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Cellular senescence entails an irreversible cell-cycle arrest characterised by drastic cytomorphological and
metabolic changes. In recent years, the implications of cellular senescence in physiological and pathological
settings, such as ageing and cancer, have gained firm ground. It is, therefore, important to understand the
mechanisms underpinning the establishment and maintenance of senescence. Age-dependent alterations in
cellularmetabolic processes are greatly driven by changes inmitochondrial function andhomeostasis. Classically,
mitochondrial dysfunction has been implicated in cellular senescence mainly by promoting oxidative damage-
induced cell-cycle arrest; however, emerging data suggests that other mitochondrial-dependent factors play
an important role in the induction of senescent phenotypes. Here we review the role of mitochondrial homeo-
static mechanisms, mitochondrial metabolites and ROS generation in the signalling pathways leading to the
induction and maintenance of cellular senescence and discuss how this may contribute to the ageing process.
This article is part of a Special Issue entitled: Mitochondrial Dysfunction in Aging.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Cellular senescence was first described as the irreversible cell-cycle
arrest resulting from prolonged replication of cells in culture [43]. This
form of senescence, termed replicative senescence, was later shown to
be a result of telomere attrition occurring during DNA replication with
each cell division [40]. Various reports have since demonstrated that
cells can also enter senescence in response to other stimuli such as on-
cogene activation and a variety of other stresses [69], these forms of se-
nescence are termed “oncogene-induced senescence” and “stress-
induced premature senescence” respectively. During senescence, cells
develop a distinctive phenotypemarked by changes in cell morphology,
which include larger cellular volume andflattening of the cytoplasm [9],
increased lysosomal content [20] and activity of the lysosomal enzyme
β-galactosidase at pH 6.0, also known as senescence-associated β-
galactosidase (SA-β-gal) [24]. The senescent phenotype is also
characterised by altered chromatin and nuclear structure, altered gene
expression, protein processing and metabolism [13,84,106,125]. Inter-
estingly, senescent cells have been shown to produce increased levels
of Reactive Oxygen Species (ROS) when compared to their younger
counterparts and to secrete a plethora of growth factors, extracellular
matrix (ECM) degrading proteins and pro-inflammatory cytokines, col-
lectively known as the Senescence-associated Secretory phenotype
(SASP) [21]. Both the senescence-associated pro-oxidant and pro-
ndrial Dysfunction in Aging.
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inflammatory phenotypes have been shown to not only stabilise senes-
cence in an autocrine fashion [2,59,90], but also to induce paracrine se-
nescencewhichmay contribute to the detrimental effects of senescence
during ageing [1,85]. The pro-oxidant phenotype of senescent cells has
been associated with mitochondrial dysfunction during senescence [3,
49,50,79,91,139], suggesting that mitochondria may play a role in the
process.

Mitochondria have long been considered the “power-house of the
cell” due to their primary function in energy production through oxida-
tive phosphorylation and generation of adenosine triphosphate (ATP).
Due to its unique evolutionary origin, mitochondria structure and bio-
chemistry are very similar to bacteria [34]. From a structural perspec-
tive, the mitochondrion (the basic unit of mitochondria) contains two
membranes (the outer and the inner membrane) that separate two
distinct compartments: the inter-membrane space and the matrix.
The innermembrane is highly folded into cristae and harbours the elec-
tron transport chain (ETC)where oxidative phosphorylation takes place
[75]. Further to regulating energy production, mitochondria couple
many other fundamental cellular processes, including regulation of
cellular metabolism, cell-cycle control and cell-death [86]. Here, we
review the role of mitochondria in cellular senescence, particularly the
impact of mechanisms regulating mitochondrial homeostasis, mito-
chondrial metabolites and ROS generation in the signalling pathways
responsible for the induction and maintenance of cellular senescence.

