues mentioned above also affect the process of

structure solution. Owing to the problems of radiation

damage it may be difficult to collect data of sufficient

quality to phase by MAD or SAD. Similarly the problem

of non-isomorphism among the crystals can hinder struc-

ture solution by the isomorphous replacement method.

On the plus side, the high solvent content of membrane

proteins can result in solvent flattening giving large

improvements in the phases.

High-throughput methods for membrane
proteins
One way to overcome the difficulties associated with

membrane protein structural biology is to try a large

number of targets and homologues of each target, in the

hope that a few will behave relatively well through all these

steps. Many soluble protein structural genomics groups

have the necessary technology to clone, express and purify

many protein targets in parallel, with clones being gener-

ated on a 96-well plate scale and crystallisation trials being
Current Opinion in Structural Biology 2008, 18:581–586
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completed at the rate of 100 crystallisation plates per day

[57,58]. Many of these techniques are now being applied to

membrane proteins in a number of dedicated membrane

protein initiatives.

We have recently established the Membrane Protein

Laboratory (MPL) at the Diamond Light Source, UK,

which provides a high-throughput environment for

researchers from any laboratory in the world to study

membrane proteins. The MPL has available a fully

automated nanodrop crystallisation system, consisting

of a Hamilton Star liquid handler for plate preparation,

a Cartesian nanodrop robot for preparation of drops as

small as 100 nl, automatic plate sealers and Rhombix

imagers at both 4 and 20 8C, which can record 96 images

from a crystallisation plate in 10 min. These systems are

linked by robotic arms so that up to ten 96-well sitting

drop plates can be prepared in one experiment. We also

use the Fluidigm Topaz system for microfluidic crystal-

lisation [49] where only limited quantities of protein are

available. Potential crystals are screened in crystallisation

plates using the PX scanner system, an in-house X-ray

system. The MPL is located at the new British synchro-

tron, Diamond Light Source, which provides a source of

intense, highly focused X-rays necessary for crystal

screening and data collection on challenging crystals.

The Membrane Protein Laboratory is a user facility

and anyone can apply to use the equipment and have

access the expertise of the membrane protein crystal-

lography (MPC) group at Imperial College London

(http://www.diamond.ac.uk/Science/MPL/default.htm).

Recent advances
One area of membrane protein research in which the

methods described here have had a big impact is in the

structural biology of G-protein-coupled receptors

(GPCRs). GPCRs form the largest family of membrane

proteins in humans and their fundamental role in signal

transduction has made them very attractive drug targets.

They have, however, been notoriously difficult to crystal-

lise, partly owing to their intrinsic flexibility. After many

years of work the first structure of a GPCR that is

regulated by ligand binding, the b2-adrenergic receptor,

was determined past year by two crystallography groups

both collaborating with Brian Kobilka [19��,38��]. Redu-

cing the flexibility of the protein was instrumental in

solving the structure of this protein. In one of the struc-

tures the third intracellular loop of the protein was stabil-

ized by a Fab fragment [59��]. Crystals of the receptor-

Fab complex were obtained from bicelles, a mixture of

detergents and lipids, and data were collected to a resol-

ution of 3.7 Å at a microfocus beamline from multiple

regions of one crystal. The other structure was solved as a

fusion protein with T4-lysozyme inserted into the third

intracellular loop, again to stabilize this loop [38��,60��].
The protein was crystallised in a lipidic cubic phase with

cholesterol used as an additive. Microbeam technology
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was used to collect a single dataset merged from 25

microcrystals to a resolution of 2.4 Å. This is reviewed

in more detail by Kobilka and Schertler [61].

The structure of the b1-adrenergic receptor has now

also been published. In this case, the protein was

modified by 6-point mutations chosen on the basis of

the increased thermostability of the protein (see above).

The effect of these mutations was firstly to render the

protein more stable in detergents used for crystalliza-

tion and secondly to push the conformational equi-

librium of the protein towards the antagonist bound

state. Data were collected to a resolution of 2.7 Å from

crystals of this mutant protein. At the Diamond-MPL,

we are also working on structural studies of GPCRs in

collaboration with the ERATO human crystallography

project (http://cell.mfour.med.kyoto-u.ac.jp/). The

microfocus beamline at Diamond will be a powerful

tool for solving the structures of membrane proteins

including GPCRs.

Conclusion
It is clear that the structure solution of membrane

proteins still holds specific challenges compared with

soluble proteins. The field is now, however, taking

advantage of the high-throughput revolution in structural

biology and is developing a wealth of methods to stabilise

and engineer proteins so that they can be crystallised. We

expect that in the next five years there will be a rapid

growth in the number of solved membrane protein struc-

tures, in particular for eukaryotic membrane proteins.

This will increase our understanding of the folds and

functions in the membrane proteome and provide a

wealth of information for the design of novel drugs.
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