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Accurate and reliable predictions of invasive species distributions are urgently needed by land managers for de-
veloping management plans and monitoring new potential areas of establishment. Presence-only species distri-
bution models are commonly used in these evaluations, however they are rarely tested with independent data
over time or comparedwith presence-absencemodels fit with the same presence data. Using Maxent, we devel-
oped a presence-onlymodel of invasive cheatgrass (Bromus tectorum L.) distribution in RockyMountainNational
Park, Colorado, USA in 2007 fit with limited data, and then tested the model with independent presence and ab-
sence data collected between 2008 and 2013. This model was verified using threshold dependent and threshold
independent evaluation metrics. Next, we developed a Maxent model with cheatgrass presence data from 2007
through 2013 (i.e. Maxent 2013), and compared this model to a presence-absence method (i.e., generalized lin-
earmodel; GLM 2013) using the same data. Threshold dependent and threshold independent evaluationmetrics
suggested Maxent 2013 outperformed GLM 2013, and a two-tailed Wilcoxon signed rank test indicated relative
probability outputs were not significantly different between the models in geographic space. Based on known
presences and absences of cheatgrass collected in the field, the Maxent 2013 and GLM 2013 relative probability
outputswerehighly correlated at absence locations but less correlated at presence locations. A Kappa comparison
of Maxent 2007 and Maxent 2013 binary output provides evidence that Maxent is robust when fit with limited
data. Our results indicateMaxent is an appropriatemodel for usewhen landmanagement objectives are support-
ed by limited resources and thus require a conservative, but highly accurate estimate of habitat suitability for in-
vasive species on the landscape.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The importance of predicting species distributions is increasing rap-
idly with global changes and their influences on native ecosystems. Sci-
entists or land managers may need to locate and protect populations of
a rare species or identify habitat that may be threatened by an invasive
species, to name two ofmany reasons for the need of accurate predictive
tools. Distributions of species vary according to an array of biological
and physical conditions underlying the fundamental niche
(Hutchinson, 1957), and correlative species distribution models
(SDMs) provide a tool that enhances our understanding of this niche
in geographic space. The maximum entropy model (Maxent; Phillips
et al., 2006) is one of the most widely used presence-only SDMs; as of
04/15/2016, searching for ‘“maxent” and “species distribution”’ in
Web of Science yields 1292 results. This approach has demonstrated
comparable ability to predict a species' range tomodels that use both lo-
cations where the species is known to occur and known not to occur
(i.e., presence-absencemodels; Elith et al., 2006). Presence-onlymodels
st).

. This is an open access article under
use background points rather than true absences, and do not assume
that absence precludes the possibility of occurrence (Evangelista et al.,
2008; Kumar et al., 2009). Much uncertainty exists with absences,
since they may indicate either unsuitable habitat or suitable habitat
into which the species has not yet dispersed (Jarnevich et al., 2015).

While many of these models have been determined to effectively
predictwhere species are likely to occur, theymaynot be rigorously val-
idated. Many species habitat models use a subset of the original data to
validate the model (Elith et al., 2006; Fielding and Bell, 1997). In such
cases, the data are partitioned into training data to generate model pre-
dictions and testing data that are used to assess the accuracy of the
model predictions. If the testing data are sufficiently predicted correctly
by the model, then the model is considered to accurately predict the
species' range. Since the testing data are a random sub-sample of the
original dataset, information cannot be obtained on the accuracy of
the model when applied to a larger region than that from which the
original data came. Improved model evaluation can be obtained by in-
corporating independent field based presence and absence data, but
this method is rarely used, particularly for invasive plant species (see
Costa et al., 2010 and Rebelo and Jones, 2010 for examples using reptiles
and bats, respectively).
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Model comparisons can be used to evaluate multiple SDMs using
both threshold dependent and threshold independent evaluation met-
rics. The area under the receiver operating characteristic (ROC) curve
(AUC) is a commonly used threshold independentmetric for evaluation
of SDMs fit to true presence and absence data (Elith et al., 2006;
Evangelista et al., 2008; Hosmer and Lemeshow, 2000; Swets, 1988).
Test AUC (AUCTEST) measures the ability of model predictions to dis-
criminate between observed presence and absence for a test dataset
(e.g., data held aside in a 10-fold cross validation split or independent
test data), regardless of the absolute value of the predictions (Fielding
and Bell, 1997; Elith and Graham, 2009). However, the use of AUC has
its drawbacks. A low AUC value may indicate low discrimination be-
tween presences and absences even with a model that fits the data ac-
curately (Lobo et al., 2008). AUC values also provide no information
on the spatial distribution of incorrectly predicted presences and ab-
sences of a species (Lobo et al., 2008). Thus, AUC is useful in measuring
how well presence locations can be discriminated from absences based
on predictor variables, while providing little information about how
well the model predictions fit the species distribution.

