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a b s t r a c t

A network of polymers can imbibe a large quantity of a solvent and swell, resulting in a gel. The swelling
process can be markedly influenced by a mechanical load and geometric constraint. When the network,
solvent, and mechanical load equilibrate, inside the gel the chemical potential of the solvent is homoge-
neous, but the concentration of the solvent and the deformation of the network can be inhomogeneous.
We use the chemical potential of the solvent and the deformation gradient of the network as the inde-
pendent variables of the free-energy function, and show that the boundary value problem of the swollen
gel is equivalent to that of a hyperelastic solid. We implement this approach in the finite-element pack-
age, ABAQUS, and analyze examples of swelling-induced deformation, contact, and bifurcation. Because
commercial software like ABAQUS is widely available, this work may provide a powerful tool to study
complex phenomena in gels.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Flexible, long-chained polymers can crosslink by covalent bonds
into a three-dimensional network. The resulting material, an elas-
tomer, is capable of large and reversible deformation. When the
elastomer is brought in contact with a solvent, the elastomer
imbibes the solvent and swells, resulting in an aggregate known
as a gel. The swelling is also reversible: when the environment
dries, the solvent in the gel migrates out and evaporates. The gel
has attributes of both a solid and a liquid: elastic deformation
results from strong chemical crosslinks between the long-chained
polymers, and viscous migration results from weak physical asso-
ciation between the long-chained polymers and the solvent
molecules.

The unusual combination of the attributes makes gels the mate-
rials of choice for diverse applications, such as medical devices
(Wichterle and Lim, 1960; Peppas et al., 2006), tissue engineering
(Lee and Mooney, 2001; Wong et al., 2008), actuators responsive
to physiological cues (Beebe et al., 2000; Dong et al., 2006; Cho
et al., 2008), and packers in oil wells (Kleverlaan et al., 2005). Mix-
tures of macromolecular networks and solvents also constitute tis-
sues in plants and animals, where the networks retain structural
forms, while the solvents enable the transport of nutrients and
wastes.
ll rights reserved.
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As noted in our previous paper (Hong et al., 2008a), a gel can
undergo large deformation of two modes. The first mode results
from the fast process of short-range rearrangement of molecules,
allowing the gel to change shape but not volume. The second mode
results from the slow process of long-range migration of the sol-
vent molecules, allowing the gel to change both shape and volume.
When a gel is subject to a sudden change in the environment, for
example, a change in the mechanical load or in the chemical poten-
tial of the solvent, the gel adapts to the new environment by
co-evolving the shape of the network and the distribution of the
solvent molecules. Two limiting states can be identified. In the
short-time limit, the solvent molecules inside the gel do not yet
have time to redistribute, but the mechanical equilibrium has
already been established. In the long-time limit, the gel has
reached the equilibrium with both the mechanical load and the
external solvent, so that the chemical potential of the solvent mol-
ecules is homogeneous throughout the gel, and is prescribed by the
external solvent. The evolution from one limit to the other takes
time, because the solvent molecules have to migrate in the gel.
For example, the time to equilibrate a sphere of a gel to a solvent
scales with the square of the diameter of the sphere.

We will focus on the long-time limit, namely, the state of equi-
librium achieved when a network has been in contact with a sol-
vent for a long time. In the absence of mechanical load or
geometric constraint, a homogenous network equilibrates with a
solvent by a homogenous and isotropic field of deformation. Such
free swelling, however, rarely occurs in practice. Inhomogeneous
or anisotropic state of equilibrium occurs, for example, when the
network itself is in any way modulated (e.g., Hu et al., 1995; Klein
et al., 2007; Ladet et al., 2008), or when the network is subject to a
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Fig. 1. A gel is in contact with a solvent of a fixed chemical potential, and is subject
to a mechanical load and a geometric constraint.
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mechanical load or geometric constraint (e.g., Kim et al., 2006).
Swelling can induce cavitation, debonding, creasing, and other
forms of instability (e.g., Southern and Thomas, 1965; Sidorenko
et al., 2007; Hong et al., 2008b; Trujillo et al., 2008; Zhang et al.,
2008).