2. The role of mitochondria in senescence

Generation of ATP bymitochondria occurs via oxidative phosphory-
lation which requires reduction of oxygen to promote oxidation of
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nutrients and release of ATP. However, reduction of oxygen can gener-
ate potentially harmful intermediates such as superoxide anion radical
(O2

.−) and hydrogen peroxide (H2O2), which can further react with
other ROS or with a transition metal to form highly reactive secondary
ROS, including the hydroxyl radical(•OH) [81]. It has been suggested
that primary ROS are well-controlled molecules within the cell and
that their reactions with target molecules can be reversible, placing
this type of ROS as important intracellular signalling molecules [23]. In
contrast, secondary ROS, particularly •OH, are catalytically very reactive,
not stringently controlled within the cell and therefore comprise the
main damaging type of ROS [12,131]. The •OH radical is a highly reactive
specie able to abstract hydrogen from nearly any C–H bond [37] and is,
therefore, able to react with a vast range of macromolecules such as
lipids, proteins and nucleic acids. •OH radicals are important inducers
of DNA oxidation resulting in DNA lesions that often include single
oxidised nucleobases, tandem base modifications, intra- and inter-
strand cross-links, oligonucleotide single-strand breaks and 2-
deoxyribose oxidation products [12]. Furthermore, during lipid peroxi-
dation, allylically activated CH2 groups present in lipids, most often in
polyunsaturated fatty acids (PUFAs), are especially prone to hydrogen
abstraction by •OH radicals resulting in the oxidation of these lipids in
the cell [27,107]. Protein oxidation can also be induced by •OH radicals,
which by abstraction of a hydrogen atom from an amino acid residue
can form a carbon-centred radical derivative that can further react
resulting in other forms of oxidised proteins [108].

Almost 60 years ago, Dehnam Harman had already proposed “The
Free radical theory of ageing”, hypothesising that ageing could be driven
by free-radical associated macromolecular damage [41]. This theory
was then revised to propose that mitochondria were the main drivers
of the process [42]. In fact, the first experimental evidence of ROS
being produced in the mitochondria was only published in the 1960s
[51]. The circumstantial evidence amassed over decades in support of
this theory is overwhelming, with numerous studies showing associa-
tions between oxidative stress, mitochondrial dysfunction and ageing-
associated processes in humans and a variety of animal models [7].
Nonetheless, recent findings have put into question the role of oxidative
stress in the ageing process. Studies usingmouse models where antiox-
idant defence mechanisms were manipulated have generated conflict-
ing results [80,104,120,134]. Furthermore, clinical trials where the role
of antioxidant supplements was evaluated in healthy participants
showed no prevention of mortality and in some cases increasedmortal-
ity [36].

Despite controversy regarding the role of mitochondria and ROS
generation in the ageing process, the ageing field is relatively unani-
mous with regard to two premises: first, that senescence can be driven
by oxidative stress and second, that senescence is a contributor to the
ageing process; however, not united in agreement with the hypothesis
that oxidative stress and mitochondrial dysfunction are drivers of
ageing. Nevertheless, evidence suggest that the role of mitochondria
in senescence extends beyond induction of ROS-induced damage,
particularly becausemitochondria have wide-ranging cellular functions
and are tightly regulated by complex quality control mechanisms. Here,
we will review the evidence suggesting a role for mitochondria in
cellular senescence and discuss its role during the ageing process.

