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a b s t r a c t

This paper concentrates on iterative methods for obtaining the multiple roots of nonlinear
equations. Using the computer algebra system Mathematica, we construct an iterative
scheme and discuss the conditions to obtain fourth-order methods from it. All the
presented fourth-order methods require one-function and two-derivative evaluation per
iteration, and are optimal higher-order iterative methods for obtaining multiple roots. We
present some special methods from the iterative scheme, including some known already.
Numerical examples are also given to show their performance.
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1. Introduction

One of themost important and challenging problems in scientific and engineering computations is to find the solutions to
a nonlinear equation f (x) = 0. We concern ourselves with iterative methods to find the multiple roots x⋆ with multiplicity
m of a nonlinear equation f (x) = 0, i.e., f (i)(x⋆) = 0, i = 0, 1, . . . ,m − 1, and f (m)(x⋆) ≠ 0.

A variant of Newton’s method for obtaining multiple roots, given in [1], is quadratically convergent, and is given by

xn+1 = xn − m
f (xn)
f ′(xn)

. (1)

In order to improve the convergence of iterative methods for multiple roots, some researchers, such as Dong [2,3], Neta
et al. [4–7], and Li et al. [8,9], have developed some iterative methods with higher order of convergence. Some of these
methods are of order three [2–4,6], while others are of order four [5,7–9]. All these methods require the knowledge of the
multiplicitym. In this paper, we only concern ourselves with iterative methods of order four.

Based on the work of Jarratt [10], Neta et al. [5] have presented a fourth-order method requiring one-function and three-
derivative evaluation per iteration, given by the iteration function

xn+1 = xn −
f (xn)

a1f ′(xn) + a2f ′(yn) + a3f ′(ηn)
, (2)

✩ This work is supported by the National Natural Science Foundation of China (10971252), and the Foundation for the Authors of the National Excellent
Doctoral Thesis Award of China (200720).
∗ Corresponding author.

E-mail addresses: zxjntu@gmail.com (X. Zhou), xchen@njnu.edu.cn (X. Chen), yzsong@njnu.edu.cn (Y. Song).

0377-0427/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2011.03.014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82294284?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.cam.2011.03.014
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:zxjntu@gmail.com
mailto:xchen@njnu.edu.cn
mailto:yzsong@njnu.edu.cn
http://dx.doi.org/10.1016/j.cam.2011.03.014


4200 X. Zhou et al. / Journal of Computational and Applied Mathematics 235 (2011) 4199–4206

where

yn = xn − a
f (xn)
f ′(xn)

, ηn = xn − b
f (xn)
f ′(xn)

− c
f (xn)
f ′(yn)

. (3)

The values for the parameters a, b, c , a1, a2, and a3 for several values ofm are discussed by the authors.
Neta [7] has also developed another fourth-order method, requiring one-function and three-derivative evaluation per

iteration:

xn+1 = xn − a1
f (xn)
f ′(xn)

− a2
f (xn)
f ′(yn)

− a3
f (xn)
f ′(ηn)

−
f (xn)

b1f ′(xn) + b2f ′(yn)
, (4)

where yn and ηn are given by (3). A table of values for the parameters a, b, c , a1, a2, a3, b1, and b2 for several values of m is
given in [7].

Inspired by another work of Jarratt [11], Sharma and Sharma [12] present a variant of the Jarratt method for obtaining
multiple roots, which has fourth order of convergence and requires one-function and two-derivative evaluation per
iteration:

yn = xn −
2m

2 + m
f (xn)
f ′(xn)

,

xn+1 = xn −
m
8


(m3

− 4m + 8) − (m + 2)2


m
m + 2

m f ′(xn)
f ′(yn)

×


2(m − 1) − (m + 2)


m

m + 2

m f ′(xn)
f ′(yn)


f (xn)
f ′(xn)

.