This paper describes a finite element method on the basis of a
nonlinear field theory of swelling due to Gibbs (1878). We show
that the inhomogeneous field in a gel equilibrated with a solvent
is equivalent to the field in a compressible hyperelastic solid. We
implement this theory as a user-supplied subroutine in the fi-
nite-element package, ABAQUS. This implementation enables us
to use various two- and three-dimensional elements to analyze di-
verse phenomena, including large deformation, contact, and bifur-
cation. Because commercial software like ABAQUS is widely
available, we hope that this work will enable other people to ana-
lyze complex phenomena in gels without spending much time on
coding. The user-supplied subroutine is posted online, <http://
imechanica.org/node/3163>.

It is sometimes proposed that swelling of a gel may be simu-
lated by prescribing a volumetric strain. This practice is erroneous
when swelling is anisotropic or inhomogeneous. As we will show,
in general the volumetric strain cannot be prescribed, but should
be solved as a part of a boundary value problem. Indeed, the volu-
metric strain can be inhomogeneous and can depend on the state
of stress.

Our method builds upon the work of Gibbs (1878), who formu-
lated a thermodynamic theory of nonlinear fields associated with
mobile molecules in an elastic solid. Biot (1941) combined the
thermodynamic theory and Darcy’s law for mass transport in a
porous medium. Both Gibbs and Biot used phenomenological
free-energy functions, and their works were not specific for poly-
meric gels. Using statistical mechanics, Flory and Rehner (1943)
developed a free-energy function for a polymeric gel, including
the effects of the entropy of stretching the network, the entropy
of mixing the network polymers and the solvent molecules, and
the enthalpy of mixing. For reviews of subsequent theoretical
contributions, see reviews by Treloar (1975), Sekimoto (1991),
Durning and Morman (1993), Baek and Srinivasa (2004), Dolbow
et al. (2005), Bassetti et al. (2005), Hui and Muralidharan (2005),
Li et al. (2007), Westbrook and Qi (2008), and Hong et al.
(2008a). An approach different from that of Gibbs (1878), known
as the mixture theory, has been developed (e.g., Atkin and Craine,
1976; Rajagopal and Tao, 1995; Shi et al., 1981; Rajagopal et al.,
1986; Gandhi and Usman, 1989a). It is beyond the scope of this pa-
per to compare various theoretical approaches. Rather, this paper
is focused on implementing a numerical method on the basis of
the theory of Gibbs (1878).

A body of literature exists on analyzing gels swollen under var-
ious boundary conditions, using analytical or semi-analytical
methods. For example, Treloar (1950) analyzed swelling in various
homogenous but anisotropic states of strain. Sternstein (1972) and
Zhao et al. (2008) analyzed swelling under spherical symmetry,
such as swelling of a shell of a gel around a sphere of a rigid core.
Treloar (1976), Gandhi and Usman (1989b), and Demirkoparan and
Pence (2007) analyzed swelling under cylindrical symmetry.
Gandhi et al. (1989) solved a swollen cylinder under combined
extension and torsion. Gandhi et al. (1995) and Tsai et al. (2004)
analyzed flexure of a rectangular block due to a bending moment
or inhomogeneous swelling. Some of these analyses will be used
to test our numerical method.

2. Equilibrium condition in variational forms

Fig. 1 illustrates a network of polymers in contact with a sol-
vent, subject to a mechanical load and geometric constraint, and
held at a constant temperature. We take the stress-free dry
network as the reference state, and name each small part of the
network after its coordinate X in the reference state. Let dVðXÞ
be an element of volume, dAðXÞ be an element of area, and NKðXÞ
be the unit vector normal to the element of area. In a deformed
state, this part of the network moves to a place with the coordinate
xiðXÞ. The deformation gradient of the network is

FiK ¼
@xiðXÞ
@XK

: ð1Þ

In the deformed state, let CðXÞdVðXÞ be the number of solvent mol-
ecules in the element of volume. The field xiðXÞ describes the defor-
mation of the network, while the field CðXÞ describes the
distribution of the solvent molecules in the gel. The combination
of the two fields describes the state of the gel.

In a deformed state, let BiðXÞdVðXÞ be the external mechanical
force applied on the element of volume, and TiðXÞdAðXÞ be the
external mechanical force applied on the element of area. When
the network deforms by a small amount, dxiðXÞ, the field of
mechanical load does work

R
Bidxi dV þ

R
Tidxi dA. The integrals ex-

tend over the volume and the surface of the network in the refer-
ence state.