While AUC provides the ability of a model to discriminate between
presences and absences, additional metrics can be used to evaluate
SDMs developed using threshold selection methods based on study ob-
jectives. In the case of invasive plant species, management objectives
may be tied to gaining the best possible understanding of where a
given species exists on the landscape currently, which would encourage
amodel threshold based onmaximizing sensitivity. Sensitivity measures
the percentage of correctly classified presences, while specificity mea-
sures the percentage of correctly classified absences. Percent correctly
classified (PCC) index considers both sensitivity and specificity. The
true skill statistic (TSS = sensitivity + specificity − 1) places equal
weight onmodel sensitivity and specificity, with values ranging between
−1 and 1 (Allouche et al., 2006). Values above zero indicate bettermodel
performance than chance alone. Often, studies using SDMs rely on these
threshold dependent metrics to evaluate and compare model perfor-
mance and do not consider alternative indicators of model robustness,
including comparisons in geographic space. Examples of model compar-
isons in geographic space include relative probability raster output com-
parisons using the two-tailed Wilcoxon signed-rank test and regression
analysis, and binary raster output comparisons using the Kappa statistic.

The focus of this study was to examine a Maxent model developed
with limited presence- only data for an invasive species, and evaluate
its usefulness in a management context using threshold independent,
threshold dependent, and geographic similarity comparison metrics.
We modeled the distribution of cheatgrass because of the concern that
landmanagers have about spread of this non-native species throughout
high elevation plant communities (Bromberg et al., 2011; West et al.,
2015). While modeling potential ranges of other species may be of in-
terest as well, cheatgrass was of high priority to land managers in our
study area, Rocky Mountain National Park. Tied to management objec-
tives, the primary motivation of this study was to determine whether
the predicted Maxent relative probabilities were strong indicators of
where cheatgrass would be present. We used an independent presence
and absence dataset collected during new field campaigns to validate
initial Maxent model predictions, highlighting statistical robustness
that cannot be obtained from partitioning the original data into training
and testing subsets. Finally we combined the newly collected field data
with the existing cheatgrass presence (and absence) data and compared
Maxent to a commonly used presence-absencemodel, generalized line-
ar model (GLM).

Our objectives were to: (1) generate an initial potential habitat suit-
ability model for cheatgrass using Maxent fit with presence-only data,
and use field sampling to test the predictions; (2) compare Maxent
and GLM model predictions fit with the split-sample approach using
threshold-dependent and threshold-independent metrics and compar-
isons in geographic space, and (3) identify the best fit model for man-
agement purposes.
2. Materials and methods

2.1. Study area

The studywas conducted in RockyMountain National Park (referred
as the Park hereafter), near the Colorado Front Range in the southern re-
gion of the Rocky Mountains. The elevation of the Park ranges from ap-
proximately 2300 m (7500 ft) in Estes Park to over 4300 m (14,100 ft)
on Longs Peak. The Park is situated at latitudes of approximately
40°10′N to 40°32′N and longitude of 105°31′W to 105°41′ W (Peet,
1981). One main road traverses the Park running generally east to
west, while additional roads run along the eastern border of the Park.
The backcountry is accessible through 578 km (359 miles) of trails as
they meander throughout the Park. Grasslands, shrub lands, and forests
aswell as rocky, non-vegetated areaswere included in the study region.
All of the sampling sites occurred within the Park and ranged in eleva-
tion from 2490 m to 3540 m.