(5)

In [9], Li et al. present six fourth-order methods with closed formulae for obtaining the multiple roots of nonlinear
equations. Among them, the following two methods are more efficient, since they also only require one-function and two-
derivative evaluation per iteration.

yn = xn −
2m

m + 2
f (xn)
f ′(xn)

,

xn+1 = xn − a3
f (xn)
f ′(yn)

−
f (xn)

b1f ′(xn) + b2f ′(yn)
,

(6)

where

a3 = −
1
2

m(m − 2)(m + 2)3
 m
m+2

m
(m3 − 4m + 8)

,

b1 = −
(m3

− 4m + 8)2

m(m2 + 2m − 4)3
,

b2 =
m2(m3

− 4m + 8)
m+2

m

m
(m2 + 2m − 4)3

,

and 
yn = xn −

2m
m + 2

f (xn)
f ′(xn)

,

xn+1 = xn − a3
f (xn)
f ′(xn)

−
f (xn)

b1f ′(xn) + b2f ′(yn)
,

(7)

with

a3 = −
1
2
m(m − 2), b1 = −

1
m

, b2 =
1
m


2 + m
m

m

.

2. Development of a high-order method

Considering the following iterative method:
yn = xn − t

f (xn)
f ′(xn)

,

xn+1 = xn − Q

f ′(yn)
f ′(xn)


f (xn)
f ′(xn)

,

(8)

where t is a parameter and the function Q (·) ∈ C2(R). Note that (5)–(7) are members of the family (8).



X. Zhou et al. / Journal of Computational and Applied Mathematics 235 (2011) 4199–4206 4201

Let en = xn − x⋆ and let f (x) be a sufficiently differentiable function. Expanding f (xn) and f ′(xn) at x = x⋆ with Taylor
series, we then have

f (xn) =
f (m)(x⋆)

m!
emn


1 + c1en + c2e2n + c3e3n + O(e4n)


,

and

f ′(xn) =
f (m)(α)

(m − 1)!
em−1
n


1 +

m + 1
m

c1en +
m + 2
m

c2e2n +
m + 3
m

c3e3n + · · ·


,

where ci =
m!

i!
f (i)(x⋆)
f (m)(x⋆)

and i ≥ 1.
Using a computer algebra system such as Mathematica, we can get

f ′(yn)
f ′(xn)

= µm−1
+

c1t (m(−2 + t) + t) µm

m (m − t)2
en +

tµm

2m2(m − t)3
(h1c21 + 2h2c2)e2n

+
tµm

6m3(m − t)4
(6h3c3 + h4c31 + 12h5c1c2)e3n + O(e4n), (9)

where

µ = 1 −
t
m

,

h1 = 2(m + 1)(2m + 1)t2 − 3m(m2
+ 5m + 2)t + 6m2(m + 1),

h2 = (2 + m)t3 − 4m(2 + m)t2 + 3m2(4 + m)t − 6m3,

h3 = (m − t)2((m + 3)t3 − 4m(m + 3)t2 + 6m2(m + 3)t − 12m3),

h4 = 3(m + 1)(7m2
+ 7m + 2)t3 − 4m(8m3

+ 33m2
+ 25m + 6)t2

+ 12m2(m + 1)(m2
+ 8m + 3)t − 24m3(m + 1)2,

h5 = (m + 1)(m + 2)t4 − 2m(m + 1)(3m + 5)t3 + 4m2(2m2
+ 8m + 5)t2

−m3(3m2
+ 25m + 20)t + 2m4(3m + 4).

Let f ′(yn)
f ′(xn)

= u + v, where u = µm−1. Then, from (9), the remainder v =
f ′(yn)
f ′(xn)

− u is infinitesimal with the same order of

en. Thus, we can Taylor expand Q (
f ′(yn)
f ′(xn)

) = Q (u + v) about u and then obtain

Q

f ′(yn)
f ′(xn)


= Q (u) + Q ′(u)v +

Q ′′(u)v2

2
+

Q ′′′(u)v3

3!
+ O(e4n).