2.1. Role of mitochondrial ROS and the electron transport chain in
senescence

Data suggest that mitochondrial dysfunction is a general feature of
cellular senescence and has been reported to occur independently of
the nature of the senescence stimuli (e.g. telomere dysfunction, onco-
gene activation and genotoxic stress) [3,49,50,79,91,139]. It has long
been shown that mitochondria are natural producers of intracellular
ROS resulting from electron leakage in the electron transport chain
(ETC). During this process, superoxide anions are generated and can fur-
ther react to give rise to other forms of ROS [34]. During cellular
senescence, an increase in mitochondrial mass, decreasedmitochondri-
al membrane potential and defective antioxidant defence mechanisms
have been linked to increased ROS levels, however the causal relation-
ship between these processes and senescence have not yet been
completely elucidated [91,96,103]. Several studies have shown that
ROS can induce DNA damage and accelerate telomere shortening acti-
vating the DNA damage response (DDR) and senescence [16,95,124,
126] (Fig. 1). Telomeric DNA has been shown to be especially sensitive
to oxidative damage, accumulating more single-stranded breaks than
the rest of the genome [92]. Consistent with a role of ROS in telomere
dysfunction it has been suggested that guanine rich regions are more
susceptible to oxidative modification [35] and interventions affecting
both mitochondrial function and ROS generation have been shown to
impact on telomere-dependent senescence in vitro [123]. Conversely,
treatment with free radical scavengers [125], low ambient oxygen con-
centrations [26,98], overexpression of antioxidant enzymes [105], and
mild chronic uncoupling [91] have been shown to decelerate telomere
shortening and to extend the lifespan of cells in culture. Recent studies
have shown that oxidative-stress induced telomere damage is irrepara-
ble and can occur irrespectively of telomere length [28,46]. The pres-
ence of a shelterin complex, a group of proteins that protects exposed
telomeric ends, has been demonstrated to inhibit DNA repair mecha-
nisms. It has also been shown that oxidative modifications of shelterin
components such as the telomeric repeat binding factor-1 (TRF1) and
TRF2 can affect its binding to telomeres [87] and that loss of TRF2
contributes to activation of a DDR at telomeres [121]. While ROS have
been shown to promote oxidative damage with induction of a DDR
and senescence, activation of major downstream effectors of the DDR
during senescence can result in elevated ROS generation, suggesting
that these molecules may also act as signalling factors and potential
effectors/stabilisers of the senescent growth arrest. Several lines of evi-
dence have further corroborate the idea of ROS as signalling molecules
during cellular senescence: i) activation of a DDR by genotoxic stress
or telomere uncapping has been reported to promote ROS generation
[90]; ii) in oncogene-induced senescent cells, over-expression of
activated RAS [63] or BRAFV600E [55] is accompanied by elevated ROS
generation, iii) activation of the main DDR effectors p53 [71], p21 [72]
and p16 [113] all resulted in elevated ROS production and iv) treatment
with antioxidants, such as N-acetyl cysteine (NAC), is able to prevent
the cell-cycle arrest, in most of the above reported cases. Indeed,
major senescence signalling pathways, such as the p53 and Rb tumour
suppression pathways and ROS interact to induce and stabilise the
cell-cycle arrest. In oncogene-induced senescence, mitochondrial
dysfunction and ROS production trigger senescence in a p53 and Rb
dependent way [79], while knockdown of p53 and p21 reduces ROS
generation in both telomere-dependent and -independent senescence
[90]. Activation of the cell-cycle kinase inhibitor p21, downstream of
DNA damage, promotes ROS generation that feeds-back into further
DNA damage induction which persists even in irreversibly deep senes-
cence. Additionally, p21 seems to be the critical mediator between the
DDR, MAPK and TGF-β stress-induced signalling cascades, which have
been shown to contribute to ROS generation [58,90,116]. Together
these observations support a role for ROS as senescence-stabilising
molecules via induction of continuous damage generation and the
persistent activation of a DDR [90]. Importantly, ROS has been shown
to impact on the DDR and ultimately induce senescence in a paracrine
fashion [85]. The ROS-dependent paracrine senescence may be a mech-
anism by which senescence cells contribute to loss of tissue function
during ageing.

We have discussed the signalling pathways that have linked ROS to
the induction of a senescence cell cycle arrest, however othermitochon-
drial perturbations, namely disruption of the mitochondrial respiratory
complexes and the ETC, have been associated to cellular senescence [78,
79,109,135] (Fig. 1). Oxidative phosphorylation (OXPHOS) takes place
in the inner mitochondrial membrane and requires four respiratory
chain complexes (complex I, II, III and IV) and the ATP synthase