The Park experiences an arid climate east of the continental divide
with average annual precipitation of approximately 400 mm in Estes
Park at the east side of the Park (WRCC, 2009). Approximately
480 mm of precipitation fall annually in Grand Lake at the west side of
the Park (WRCC, 2009). Most of the total precipitation comes in the
form of summer rain although the west side of the Park receives much
more winter snowfall (WRCC, 2009). The growing season is short with
snow often occurring into early June and returning in September and
the potential for snow any month of the year. Average high tempera-
tures in July are 25.7 °Cwith lows around 7.8 °C (WRCC, 2009). Average
temperatures for the month of January range from a high of 3.5 °C to a
low around−8.7 °C (WRCC, 2009). Extremely rapid changes inweather
are a common occurrence in the Park.
2.2. Field methods

Cheatgrass presence data (n=21)were collected in the Park using a
modified Whittaker plot design between 1993 and 2007 (Stohlgren et
al., 1995). A presence-only model for cheatgrass was developed in
Maxent using these data (see Maxent 2007 in Modeling procedure).
Relative probability output from this model was used to stratify field
samples taken in 2008 through 2013; these field samples would later
be used to validate the model. To stratify the field samples, random
site coordinates in Universal Transverse Mercator (UTM) projection
were generated in ArcGIS 9.2 (ESRI Inc., Redlands, CA, USA) and strati-
fied among five relative probability classes (N0.1, 0.1–0.3, 0.3–0.5,0.5–
0.8, and 0.8–1.0) of cheatgrass habitat suitability from Maxent 2007
(Bromberg et al., 2011). The coordinateswere also stratified among veg-
etation communities and elevation to capture the available environ-
ment for cheatgrass; these covariates were two of the most influential
environmental predictors from Maxent 2007. Distance to the nearest
road or trail was also one of the top three environmental predictors,
but was not used for stratifying sample locations. An array of distances
from roads and trails would automatically be captured in the random-
ness of the stratified sampling. Elevation was grouped into six classes
(b2500 m, 2500–2700 m, 2700–2900 m, 2900–3100 m, 3100–3300 m,
N3300 m) for the purpose of stratifying site locations. Elevation of ran-
domly generated sites ranged from2396m to 4023m. Sites actually vis-
ited ranged from 2490 m to 3540 m in elevation. Missing presences of
cheatgrass at higher elevations was not a concern, since the highest re-
corded specimen in Colorado was collected in 2004 at approximately
3050 m (Rocky Mountain Herbarium). That is substantially lower in el-
evation than many of the highest sites visited in this study. Distance to
the nearest road or trail of randomly generated sites ranged from
30 m to 12,046 m with the farthest site visited at 8574 m from a road
or trail. The sites were stratified among six vegetation communities,
which comprised non-vegetated, shrubland, grassland, deciduous for-
est, coniferous forest, and tundra.
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Sites were visited during the summers of 2008–2013, during early
July to early September (n = 298). We used a Garmin ETrex Vista GPS
unit to navigate to the UTM coordinates using NAD83 datum to match
the reference system in which the locations were originally generated.
Once at a particular UTM coordinate, we searched for any cheatgrass
within a 30 × 30 m area to match the resolution of the environmental
variable layers used in Maxent 2007. We spent approximately 10 to
20 min at each plot to thoroughly scour for signs of cheatgrass within
the plot. Sites with minimal vegetation required less time to search for
the grass than those is dense grasslands and shrublands. Plots signifi-
cantly infested with cheatgrass also required much less time to deter-
mine if the grass was present. Since the purpose of this study was to
generate habitat suitability models, we recorded the presence or ab-
sence of cheatgrass, but not abundance at each site.

2.2.1. Environmental data
Geospatial raster layers of environmental data were created in

ArcGIS (ESRI; Redlands, CA), which resulted in 36 unique covariates to
be included in the SDMs (Appendix 1). These covariates included eleva-
tion from a digital elevation model (DEM) and five other topographic
covariates derived from this DEM (these were selected based on field
observations of cheatgrass growth habit in the study area), five spectral
indices covariates derived from Landsat 7 ETM+remotely sensed imag-
ery, three covariates derived fromMODIS remotely sensed imagery, dis-
tance to roads, distance to streams, overland distance to water, solar
radiation, and vegetation community types (a categorical variable; see
Appendix 1 for further description). The DEM and Landsat layers had a
30 m spatial resolution; the MODIS layers were resampled from
250 m to 30 m to match the other covariates. Prior studies have
highlighted the importance of spatial resolution considerations in
SDMs (Gillinghamet al., 2012;West et al., 2015). A covariate correlation
analysis was conducted in the Software for Assisted Habitat Modeling
(SAHM; Morisette et al., 2013; West et al., 2016) for assessing
multicollinearity among environmental variables. When two variables
had a Pearson, Spearman, or Kendall correlation coefficient, |r| ≥ 0.70,
only one of the pair was selected for model development (Dormann et
al., 2013), based on percent deviances explained from a univariate gen-
eralized additive model (GAM) with the predictor, relative importance
of each variable, and expert knowledge of cheatgrass growth habit in
the study area.