Again by the help of Mathematica, we can obtain the error equation

en+1 = en − Q

f ′(yn)
f ′(xn)


f (xn)
f ′(xn)

=


1 −

Q (u)
m


en +


1
m2

Q (u) −
(mt + t − 2m)tµm

m2(m − t)2
Q ′(u)


c1e2n + (p1c1 + p2c2)e3n + O(e4n), (10)

where

p1 =
2
m2

Q (u) −
(m + 2)t3 − 4m(m + 2)t2 + 3m2(m + 4)t − 6m3

m3(m − t)3
tµmQ ′(u),

p2 = −
t2(m(−2 + t) + t)2µ2m

2m3(m − t)4
Q ′′(u) −

m + 1
m3

Q (u) +


mt + t − 2m
m3(m − t)2

+
(m + 1)(2m + 1)

m3(m − t)4
t3

+
7m2

+ 21m + 8
2m2(m − t)4

t2 +
3m2

+ 21m + 12
2m(m − t)4

t +
3(m + 1)
(m − t)4


tµmQ ′(u).

Thus, to obtain an iterativemethod of order four, the coefficients of en, e2n, and e3n in error equation (10) should all be zeros.
Furthermore, to get a fourth-order method independent of the information of f (x), we also should ensure that p1 = p2 = 0.
So we have the following equations involving Q (u), Q ′(u), Q ′′(u), and t .

Q (u)
m

= 1,

Q (u) =
Q ′(u)t(mt + t − 2m)


1 −

t
m

m
(m − t)2

,

p1 = 0,
p2 = 0.
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Solving these equations, we get

t =
2m

2 + m
,

Q (u) = m,

Q ′(u) = −
1
4
m3−m(2 + m)m,

Q ′′(u) =
1
4
m4


m

2 + m

−2m

,

where u = ( m
2+m )m−1.

From the discussion above we can deduce the following conclusion.

Theorem 2.1. Let x⋆
∈ R be a multiple root of multiplicity m of a sufficiently differentiable function f : I → R for an open

interval I. If the initial point x0 is sufficiently close to x⋆, then the convergence order of the method defined by (8) is at least four,
when the following equations hold:

t =
2m

2 + m
,

and 
Q (u) = m,

Q ′(u) = −
1
4
m3−m(2 + m)m,

Q ′′(u) =
1
4
m4


m

2 + m

−2m

,

where u = ( m
2+m )m−1.

Remark 1. From the error equation (10), we can find that the iterative method (8) contains a variant of Newton method (1)
as a second-order method. It is also easy to find the conditions to obtain third-order methods.

Remark 2. One should note that, in (8), three new function evaluations for f (xn), f ′(xn), and f ′(yn) are required per iteration.
So Theorem 2.1 shows that the method (8) is optimal with convergence order of four, as expected by the conjecture in [13].

Remark 3. Consider the definition of an efficiency index as p1/q, where p is the order of the method and q is the number
of function evaluations per iteration required by the method. The fourth-order methods (8) have the efficiency index
41/3

≈ 1.587, which is better than 21/2
≈ 1.414 of Newton method (1), and 41/4

≈ 1.414 of the fourth-order methods
(2) and (4).

3. Some special cases of order four

In this section, we will give some special cases of order four of the presented method (8). According to Theorem 2.1,
t =

2m
2+m ; then u = ( m

2+m )m−1.

Case 1. First, we consider the simplest case. Suppose that

Q (x) = Ax2 + Bx + C .

Then

Q ′(x) = 2Ax + B, Q ′′(x) = 2A.