Fig. 1.Mitochondrial homeostasis impairment induces cellular senescence and may contribute to the ageing process. Deregulation of mitochondrial homeostatic mechanism: increased
mitochondrial biogenesis, decreased mitophagy and decreased fission/fusion ratios have been suggested to induce cellular senescence. Perturbations on the electron transport chain
(ETC) resulting indecreasedATP production and increased ROS generation can activate theRb/p16 and thep53/p21 tumour suppressor pathways and induce a senescence cell cycle arrest.
Increased ROS levels can induce telomeric and non-telomeric DNA damage activating the p53/p21 pathway via PARPs/sirtuins activation and induce a permanent cell cycle arrest. Mito-
chondrial metabolites imbalance, such as decreased NAD+/NADH ratios, has been linked to senescence. Senescent cells have been shown to generate increased levels of Reactive Oxygen
Species (ROS) and secrete a plethora of growth factors, extracellular matrix (ECM) degrading proteins and pro-inflammatory cytokines, collectively known as the Senescence-associated
Secretory phenotype (SASP). Both ROS and the SASPhave been shown to stabilise senescence in an autocrine fashion, but also to induce paracrine senescence,whichmay contribute to the
detrimental effects of senescence during ageing.
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(complex V). The electron transfer reaction occurs through the respira-
tory complexes and is ultimately used to produce energy under the
form of ATP [102]. Perturbations in the mitochondrial respiratory com-
plexes, either by pharmacologic inhibition or genetic manipulation,
have been shown to drive cells into senescence. Inhibition of complex
I by rotenone [79] or knockdown of the complex I assembly factor
NDUFAF1 [78] have been shown to induce cellular senescence. A decline
in complex II activity induced by desferroxamine mesylate can also
drive premature senescence [135]. Compromised complex III activity
by either knockdown of the mitochondrial Rieske iron-sulfur polypep-
tide (RISP) [79] or inhibition of this mitochondrial complex with
antimycin A can also induce a senescence arrest [109]. It is still not
clear how interference with the ETC, by disruption of the respiratory
complexes, induces a permanent growth arrest. A possible scenario is
that elevated ROS (resulting from the disruption of the respiratory com-
plexes and increased electron leakage) in mitochondria can further de-
crease the ETC efficiency contributing to additional ROS generation and
oxidative damage in a positive feedback loop [7]. This way, ETC pertur-
bations may amplify mitochondrial dysfunction and induce senescence
via ROS-induced damage. However, ETC inefficiency can also result in
decreased ATP production, which has also been suggested to play a
role in the induction of senescence [129,139]. It has been shown that
the AMP/ATP ratio, a measure of cellular energy charge, increases
when human fibroblasts reach replicative senescence [129,139]. Con-
versely, addition of exogenous AMP to the cell culture medium triggers
premature senescence in young human fibroblasts [139]. Interestingly,
it has been shown that reduced levels of ATP resulting from severe
mitochondrial uncoupling may contribute to cellular senescence
without substantially increasing oxidative stress [110]. Mechanistically,
increased AMP (or ADP) to ATP ratios are known to stimulate the AMP-
activated protein kinase (AMPK) [76]. AMPK activation has been report-
ed to induce a senescence cell-cycle arrest inmany cells types [48,53,74,
93,97,128,129] via multiple mechanisms. Activation of AMPK is associ-
ated with increased p53 phosphorylation, increased p53, p21 and p27
protein expression and decreased retinoblastoma protein phosphoryla-
tion [93] which can promote p53- and p16-dependent senescence [52,
53,128,129] (Fig. 1). Additionally, activation of AMPK has been shown
to have anti-proliferative effects by down-regulating pro-proliferation
genes, such as cyclin A, cyclin B1, and cyclin E [74,93,128,129]. Together,
these data puts into question the hypothesis that perturbations of the
ETC promote senescence mainly via ROS mediated oxidative damage
and confers a possible role for cellular bioenergetics imbalance in the
induction of the cell-cycle arrest and development of senescence
phenotypes.

While mitochondrial ROS have been implicated in cellular senes-
cence, non-mitochondrial sources of ROS have also been shown to
play a role. NADPH oxidase-dependent ROS generation has been
shown to limit the replicative lifespan of human endothelial cells in
culture [67]. Human fibroblasts, expressing a temperature-sensitive
simian virus 40 large T antigen, have elevated ROS production via
protein kinase Cδ and p16 signalling [113]. Protein kinase Cδ has been
shown to activate a non-mitochondrial source of ROS, generated by
NADPH-oxidase through phosphorylation of p47phox, an essential com-
ponent of NADPH oxidase [114]. While mitochondria are traditionally
regarded as the main source of intracellular ROS and, therefore, major
mediators of ROS induced damage, the relative contribution of
mitochondrial and non-mitochondrial sources of ROS to the induction
of senescence is still to be clarified.

2.2. Role of mitochondrial homeostatic mechanisms in senescence

Eukaryotic cells are equippedwith a vast range ofmolecular and cel-
lular pathways that control the quality and integrity of mitochondria
[112]. A tight regulation of mitochondrial content, dynamics and activ-
ity is fundamental for cellular homeostasis.