The external solvent can be either a gas, or a pure liquid equil-
ibrated with its own vapor. We take the latter to be the reference
state of the solvent, where the chemical potential is set to be zero.
We take the liquid solvent to be incompressible, and denote v as
the volume per solvent molecule, and p0 as the vapor pressure.
When the solvent is subject to a pressure p greater than the vapor
pressure, p > p0, the solvent is in the liquid phase, and the chemi-
cal potential of the solvent molecules is l ¼ vðp� p0Þ. When the
solvent is subject to a pressure p less than the vapor pressure,
p < p0, the solvent in equilibrium becomes a gas, which we assume
to be an ideal gas, so that the chemical potential of the solvent mol-
ecules is l ¼ kTðp=p0Þ, where kT is the absolute temperature in the
unit of energy. When the field of concentration in the gel changes
by dCðXÞ, the external solvent does work l

R
dC dV .

Let W dVðXÞ be the Helmholtz free energy of the gel in the ele-
ment of volume. We assume that the free-energy density of the gel,
W, is a function of the deformation gradient of the network, F, and
the concentration of the solvent in the gel, C. Later we will adopt an
explicit form of the free-energy function WðF;CÞ, but for the time
being this function is kept general. When the gel equilibrates with
the solvent and the mechanical load, the chemical potential of the
solvent molecules is homogeneous in the external solvent and in
the gel:
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l ¼ @WðF;CÞ
@C

: ð2Þ

This thermodynamic equation will also be derived in the next
section.

Now let the gel be in a state of equilibrium characterized by the
two fields, xiðXÞ and CðXÞ. Thermodynamics dictates that the change
in the free energy of the gel should equal the sum of the work done
by the external mechanical force and by the external solvent,
namely,Z

dW dV ¼
Z

Bidxi dV þ
Z

Tidxi dAþ l
Z

dC dV : ð3Þ

This equation holds for any small changes dx and dC from the state
of equilibrium.

Introduce another free-energy function cW by using a Legendre
transformation:cW ¼WðF;CÞ � lC: ð4Þ

Once the function WðF;CÞ is prescribed and the differential is taken,
(2) is an algebraic equation, from which we can express C as a func-
tion of F and l. Consequently, (4) defines cW as a function of the
deformation gradient of the network and the chemical potential
of the solvent molecules, cW ðF;lÞ.

A combination of (3) and (4) gives thatZ
dcW dV ¼

Z
Bidxi dV þ

Z
Tidxi dA: ð5Þ

As noted above, when the gel is in a state of equilibrium, the chem-
ical potential of the solvent molecules inside the gel is homogenous
and is equal to the chemical potential of the external solvent, l. In-
deed, the chemical potential plays a role analogous to that of the
temperature. The equilibrium condition (5) takes the same form
as that for a hyperelastic solid. Once the function cW ðF;lÞ is pre-
scribed, we can implement a finite element method. Note that the
theory has no intrinsic length scale, so that the field can only de-
pend on lengths coming from the boundary conditions. Readers
mainly interested in the implementation of this approach may wish
to skip the following two sections and go directly to Section 5.

3. Equilibrium condition in differential forms

As a digression, following a tradition in continuum mechanics,
we now reduce the equilibrium condition of the variational forms
to that of differential forms. We have assumed that the free-energy
density takes the functional form WðF;CÞ. Associated with a small
change in the deformation gradient of the network, dFiK , and a
small change in the concentration of the solvent molecules, dC,
the free-energy density changes by

dW ¼ @WðF;CÞ
@FiK

dFiK þ
@WðF; CÞ

@C
dC: ð6Þ

Substituting (6) into the equilibrium condition (3), and applying
the divergence theorem, we obtain thatZ

@

@XK

@W
@FiK

þ Bi

� �
dxi dV þ

Z
Ti �

@W
@FiK

NK

� �
dxi dA

þ
Z

l� @W
@C

� �
dC dV ¼ 0: ð7Þ

In equilibrium, (7) holds for arbitrary changes dxi and dC, so that the
quantity in each pair of parentheses in (7) vanishes. Consequently,
the equilibrium condition is equivalent to (2), along with