According to Theorem 2.1, we should solve the following equations:
Au2

+ Bu + C = m,

2Au + B = −
1
4
m3−m(2 + m)m,

2A =
1
4
m4


m

2 + m

−2m

.
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The solution to the equations above is
A =

1
8
m4


m + 2
m

2m

,

B = −
1
4
m3(m + 3)


2 + m
m

m

,

C =
1
8
m(m3

+ 6m2
+ 8m + 8),

and thus we obtain the following iterative method of order four:

yn = xn −
2m

2 + m
f (xn)
f ′(xn)

,

xn+1 = xn −
m
8


m3


m + 2
m

2m 
f ′(yn)
f ′(xn)

2

− 2m2(m + 3)

2 + m
m

m f ′(yn)
f ′(xn)

+ (m3
+ 6m2

+ 8m + 8)


f (xn)
f ′(xn)

.

(11)

Case 2. Let

Q (x) = Ax +
B
x

+ C .

Then

Q ′(x) = A −
B
x2

and Q ′′(x) =
2B
x3

.

So we have the following equations:
Au +

B
u

+ C = m,

A −
B
u2

= −
1
4
m3−m(2 + m)m,

2B
u3

=
1
4
m4


m

2 + m

−2m

.

Solving them, we get

A =
1
8
m4


m + 2
m

m

, B =
1
8
m(m + 2)3


m

m + 2

m

, C = −
1
4
m(m3

+ 3m2
+ 2m − 4),

and hence another fourth-order convergent iterative scheme:
yn = xn −

2m
2 + m

f (xn)
f ′(xn)

,

xn+1 = xn −
m4

8


m + 2
m

m f ′(yn)
f ′(xn)

f (xn)
f ′(xn)

−
m(m + 2)3

8


m

m + 2

m f (xn)
f ′(yn)

+
1
4
m(m3

+ 3m2
+ 2m − 4)

f (xn)
f ′(xn)

.

(12)

Case 3. Let

Q (x) = A +
B
x

+
C
x2

.

Then

Q ′(x) = −
2C
x3

−
B
x2

, Q ′′(x) =
6C
x4

+
2B
x3

.
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From Theorem 2.1, we have the following equations:
A +

B
u

+
C
u2

= m,

−
2C
u3

−
B
u2

= −
1
4
m3−m(2 + m)m,

6C
u4

+
2B
u3

=
1
4
m4


m

2 + m

−2m

.

The solutions are

A =
m
8

(m3
− 4m + 8), B = −

m
4

(m − 1)(m + 2)2


m
m + 2

m

, C =
m
8

(m + 2)3


m
m + 2

2m

.

Thus we have the fourth-order iterative method given by (5), proposed in [12].

Case 4. Let

Q (x) =
A
x

+
1

B + Cx
.

Then

Q ′(x) = −
A
x2

−
C

(B + Cx)2
, Q ′′(x) =

2A
x3

+
2C2

(B + Cx)3
.

Similarly, we have

A
u

+
1

B + Cu
= m,

−
A
u2

−
C

(B + Cu)2
= −

1
4
m3−m(2 + m)m,

2A
u3

+
2C2

(B + Cu)3
=

1
4
m4


m

2 + m

−2m

.

Thus we get

A = −
1
2

m(m − 2)(m + 2)3
 m
m+2

m
(m3 − 4m + 8)

,

B = −
(m3

− 4m + 8)2

m(m2 + 2m − 4)3
,

C =
m2(m3

− 4m + 8)
m+2

m

m
(m2 + 2m − 4)3

,

which gives the fourth-order convergent method (6), proposed in [9].

Case 5. Let

Q (x) =
B + Cx
1 + Ax

.

Then

Q ′(x) =
C − AB

(1 + Ax)2
and Q ′′(x) =

2A(AB − C)

(1 + Ax)3
.

According to Theorem 2.1, we should solve the following equations:

B + Cu
1 + Au

= m,

C − AB
(1 + Au)2

= −
1
4
m3−m(2 + m)m,

2A(AB − C)

(1 + Au)3
=

1
4
m4


m

2 + m

−2m

.