Regulation of mitochondrial content (mass) is achieved through
processes of mitochondrial biogenesis and degradation and the ratio
between these two cellular processes determines the amount of
mitochondria within a cell [88]. Mitochondrial biogenesis is a multi-
factorial process which involves the integration of strictly regulated
transcriptional events, lipid membrane and protein biogenesis and
assembly as well as replication of mtDNA [138]. The peroxisome
proliferator-activated receptor co-activator 1 (PGC-1) family which
includes PGC-1α, PGC-1β and the PGC-1-related co-activator (PRC) [4,
68,94] are strong activators of mitochondrial function including regula-
tion of mitochondrial biogenesis and oxidative metabolism in a variety
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of tissues [38]. The mitochondrial transcription factor A (TFAM) is an-
other important factor regulating mitochondrial biogenesis, it is
particularly involved in mtDNA transcription initiation and packaging
of mtDNA into nucleoids [60]. Increased mRNA expression of PGC-1α,
PGC-1β and TFAM has been observed during oncogene-induced
senescence [79] and overexpression of PGC1-α has been shown to
induce senescence in human fibroblasts [132], suggesting a role for
mitochondrial biogenesis in promoting mitochondrial mass increase
and premature induction of senescence. As opposed to de novo genera-
tion of mitochondria, mitochondrial degradation impairment may also
contribute to an accumulation of these organelles in the cell.

Autophagy is a quality controlmechanism responsible for the degra-
dation/recycling of cellular components, withmitophagy being a special
type of autophagy that promotes the degradation of dysfunctionalmito-
chondria [57]. The E3-ubiquitin ligase protein Parkin and the PTEN-
induced putative kinase 1 (PINK1) have been associatedwith the degra-
dation of dysfunctional mitochondria [82,83]. When mitochondrial
membrane potential decreases in mammalian cells, Parkin translocates
to mitochondria and induces their removal by mitophagy and protea-
some degradation. Parkin translocation from the cytosol to mitochon-
dria is dependent on PINK1, a serine/threonine kinase, which, in
functional mitochondria, is localised in the inner mitochondrial mem-
brane [83]. Themechanismbywhich Parkin/PINK1mediatesmitophagy
is not fully understood, but it has been shown that PINK1 translocates to
the outer mitochondrial membrane, where together with Parkin, pro-
motes the segregation of damagedmitochondria from themitochondri-
al network [5]. The PINK1 kinase phosphorylates the E3-ubiquitin
ligase, which subsequently mediates polyubiquitination of a subset of
mitochondrial substrates that may trigger mitophagy [15,29,30,130].
The impact of mitophagy in cellular senescence remains poorly defined
with some reports providing indirect or circumstantial evidence for the
induction of autophagy during senescence [32]. A study has shown that
induction of autophagy promotes entry into senescence [137], while an-
other study reported that autophagy impairment induces premature se-
nescence through a ROS- and p53-dependent mechanism, possibly via
mitochondrial dysfunction in primary human fibroblasts [54]. The
exact contribution of mitochondrial biogenesis and mitophagy to the
establishment and maintenance of cellular senescence (Fig. 1) are still
poorly understood and further studies are required to understand the
kinetics and putative interactions between these two processes for the
induction and maintenance of the cell-cycle arrest.

Further to the control of mitochondrial content via processes of
mitochondrial biogenesis and mitophagy, mitochondrial network
organisation has been show to play a critical role during senescence
[14]. Mitochondria are highly dynamic organelles able to adapt their
size, shape and organisation/structure through processes of fission and
fusion [14], and alterations in mitochondrial dynamics have been
shown to trigger cellular senescence [39,65,73,89,136]. Inhibition of
fission promotes mitochondrial elongation and the establishment of
cellular senescence. During senescence, the fission 1 (FIS1) protein is
down-regulated leading tomitochondrial elongation [136]. Knockdown
of the fission 1 (FIS1) protein that recruits the pro-fission protein
dynamin 1-like (DNM1L or DRP1) [65] or depletion of the membrane-
associated ring finger C3HC4 5 (MARCH5), amitochondrial E3 ubiquitin
ligase which blocks DRP1 [89], promotes mitochondrial elongation and
induction of senescence. Mechanistically, mitochondrial elongation has
been reported to be associated with a decrease in mitochondrial mem-
brane potential and increased ROS generation, which induces DNA
damage, thereby activating senescence-inducing pathways [65,136].
On the other hand, processes that stimulate mitochondrial fission
have been shown to reduce senescence-associated phenotypic changes
[65,136]. Overexpression of FIS1 in senescent cells is able to reverse
both mitochondrial elongation and appearance of senescent pheno-
types suggesting its involvement in the process [136]. Depletion of
both FIS1 and the optic atrophy 1 (OPA1) protein, a critical component
of mitochondrial fusion, have been shown to promote extensive
mitochondrial fragmentation and markedly rescue the senescent phe-
notype [65]. Hence, sustained mitochondrial elongation may promote
senescence-associated phenotypic changes that can be reversed by mi-
tochondrial fission. The reason whymitochondrial elongation occurs in
senescent cells in the first place is still not clear, but studies have sug-
gested that it may be an anti-apoptotic mechanism. Upon activation of
autophagy, mitochondrial elongation, promoted by protein kinase A
(PKA) dependent phosphorylation of DRP1, may serve as a mechanism
to avoid autophagic degradation and maintain cellular viability [33].
Corroborating this hypothesis, cytochrome c release inhibition bymito-
chondrial fusion enhances resistance to apoptosis [11,56]. Processes
regulating both mitochondrial content (via mitochondria biogenesis
and autophagy) and mitochondrial dynamics (via fission and fusion)
are not mutually exclusive; indeed several studies indicate that they
crosstalk to maintain mitochondrial homeostasis (Fig. 1).