@

@XK

@WðF;CÞ
@FiK

þ Bi ¼ 0 ð8Þ

in the volume of the gel, and
@WðF;CÞ
@FiK

NK ¼ Ti ð9Þ

on the surface of the gel.
Define nominal stress as the work conjugate to the deformation

gradient, so that

siK ¼
@WðF;CÞ
@FiK

: ð10Þ

This nominal stress gives (8) and (9) the familiar interpretation as
the conditions for mechanical equilibrium. Using (2) and (10), we
rewrite (6) as

dW ¼ siKdFiK þ ldC: ð11Þ

A combination of (4) and (11) gives that

dcW ¼ siKdFiK � Cdl; ð12Þ

so that

siK ¼
@cW ðF;lÞ
@FiK

; ð13Þ

C ¼ � @
cW ðF;lÞ
@l

: ð14Þ
4. Molecular incompressibility

The often used analogy between a gel and a sponge is mislead-
ing in an important respect. When liquid drains from a sponge,
pores remain inside the sponge and are filled with air. When sol-
vent migrates out of a gel, however, the network of polymers con-
tracts and leaves essentially no pores inside. Also, mechanical
forces applied to gels are usually so small that chemical bonds in
the gels are essentially undeformed. Furthermore, the volumetric
change due to physical association of the molecules is small com-
pared to the volumetric change due to imbibing molecules. These
considerations together suggest an idealization: All molecules in
a gel are incompressible, and the volume of the gel is the sum of
the volume of the dry network and the volume of the pure liquid
solvent. This idealization is written as (Hong et al., 2008a)

1þ vC ¼ det F: ð15Þ

In Section 3, we have assumed that the two fields, CðXÞ and
xiðXÞ, vary independently. Eq. (15), however, places a constraint
between the two fields. To enforce this constraint, we add to the
free-energy function WðF;CÞ a term Pð1þ vC � det FÞ, where P
is a Lagrange multiplier, a field to be determined. We then replace
WðF;CÞ by WðF;CÞ þPð1þ vC � det FÞ everywhere in the previous
sections, and treat F and C as independent fields. The resulting
modifications of the equations can be found in Hong et al. (2008a).

The molecular incompressibility of a gel is not to be confused
with the incompressibility of an elastomer. Unlike an elastomer,
a gel can undergo an enormous change in volume by imbibing a
solvent. The molecular incompressibility of a gel simply means
that the volume of the gel equals the sum of the volumes of indi-
vidual molecules of the network and the solvent.
5. Flory–Rehner free-energy function

This section resumes the main line of work of this paper, and
prescribes a particular form of the free-energy function cW ðF;lÞ.
The behavior of a gel is mainly entropic. As the solvent molecules
mix with the long-chained polymers, the network swells, so that
the configurational entropy of the network decreases, but the con-
figurational entropy of mixture increases. The compromise of the
two contributions to entropy equilibrates the network and the



Fig. 2. The stretch of a free-swelling gel is plotted as a function of the chemical
potential of the solvent.
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solvent. Free-energy functions for swelling elastomers have been
reviewed by, among others, Horkay and McKenna (2007) and Boy-
ce and Arruda (2001). The object of this paper is to demonstrate
how to implement a finite element method for gels, rather than
to study alternative forms of the free-energy function. Conse-
quently, we will adopt the best known free-energy function due
to Flory and Rehner (1943):

W ¼ 1
2

NkT½FiK FiK � 3� 2 logðdet FÞ�

� kT
v vC log 1þ 1

vC

� �
þ v

1þ vC

� �
; ð16Þ

where N is the number of polymeric chains per reference volume,
and v is a dimensionless measure of the enthalpy of mixing. When
v > 0, the solvent molecules like themselves better than they like
the long-chained polymers.

A combination of (4), (15) and (16) gives the desired free-energy
function:

cW ðF;lÞ ¼ 1
2

NkTðI � 3� 2 log JÞ � kT
v ðJ � 1Þ log

J
J � 1

þ v
J

� �
� l

v ðJ � 1Þ; ð17Þ

where I ¼ FiK FiK and J ¼ det F are invariants of the deformation gra-
dient. As mentioned in the previous section, when the deformation
gradient of the network, F, and the concentration of solvent, C, are
used as the independent variables for the free-energy function,
the Lagrange multiplier P is needed to enforce the condition of
molecular incompressibility (15). In the present paper, however,
we use the deformation gradient of the network, F, and the chemi-
cal potential of the solvent, l, as the independent variables. Conse-
quently, the condition of molecular incompressibility is enforced
without using the Lagrange multiplier, but is instead enforced by
substituting (15) into the Flory–Rehner free-energy function (16)
to eliminate C. Indeed, a boundary value problem is fully specified
by (1), (5) and (17), so that C will not appear in the process of solv-
ing the boundary value problem, but can be calculated from (15)
once F is solved.