2.2.2. Modeling procedure
All statisticalmodeling algorithmswere executed in SAHM.Weused

Maxent (version 3.3.3; Phillips et al., 2006; http://www.cs.princeton.
edu/~schapire/maxent/) presence-only model for the 2007 cheatgrass
data because of its better performance than other modeling methods;
it also performs well even with small sample sizes (Elith et al., 2006;
Kumar et al., 2009). Maxent determines patterns in data given con-
straints placed on the system, and then selects the most likely configu-
ration of the system based on maximizing Shannon's entropy (Merow
et al., 2013; Phillips et al., 2006).Maxent automatically includes variable
interactions and can consider continuous and categorical predictor var-
iables. To optimize the Maxent model, we used the ENMeval R package
(Muscarella et al., 2014) to select a regularization multiplier (i.e. 2.0)
and feature types (i.e. hinge, product, linear, quadratic) based on chang-
es in Akaike's Information Criterion (AIC; Anderson and Burnham,
2002) and mean AUC. Additionally, we tested several thresholds to op-
timize the models (i.e., threshold = 0.5, Sensitivity = Specificity, Max-
imizes (sensitivity + specificity) / 2, and Minimizes distance between
ROC plot and (0, 1); Freeman and Moisen, 2008) before selecting the
final threshold (i.e., Minimizes distance between ROC plot and (0, 1)),
which falls in line with study objectives (i.e., to maximize sensitivity).
Maxent generates a logistic output that can be interpreted as an esti-
mate of relative probability of species distribution in geographic space
(Elith et al., 2006), with values that vary from 0 (lowest probability)
to 1 (highest probability). In this study, a relative probability output
was also produced from GLM 2013, and both will be referred to hereaf-
ter as relative habitat suitability.

After we had additional presence cheatgrass data from field cam-
paigns in 2008 to 2013 we used Maxent to generate a final model
using the full presence dataset with spatially autocorrelated points test-
ed and removed in ArcGIS using the Global Moran's I (Legendre and
Legendre, 1998) tool (n = 157; Maxent 2013). Additionally, we fit a
GLM with these presence data and absence data (n = 162) collected
from the 2008 to 2013 field campaigns (GLM 2013). GLM is a general-
ized ordinary linear regression approach that specifies a relationship be-
tween the mean of a random variable and a function of the linear
combination of predictors (McCullagh and Nelder, 1989). Within
SAHM, we fit the GLM model including squared and interaction terms
to make it comparable to the Maxent model, and used the stepwise
AICc simplification method for optimization. For both the Maxent
2013 and GLM 2013 models, we selected a threshold that minimizes
the distance between the ROC plot and (0, 1), which was consistent
with Maxent 2007.

2.2.3. Model validation
We testedMaxent 2007with presence and absence data collected in

the 2008 to 2013 field campaigns. For Maxent 2013 and GLM 2013 we
used 10-fold cross-validation procedure to test the models. We also
compared the relative habitat suitability generated by Maxent 2007 to
the actual presences found in the field within each relative habitat suit-
ability class in 2008 to 2013. This allowed us to examine the numbers
and percentages of cheatgrass presence in 2008 to 2013 that fell within
each relative habitat suitability class from the 2007 model.