2.3. The role of mitochondrial metabolites in senescence

Several reports have linked mitochondrial metabolites to cellular
senescence [10,47,52,55,62,66,118]. Mitochondrial respiratory com-
plexes produce important co-factors and metabolites not only used in
cellular respiration reactions but also required for other essential cellu-
lar functions. During oxidative phosphorylation, organic molecules are
oxidised in reactions that are coupled to the reduction of electron car-
riers such as the nicotinamide adenine dinucleotide (NAD+) [31]. The
cytosolic malate dehydrogenase (MDH1) is the tricarboxylic acid
(TCA) cycle enzyme that catalyses the reversible reduction of oxaloace-
tate tomalate in the presence of reduced nicotinamide adenine dinucle-
otide (NADH) [31]. It has been shown that MDH1 activity is diminished
as human dermal fibroblasts (HDFs) approaching their replicative limit
and that knockdown ofMDH1 inHDFs and IMR90human fibroblasts re-
sult in elevated p16INK4A and p21CIP1 protein levels and premature se-
nescence [66]. Additionally, cytosolic NAD+/NADH ratios have been
reported to be decreased in replicative senescent HDFs to the same ex-
tent as following knockdown of MDH1, suggesting that cytosolic NAD+

depletion may be a trigger of cellular senescence [66]. Furthermore, the
NAD+-dependentmalic enzyme1 and 2 (ME1 andME2),which convert
malate into pyruvate, have also been linked to senescence. Down-
regulation ofME1 andME2 trigger p53-dependent senescence,whereas
enforced expression of either these malic enzymes suppresses senes-
cence [52]. Another pyruvate metabolism related enzyme, the pyruvate
dehydrogenase, has been implicated in BRAFV600E-induced senescence
by enhancing the use of pyruvate by the TCA cycle and increasingmito-
chondrial respiration and ROS generation [55].

Further to its co-enzymatic roles in cellular respiration, NAD+ is an
essential cofactor in many other intracellular enzymatic reactions, in-
cluding those involved in the DNA repair signalling by modulating
Poly-ADP ribose polymerases (PARPs) and Sirtuins activity [61]. DNA
damage and a persistent DDR are potent inducers and stabilisers of
cellular senescence [22,90,99]. Thus, interference with the signalling
pathways involved in the DDR and DNA damage repair affects cell fate
by promoting cell senescence, death or cancer [8,22,100]. PARPs and
Sirtuins, a family of protein deacetylases, are important effectors of
DNA damage and repair responses [18,45]. Perturbations in the PARPs
and Sirtuins have been shown to impact on cellular senescence [25,61].

Imbalanced NAD+/NADH levels have also been associated
with cellular senescence (Fig. 1). Replicative senescence is preceded
by a decline in the expression and activity of nicotinamide
phosphoribosyltransferase (Nampt), an enzyme responsible for
NAD+ salvage from nicotinamide [118]. Chemical inhibition of
Nampt activity induces premature senescence, while over-
expression of Nampt delays entry into senescence and enhances re-
sistance to oxidative stress [10,118]. The delay in senescence induc-
tion mediated by Nampt is associated with increased activity of
Sirtuin 1 (SIRT1), a NAD+-dependent enzyme that antagonizes se-
nescence by deacetylating p53 [10,47,62,118]. Together, these data
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suggest that decreased NAD+/NADH ratios and NAD+-dependent
enzymes levels are important factors triggering cellular senescence.