Inserting (17) into (13), we obtain that

siK

kT=v ¼ NvðFiK � HiKÞ þ J log 1� 1
J

� �
þ 1þ v

J
� l

kT
J

� �
HiK : ð18Þ

This equation of state relates the stress to the deformation gradient
when a gel is held at a constant chemical potential by a reservoir of
solvent molecules. When the field of stress in the gel is inhomoge-
neous and anisotropic, so is the field of the deformation gradient. In
general, the volumetric strain J (and therefore the volume fraction
of the solvent in the gel) will be inhomogeneous and anisotropic.
One cannot prescribe a field of volumetric strain in a gel, but should
solve it as a part of a boundary value problem.

We have normalized the chemical potential by kT, and normal-
ize the stress by kT=v . A representative value of the volume per
molecule is v ¼ 10�28 m3. At room temperature, kT ¼ 4� 10�21 J
and kT=v ¼ 4� 107 Pa. The Flory–Rehner free-energy function
introduces two dimensionless material parameters: Nv and v. In
the absence of solvent molecules, the dry network have a shear
modulus NkT under the small-strain conditions, with the represen-
tative values NkT ¼ 104—107 N=m2, which gives the range
Nv ¼ 10�4—10�1. The parameter v is a dimensionless measure of
the enthalpy of mixing, with representative values v ¼ 0—1:2.
For applications that prefer gels with large swelling ratios, materi-
als with low v values are used. In the numerical examples below,
we will take the values Nv ¼ 10�3 and v ¼ 0:1.
6. Notes on implementing the finite element method

The free energy (16) is singular when the network is solvent-
free, vC ¼ 0. This singularity comes from the entropy of mixing,
and is harmless in practice because a gel contains a large number
of solvent molecules. However, in the above we have chosen the
dry network as the reference state. If a numerical calculation in-
volves this state, the singularity does cause problems. To avoid this
singularity, we can choose a reference state with vC > 0. In this pa-
per, we choose a reference state such that the network, under no
mechanical load, equilibrates with a solvent of chemical potential
l0. Relative to the dry network, the network in this state swells
with isotropic stretches: k1 ¼ k2 ¼ k3. We denote this free-swelling
stretch by k0, which relates to the chemical potential l0 by setting
stress (18) to be zero, namely,

Nv 1
k0
� 1

k3
0

 !
þ log 1� 1

k3
0

 !
þ 1

k3
0

þ v
k6

0

¼ l0

kT
: ð19Þ

Fig. 2 plots the free-swelling stretch as a function of the chemical
potential of the solvent molecules.

Relative to the dry network, the state of free swelling is charac-
terized by the deformation gradient

F0 ¼
k0

k0

k0

264
375: ð20Þ

In numerical calculations, we wish to use this free-swelling state as
a reference state. Write

F ¼ F0F0; ð21Þ

where F is the deformation gradient of the current state relative to
the dry network, as in the previous sections, and F0 is the deforma-
tion gradient of the current state relative to the free-swelling state.

Using the free-swelling state as the reference state, we write the
free-energy density ascW 0ðF0;lÞ ¼ k�3