2.2.4. Evaluation of model performance
We used threshold-independent (i.e., AUC) and threshold-depen-

dent (i.e., sensitivity, specificity, percent correctly classified, and TSS)
measures of model accuracy to evaluate model performance (Franklin,
2009). An AUC value of 0.5 shows that model predictions are not better
than random; b0.5 are worse than random; 0.5–0.7 indicates poor per-
formance; 0.7–0.9 reasonable/moderate performance; and N0.9, high
performance (Peterson et al., 2011). For testing the differences in pre-
dictions of habitat suitability between Maxent 2013 and GLM 2013,
we used a two-tailedWilcoxon signed-rank test in R statistical package
(Randin et al., 2006; R Core Team 2012). We generated 1000 random
points throughout the Park and extracted the relative habitat suitability
values from each of the threemodels to run the test (Ha= true location
shift is not equal to 0). To further compare the relative habitat suitability
outputs from theMaxent 2013 and GLM2013models, we extracted the
predicted value for each respective model at every cheatgrass presence
or absence point sampled, and compared these values in a regression
analysis. Finally, to evaluate the similarity of quantity and similarity of
location between first the Maxent 2013 and GLM 2013 binary raster
outputs (i.e. value of 0 or 1 at each raster cell based on threshold), and
then the Maxent 2007 and Maxent 2013 binary outputs, we used the
Kappa statistic tool in the Model Comparison Kit (Visser and de Nijs,
2006).

3. Results

When tested with an independent presence and absence dataset,
Maxent 2007 had robust evaluation metrics: AUCTEST 0.80, PCC 0.74,
sensitivity 0.81, specificity 0.68, and TSS 0.49 (Table 1). The likelihood
of detection of cheatgrass in 2008 to 2013 field campaigns increased
with the higher values of predicted relative habitat suitability inMaxent
2007 (Fig. 1). Even though the lowest relative habitat suitability class
(b0.1) was more thoroughly sampled than others, cheatgrass was
only found within 5% of the random stratified sampling points for this
relative habitat suitability class. In the highest relative habitat suitability
class (0.7 to 1.0), cheatgrass was detected in 81% of the locations sam-
pled, the greatest proportion of any of the relative habitat suitability

http://www.cs.princeton.edu/~schapire/maxent/
http://www.cs.princeton.edu/~schapire/maxent/


Table 1
Comparison of cheatgrass models with field collected presence/absence test data and data partitioning.a

Threshold independent (±SD) Threshold dependent (±SD)

Model AUC PCC Sensitivity Specificity TSS
Maxent 2007 (2013 test data) 0.80 74.00 0.81 0.68 0.49
Maxent 2013
(10-fold cross-validation)

0.96
(±0.008)

89.46
(±0.94)

0.92
(±0.05)

0.89
(±0.009)

0.81
(±0.05)

GLM 2013
(10-fold cross-validation)

0.83
(±0.09)

76.19
(±8.21)

0.80
(±0.09)

0.73
(±0.12)

0.53
(±0.16)

a Maxent 2007 is the Maxent model trained using cheatgrass presence data up to 2007 (n = 21); test results using field data from 2008–2013 (presence = 180, absence = 232) are
presented. Maxent 2013 and GLM 2013 areMaxent and generalized linear models, respectively, trained using 67% of the data and tested with remaining 33%; results presented are aver-
ages of 10 replicate runs (±SD). AUC is Area Under the ROC (receiver operating characteristic) Curve; PCC is percent correctly classified; and TSS is True Skill Statistic.
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classes. As relative habitat suitability increased by class, the proportion
of plots containing cheatgrass also increased (Fig. 1).

Maxent 2013 outperformed GLM 2013 based on 10-fold cross vali-
dation evaluation metrics (Table 1) however both models were robust
with deviance explained values of 0.44 and 0.69, respectively. The
two-tailed Wilcoxon signed rank test for comparison of the Maxent
2013 and GLM 2013 models had a p b 0.001, a pseudo-median b 0.001
(i.e., the median of the difference between a sample from the first
model and a sample from the second model), and a 95% confidence in-
terval (C.I.) of 0.0000021, 0.000057.

The Maxent 2013 and GLM 2013 relative habitat suitability outputs
had higher agreement in predicting absences of cheatgrass than pres-
ences; Pearson's correlation between model predicted relative habitat
suitability, and cheatgrass presences and absences were 0.20, and
0.84, with C.I. [0.07, 0.32] and C.I. [0.80, 0.87], respectively. Maxent
2013 predicted a higher number of cells in the b0.10 relative habitat
suitability class compared to GLM 2013; conversely, GLM 2013 predict-
ed a higher number of cells in the 0.70 to 1.0 relative habitat suitability
class compared to Maxent 2013 (Fig. 2).