Thus we have

A = −


m + 2
m

m

, B = −
m2

2
, C =

1
2
m(m − 2)


m + 2
m

m

,
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Table 1
The number of iterations and function evaluations.

f (x) x0 (2) (7) (11) (12)

f1
2.5 6(24) 6(18) 6(18) 6(18)
3.5 6(24) 6(18) 7(21) 7(21)

f2
1.8 4(16) 4(12) 4(12) 4(12)

−2.0 4(16) 4(12) 4(12) 4(12)

f3
1.5 4(16) 4(12) 4(12) 4(12)
3.0 41(164) × 7(21) 8(24)

f4
−3.5 11(44) 10(30) 10(30) 10(30)
1.2 × × 28(84) 77(231)

f5
3.25 6(24) 5(15) 6(18) 6(18)
4.25 14(56) 13(39) 13(39) 13(39)

f6
0.5 5(20) 4(12) 4(12) 4(12)

15.5 5(20) 4(12) 3(12) 3(12)

Table 2
Value of |f (x)| when the stopping criterion is satisfied.

f (x) x0 (2) (7) (11) (12)

f1
2.5 2.6021 e−132 6.0210e−132 5.2705e−127 4.4551e−129
3.5 3.2011 e−119 3.2011e−119 5.4282e−139 4.2814e−149

f2
1.8 2.4866 e−130 2.6720e−171 5.5482e−158 2.4977e−173

−2.0 4.3153 e−129 5.7302e−178 8.8010e−164 2.0963e−181

f3
1.5 8.6463 e−129 8.6106e−125 3.3436e−126 2.3140e−125
3.0 7.7305 e−139 × 7.0380e−162 9.6051e−163

f4
−3.5 2.1541 e−130 5.8668e−159 2.9531e−141 1.5017e−146
1.2 × × 7.0971e−167 5.0241e−140

f5
3.25 6.7913 e−122 1.1760e−120 7.5369e−174 1.5180e−176
4.25 1.0147 e−124 1.6017e−162 1.3409e−138 6.4336e−144

f6
0.5 7.5584 e−144 1.9930e−143 1.4892e−138 2.3654e−146

15.5 2.8011 e−150 5.7295e−121 9.8206e−176 4.0287e−119

and the corresponding method has been proposed in [8], which is also equivalent to (7).

4. Numerical results

In this section, we employ the presented fourth-order methods (8), including (7), (11), and (12), to solve some nonlinear
equations and compare them with another fourth-order method (2). All numerical computations have been carried out in
a Matlab 7.0 environment using 128- digit floating-point arithmetic. The following test problems have been used with the
stopping criterion |f (xn+1)| ≤ 10−120, where x⋆ is a root of f (x) with multiplicitym.

f (x) x⋆ m
f1(x) = (sin2 x − x2 + 1)2 1.4044916482153412260350868178 2
f2(x) = (x2 − ex − 3x + 2)5 0.2575302854398607604553673049 5
f3(x) = (cos x − x)3 0.7390851332151606416553120876 3
f4(x) = (xex

2
− sin2 x + 3 cos x + 5)4 −1.2076478271309189270094167584 4

f5(x) = (ex
2
+7x−30

− 1)4 3.0 4
f6(x) =


ln x +

√
x − 5

4
8.3094326942315717953469556827 4

In Tables 1 and 2, ‘‘×’’ means that themethod does not converge to the solution to the corresponding test function. It can
be seen that the new presented methods (11) and (12) are superior to method (2). For the test function f4, starting from the
initial point 1.2,methods (2) and (7) both failed. However, two new iterativemethods, (11) and (12), performwell. So Table 1
shows that our present methods can compete with method (2) and require fewer iterative steps, especially the number of
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function evaluations. From Table 2, we can see that, even with fewer iterative steps, the present methods can also obtain
high-precision solutions, and thus they are more suitable for high-precision computation.
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