0
cW ðF;lÞ: ð22Þ

Combining (17) and (22), we obtain that

cW 0ðF0;lÞ ¼ k�3
0

2
NkT k2

0I0 � 3� 2 log k3
0J0

� �� �
� kT

v J0 � k�3
0

� �
log

J0

k3
0J0 � 1

þ v
k6

0J0

" #
� l

v J0 � k�3
0

� �
; ð23Þ



Fig. 3. A rod of a gel is subject to a uniaxial stress, and is in contact with a solvent of
a given chemical potential. The applied stress is plotted as a function of the stretch,
while the solvent is held at several levels of the chemical potential.
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where I0 ¼ F 0iK F 0iK and J0 ¼ det F0. The nominal stress in the current
state, with reference to the free-swelling state, relates to the nom-
inal stress used in the previous sections by

s0iK ¼ siK=k
2
0: ð24Þ

We have implemented the theory in the finite-element package,
ABAQUS, by coding (23) into a user-defined subroutine for a hyper-
elastic material (UHYPER). Once again we emphasize that gels can
undergo large changes in volume, so that we use elements that are
compressible. The chemical potential is mimicked by a tempera-
ture-like variable, which is uniform in the gel, and is incremented
as a loading parameter. The user-defined material behavior can be
used together with any type of elements in two- or three-dimen-
sional analysis. Note that ABAQUS uses I1 ¼ J�2=3I, rather than I.

7. Homogeneous state of equilibrium

This section describes several numerical examples of homoge-
neous deformation as benchmarks. Such states of homogenous
swelling have been analyzed analytically by Southern and Thomas
(1965). Due to the homogeneity, these examples can all be ana-
lyzed with a single element. Some of examples, however, are ana-
lyzed here with more than one element for the purpose of
demonstration.

7.1. Free swelling

A cubic block of a gel is immersed in a solvent. We represent the
block with eight 8-node brick elements. The block is constrained to
prevent rigid-body motion, but is allowed to freely swell. The
chemical potential of the solvent molecules is varied gradually.
Fig. 2 compares the stretches obtained by using the finite element
method with those plotted from (19).

7.2. A rod of a gel equilibrated with a solvent and subject to a uniaxial
force

A rod of a gel is equilibrated in a solvent of chemical potential l,
and is subject to a uniaxial stress s1 along the longitudinal direc-
tion. The state of deformation can be characterized by the longitu-
dinal stretch k1 and two transverse stretches k2 ¼ k3. The stresses
in the transverse directions vanish, so that (18) gives

Nv k2�
1
k2

� �
þ k1k

2
2 log 1� 1

k1k
2
2

 !
þ1þ v

k1k
2
2

� l
kT

k1k
2
2

" #
1
k2
¼0:

ð25Þ

This equation determines the transverse stretch k2 for a given lon-
gitudinal stretch k1. Eq. (18) also relates the longitudinal stress to
the stretches:

vs1

kT
¼Nv k1�

1
k1

� �
þ k1k

2
2 log 1� 1

k1k
2
2

 !
þ1þ v

k1k
2
2

� l
kT

k1k
2
2

" #
1
k1
;

ð26Þ

We use four 8-node brick elements to represent the block of the
gel. Fig. 3 compares the finite element results and those plotted
from (25) and (26). As expected, as the chemical potential of the
solvent increases, the gel becomes more swollen and more
compliant.

7.3. A blanket layer of a gel bonded to a rigid substrate

A layer of a gel is fabricated on a rigid substrate, with stress-free
pre-swelling of isotropic stretch k0 ¼ 1:5. Subsequently, the gel is
brought into contact with a solvent with chemical potential l.
The gel swells further to a stretch k in the direction normal to
the layer, and develops a state of equal-biaxial stress s. The stress
normal to the layer vanishes, so that (18) gives

Nv
k2

0

k� 1
k

� �
þ log 1� 1

k2
0k

 !
þ 1

k2
0k
þ v
ðk2

0kÞ
2 ¼

l
kT
: ð27Þ

where the two in-plane stretches are constrained by rigid substrate
to be the initial value k0, but the out-of-plane stretch k can vary
with the chemical potential. The magnitude of the biaxial stress is
given by

vs
kT
¼ Nv k0 �

1
k0

� �
þ kk2

0 log 1� 1
kk2

0

 !
þ 1þ v

kk2
0

� l
kT

kk2
0

" #
1
k0
: ð28Þ

We use 2� 2 plane-strain elements to represent the layer. Fig. 4
shows the finite element results, along with those calculated from
(27) and (28). Comparing with free swelling (Fig. 2), we note that
the biaxial constraint can significantly increase the stretch in the
direction normal to the layer.