Predicted relative habitat suitability outputs from Maxent 2007,
Maxent 2013, and GLM 2013 had similar spatial patterns (Fig. 3), how-
ever the area encompassed by each relative habitat suitability class was
highly dissimilar, which is in agreementwith Fig. 2 results.When the bi-
nary output rasters were compared, the overall Kappa statistic was 0.77
between the Maxent 2013 and GLM 2013 models (Appendix 2a), and
0.73 between Maxent 2013 and Maxent 2007 (Appendix 2b),
respectively.

Elevation was the covariate with the highest relative contribution in
Maxent 2013 and GLM 2013, however distance to roads and trails was
the most important covariate in Maxent 2007. The latter variable was
not retained by the GLM 2013 model. The formula for the GLM model
was as follows:
Fig. 1. Bars represent the percent of cheatgrass occurrences in sampled sites for each relative ha
numbers above each bar represent the total number of sites visited within each relative habita
Response ~ elevation2 + flow direction + mean evi2 + vegetation
type 12 + elevation + slope + slope2 + flow accumulation2 +-
elevation: slope + flow direction: elevation.where: represents interac-
tion between two covariates.

Vegetation type 12 (i.e., subalpine) was the most important covari-
ate in the GLM 2013 model and was also important in Maxent 2007
andMaxent 2013; as cheatgrass habitat suitability decreased, subalpine
vegetation cover increased (Appendices 3 and 4). Slope and flow direc-
tion were important in the GLM 2013 model but not in Maxent 2007 or
Maxent 2013 (Table 2).

4. Discussion and conclusions

Using a suite of model validation tests, this study suggests that a
Maxent model fit with limited presence-only data can provide robust
estimates of habitat suitability for invasive species on the landscape.
Maxent 2007 fit with a small number of presence points resulted in pre-
dictions that were robust to an independent test dataset collected in
2008 to 2013. Maxent 2013 relative probability output indicated the
habitat suitability of cheatgrass is more restricted in geographic space
across the Park when compared to the same output from GLM 2013;
this result was expected because Maxent 2013 placed more constraints
(i.e. covariates) on the data than GLM 2013 (see Royle et al., 2012).
However, the two-tailed Wilcoxon signed rank test based on 1000 ran-
domly selected points fromMaxent 2013 andGLM2013 relative habitat
suitability outputs provides strong evidence that therewasminimal dif-
ference in overall spatial predictions between the two models. Given
this result, we were surprised that Maxent 2013 and GLM 2013 relative
habitat suitability outputs were highly correlated at known absence lo-
cations but not as strongly correlated at known presence locations. This
is likely due to the tendency for Maxent to assign higher habitat proba-
bility values at presence locations than GLM; however this result
bitat suitability class; classes were generated from the logistic output ofMaxent 2007. The
t suitability class.
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Fig. 3. a–c: Relative habitat suitability for cheatgrass in Rocky Mountain National Park; (a) Max
Maxentmodel including cheatgrass presence data from 2007 to 2013 (Maxent 2013), and (c) G
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warrants further investigation. In agreeancewith prior studies, topogra-
phy, distance to roads and trails, and vegetation community type influ-
enced where cheatgrass is found in the Park (Bromberg et al., 2011).

Rebelo and Jones (2010) supported the use of presence-only model-
ing for a rare bat species with limited data; their test also used an inde-
pendent test to validate the Maxent model. Other SDM comparisons
have highlighted the importance of independent model validation
(Gastón and García-Viñas, 2011; Gies et al., 2015). Our results suggest
that a Maxent presence-only model can accurately forecast the habitat
suitability of the generalist, invasive species cheatgrass and builds on pre-
vious model comparison studies (Long et al., 2009). Nonetheless, model
comparisons are important (see Brotons et al., 2004 where presence-
absence models are more accurate for a generalist bird species, and
Gastón and García-Viñas (2011) where penalized logistic regression
model results did not differ significantly fromMaxent resultswhen tested
ent model including cheatgrass presence data through the year 2007 (Maxent 2007), (b)
LMmodel including cheatgrass presence and absence data from2007 to 2013 (GLM 2013).

Image of Fig. 2
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Table 2
Relative importance (percent contribution) of different environmental predictors in
Maxent 2007, Maxent 2013, and GLM 2013. EVI is enhanced vegetation index.