Despite some evidence showing a role formitochondrialmetabolites
in cellular senescence, our understanding on how these mitochondrial-
associated factors contribute to a permanent cell-cycle arrest and the
development of the senescent phenotype is relatively limited and
further studies are required to fully understand their role in the process.

2.4. The role of senescence in the ageing process: a possible role for
mitochondria?

Our understanding of the role of cellular senescence in vivo has
considerably evolved sinceHayflick's initial observation. Cumulative ev-
idence suggests that cellular senescence is not only a tumour suppressor
mechanism, but also a contributor to age-related tissue dysfunction and
-diseases [119] (Fig. 1). Cells bearing senescent markers have been
shown to increase with age in a variety of different tissues from mice,
baboons and humans [127,44,46]. Furthermore, senescent cells have
been found to be associated to multiple age-related diseases including
cardiomyopathy, renal fibrosis atherosclerosis, osteoarthritis and type-
II diabetes [17,70,77,111,115,133]. This has led to the hypothesis that
senescent cells may not be a consequence of ageing and age-related
disease but in fact play an active causal role in these processes. Recent
evidence suggests that this may indeed be the case, since inducible
elimination of p16Ink4a-positive senescent cells delayed the acquisition
of age-related pathologies in a progeroid mouse model with BubR1 in-
sufficiency. Importantly, this study demonstrated that by eliminating
p16Ink4a, these mice could have not only delayed age-related degenera-
tion but also slowed progression of already established conditions [6].

A few studies suggest causal links between mitochondria, ROS and
senescence in vivo: in ageing mouse skin an increased frequency of
senescent cells has been shown to be associated with impaired mito-
chondrial complex II activity. Moreover, mice carrying a heterozygous
deletion of the mitochondrial antioxidant enzyme superoxide dismut-
ase 2 (SOD2) show increased nuclear DNA damage and senescence
markers in the skin [122]. Additionally, a mousemodel with conditional
deficiency of SOD2 in fibroblasts and other mesenchyme-derived cells
of connective tissues was shown to have reduced lifespan and prema-
ture ageing phenotypes associated with increased expression of the
senescent marker p16 [117]. Other studies have shown interactions
between pathways involved in senescence and mitochondrial dysfunc-
tion. Late-generation TERC−/− mice, which experience generation de-
pendent telomere shortening, have been shown to have dysfunctional
mitochondria and increased ROS generation via p21 [90] and p53-
dependent repression of the mitochondrial biogenesis activator PGC-
1α [101]. The decrease in PGC-1α expression upon telomere dysfunction
(a major inducer of senescence) in late-generation TERC−/− mice ob-
served in this study seems to contradict the previously suggested role
of this mitochondrial biogenesis mediator in promoting cellular
senescence [79,132]. It could be argued that the loss ofmitochondria ob-
served in late-generation TERC−/−mice is not associatedwith induction
of senescence but with the increased apoptosis levels also observed in
thesemice [19,64]. Furthermore, there are complex technical challenges
which impede our ability to follow kinetically mitochondrial dynamics
at the cellular level in mammalian organisms in vivo, and most of the
data collected represents a snapshot of a highly dynamic process. As a
result, further studies need to be conducted in order to understand
the impact of mitochondrial homeostatic mechanisms in the induction
and stabilisation of senescence in vivo and to resolve the contradictions
between in vitro and in vivo studies.

3. Conclusions

There is increasing evidence for a causal role of senescence in age-
related tissue dysfunction and pathology. There are also numerous
studies (mostly in vitro) showing that alterations in mitochondrial
homeostatic mechanisms, mitochondrial metabolites and ROS genera-
tion can lead to the activation of senescence-associated signalling path-
ways and promote senescence phenotypes. The role of ROS during
ageing has been under intense debate with some reports supporting
the hypothesis that these reactive molecules act as signallingmolecules
promoting longevity and others suggesting them as damage-inducing
factors able to accelerate or drive the ageing process. This dichotomy
can be loosely equated to the known roles of senescence in vivo: on
one hand, senescence is beneficial for an organism (by suppressing
cancer and aiding wound-healing); on the other hand, senescence is
detrimental by promoting tissue dysfunction and ageing. These
“trade-offs” during an organism lifespan may well explain the ageing
process; however, the conciliation of all these different factors poses a
major experimental challenge for the scientific community.
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