Variable Maxent 2007 Maxent 2013 GLM 2013

Distance to roads/trails 65.87 13.27 –
Subalpine vegetation type 15.15 9.23 11.38
Elevation 14.05 67.86 73.81
Range EVI 4.92 1.13 –
Overland distance to water – 2.77 –
Mean EVI – 1.93 1.69
Flow accumulation – 1.26 1.21
Slope (degrees) – 1.04 5.95
Peak EVI – 1.04 –
Flow direction – 0.47 5.96
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with presence-absence data). Conservative estimates like those provided
by the Maxent models can be more useful to land management agencies
who seek accurate and reliable predictions that can be used to prioritize
areas for invasive species management (Underwood et al., 2004).

More presences of cheatgrass were found at higher probabilities
using the random stratified design, which was an initial indication
that higher predicted relative habitat suitability does in fact correlate
with greater likelihood of presence. A higher proportion of sites visited
with cheatgrass present fell into the higher relative habitat suitability
classes, also providing evidence that increased predicted relative proba-
bilities indicate a realized increased chance of species presence on the
ground. The calibration of the data demonstrated that the proportions
of sites visited containing cheatgrass in fact matched the expected
rangeswithin each relative habitat suitability class. It is likely that cheat-
grass has not yet fully expanded into its suitable habitat range in the
Park, whichwould result in lower occurrences than expected. Addition-
ally, the Fern Lake wildfire of 2012 encompassed an area of 14 km2 on
the east side of the Park, which may have had positive (e.g., increased
N availability and decreased competition) or negative (e.g., depleted
seed bank) effects on established cheatgrass populations in that area.

Stratified random samplingwas useful for the field validation because
it allowed for sampling a much larger area than from where the original
data were collected, capturing a wider range of environmental variability
in the Park. In Maxent 2007, new regions of the Park where data had not
previously been collected were predicted to have high probability of
cheatgrass habitat suitability. Cheatgrass was in fact found in many of
these high probability regions sampled in 2008 to 2013. Two new regions
predicted to have high probabilities of habitat suitability on the east side
of the park were validated by our field sampling. A third area that was
predicted to have a high probability of habitat suitability on the west
side of the Park did not have cheatgrass present at any of the random
stratified points from the surveys in 2008 to 2013. However, Park staff
found cheatgrass nearby (pers. comm., Dyan Hardin, Rocky Mountain
National Park, 13T 0428662 4457565 NAD83). Stratified sampling did
not detect cheatgrass in some of the areas with a high predicted cheat-
grass habitat suitability. This may have either been due to scaling issues
with the model not being able to predict areas far from the initial survey
area, or simply lower propagule pressure and dispersal in these areas. The
western road corridor in the Park was predicted to have high habitat
suitability for cheatgrass. Since most of the cheatgrass in the Colorado
Rockies is creeping from the foothills and plains on the east side of the
Park, it may not have reached the western side of the Park yet, where
only one cheatgrass presence point was found during field sampling.

While Maxent has been used by researchers to make predictions
about species distributions, it can be a valuable tool for land managers
as well. Maxent predicted the likelihood of cheatgrass presence based
on a small initial set of data points. The field validation of the model
demonstrated that the predictions were quite good from this initial
small dataset. With the limited time and resources that land managers
often have for data collection, Maxent can help them determine poten-
tial species ranges based on a quick initial assessment of a species. For
cheatgrass, land managers can make inferences about potential pres-
ence based on model relative probabilities and environmental factors
such as elevation. Such information would be useful to managers in
helping prioritize the allocation of time and resources. There are always
uncertainties in any model predictions (Jarnevich et al., 2015), which is
evident from the probability classes and proportions of sites foundwith
cheatgrass in those classes. With such uncertainties, land managers
should not solely base their decisions on models, but rather use them
to help guide their management efforts.

Maxent predictions have been made for other species, but similar
field based validations have rarely been performed (e.g., Costa et al.,
2010; Rebelo and Jones, 2010). Examples of the field validation of
other SDMs do exist (Dennis and Eales, 1999; Fielding and Haworth,
1995; Randin et al., 2006) but are not common. It is possible that
other species with widespread distributions but apparent environmen-
tal constraints may also be predicted well by the model, but this infor-
mation is not known. Prior studies have compared species with
limited distributions to those that can thrive in a greater range of envi-
ronmental conditions (Evangelista et al., 2008; Hernandez et al., 2008).
Even awidespread species such as cheatgrass will have constrained dis-
tributions in less desirable environments. Cheatgrass is widespread
throughout the Great Basin (Knapp, 1996; Mack, 1981), but appears to
be more constrained in a high elevation range such as Rocky Mountain
National Park. Themodel should be validated in various physical and cli-
matic conditions to see if it can consistently make correct predictions in
numerous types of environments. In addition to testing themodel in dif-
ferent environments, other similar generalist as well as specialist spe-
cies should be included in model validations to determine what types
of species best fit the model predictions.

Appendix 1
Environmental variable GIS layers included in analysis.
Environmental variable
 Spatial resolution
 Data source
levation (DEM)a
 30 m
 NED seamless data

ope
 30 m
 Derived from the DEM

astness
 30 m
 Derived from the DEM

orthness
 30 m
 Derived from the DEM

ow accumulation
 30 m
 Derived from the DEM

ow direction
 30 m
 Derived from the DEM

DVI (2001)b
 30 m
 Landsat 7 ETM+

rightness index (2001)b
 30 m
 Landsat 7 ETM+

reenness index (2001)b
 30 m
 Landsat 7 ETM+

oistness index (2001)b
 30 m
 Landsat 7 ETM+

etness index (2001)b
 30 m
 Landsat 7 ETM+

ean EVIc
 250 m
 MODIS (resampled to 30 m)

eak EVIc
 250 m
 MODIS (resampled to 30 m)

ange in EVIc
 250 m
 MODIS (resampled to 30 m)

istance from roads and trailsd
 30 m
 Created in ArcGIS

istance from streamsd
 30 m
 Created in ArcGIS

verland distance to waterd
 30 m
 Flows tools (Theobald et al., 2006)

lar radiationd
 30 m
 Created in ArcGIS

egetation community typee
 30 m
 Landfire data
V
a Digital Elevation Model (NED or National Elevation Dataset is the primary elevation
dataset used by the USGS, http://ned.usgs.gov/).

b Spectral indices derived from Landsat 7 ETM+ satellite imagery; NDVI is Normalized
DifferenceVegetation Index, http://earthexplorer.usgs.gov/.

c Moderate Resolution Imaging Spectroradiometer, http://modis.gsfc.nasa.gov/.
d Variables created in ArcGIS v.9.3 based on data provided by the National Park Service,

RockyMountainNational Park. Theobald, D.M., Norman, J.B., Peterson, E., Ferraz, S.,Wade,
A. & Sherburne, M.R. (2006) Functional linkage of water basins and streams (FLoWS) v1
user's guide: ArcGIS tools for network-based analysis of freshwater ecosystems. pp. 43.
Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado.

e Vegetation community type was a categorical variable derived from Landfire http://
www.landfire.gov/NationalProductDescriptions21.php. Using ArcGIS, we classified
Landfire categories and then created a continuous raster surface for each of the new 18
vegetation community type categories: (1)water, (2) snow/ice, (3) developed, (4) barren,
(5) agriculture, (6) alpine/montane sparsely vegetated, (7) aspen forest, (8) pine/juniper
forest, (9) lodgepole pine forest, (10)montanemixed conifer, (11) ponderosa pine forest,
(12) subalpine, (13) lower montane/foothill shrubland, (14) alpine dwarf shrubland/al-
pine rangeland, (15) pine/juniper savannah, (16) sagebrush-steppe, (17) perennial
graminoid/grassland, and (18) riparian.

http://www.landfire.gov/NationalProductDescriptions21.php
http://www.landfire.gov/NationalProductDescriptions21.php
http://www.landfire.gov/NationalProductDescriptions21.php
http://www.landfire.gov/NationalProductDescriptions21.php
http://www.landfire.gov/NationalProductDescriptions21.php


Appendix 2. a-b. Kappa comparison of binary outputs for (a) Maxent 2013 and GLM 2013, and (b) Maxent 2013 and Maxent 2007.

Appendix 3. Response curves for covariates used to fit GLM 2013. Predicted value of habitat suitability is on the Y axis; value of given covariate is on the X axis.
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Appendix 4. Response curves for covariates used to fit the Maxent 2013 model. Predicted value of habitat suitability is on the Y axis; value of given covariate is on the X axis.
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