8. Inhomogeneous state of equilibrium

8.1. A spherical gel with a rigid core

Following Sternstein (1972) and Zhang et al. (2008), we con-
sider a spherical gel with a rigid core. The dry network takes the
shape of a spherical shell, with inner radius A and outer radius B.
In numerical calculations we set B=A ¼ 2. When the gel forms on
the rigid core, the gel has a stress-free pre-swelling of an isotropic
stretch k0 ¼ 1:5. Subsequently, the gel is immersed in a pure liquid
solvent with the chemical potential l ¼ 0, and is allowed to swell
further. We model the gel as an axisymmetric system, using 8-
node biquadratic axisymmetric quadrilateral hybrid elements
(CAX8RH).

Our numerical results are compared with those in Zhang et al.
(2008), who solved the problem by integrating ordinary differen-
tial equations. Fig. 5a plots the distribution of the stretches in
the equilibrated gel. At the interface between the gel and the core,
the hoop stretch is constrained to the pre-stretch k0 ¼ 1:5, but the
radial stretch is very large. At the outer surface, both stretches ap-
proach to the stretch of free swelling.

Fig. 4b plots the equilibrium concentration of solvent, vC, i.e.,
the ratio of the volume of solvent in the gel to the volume of the



a

b

Fig. 4. A blanket layer of a gel is bonded to a rigid substrate and is in contact with a
solvent. The gel swells in the normal direction (a), and develops an equal-biaxial
compressive stress (b). The stretch of the initial swelling is set to be k0 ¼ 1:5.

a

b

Fig. 5. A spherical shell of a gel is fabricated on a rigid core, and swells to
equilibrate with a solvent. (a) The distribution of the radial and the hoop stretches.
(b) The distribution of the concentration of the solvent in the gel.

Fig. 6. A cylinder of a gel is bonded to a rigid substrate and is in contact with a
solvent. The equilibrium height of the cylinder is plotted as a function of the aspect
ratio of the dry polymer, D=H.
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dry network. The equilibrium concentration of solvent in the gel is
inhomogeneous. That is, to equilibrate with a solvent the gel
homogenizes the chemical potential, rather than the concentra-
tion. This result casts serious doubt on part of the literature that as-
sumes the migration of solvent molecules in a gel is driven by the
gradient of the solvent concentration. Under the condition of
molecular incompressibility, (15), vC is the volumetric strain. This
example clearly shows that the volumetric strain cannot be pre-
scribed, but should be solved as a part of the boundary value
problem.

8.2. A gel of cylindrical shape fabricated on a rigid substrate

An elastomer of cylindrical shape, diameter D and height H in
the dry state, swells freely by an isotropic stretch k0 ¼ 2, and is
then bonded to a rigid substrate. The gel is brought into contact
with a pure liquid solvent with chemical potential l ¼ 0, and is al-
lowed to swell further to equilibrium. We represent the gel with
the 8-node biquadratic axisymmetric quadrilateral hybrid ele-
ments (CAX8RH), and allow contact between the substrate and
the sidewall of the cylinder.

Fig. 6 plots the height of the cylinder in equilibrium, h, as a func-
tion of the aspect ratio D=H. For a needle-like cylinder, D=H� 1,
the substrate only constrains the bottom portion of the gel, and
the main part of the gel swells freely, so that the overall higher
of the cylinder is predicated by the stretch of free swelling. For a
pancake-like cylinder, D=H� 1, the central part of the cylinder be-
haves just like that of a blanket layer bounded to a rigid substrate.

Fig. 7 shows the deformed meshes for cylinders of various as-
pect ratios. The undeformed elements are square, so that the shape
of the elements shown in the figure indicates the deformation.
Note the difference in the heights of the swollen gels in the three
cases. In the case of D=H ¼ 10, the edge of the cylinder deforms se-
verely and makes contact with the substrate.

8.3. Swelling-induced bifurcation

We now turn to a swelling-induced bifurcation reported by
Zhang et al. (2008). A square lattice of cylindrical holes is fabri-
cated in a layer of an elastomer, which in turn is constrained on



(a) (b) (c)

Fig. 7. The equilibrium configurations of the cylinders of several aspect ratios. In case (c) significant contact is observed between the side wall of the gel and the substrate.

a a b

Fig. 8. A square lattice of cylindrical holes bifurcates into a periodic structure of ellipses with alternating directions. (a) The initial shape. (b) The deformed pattern.

3288 W. Hong et al. / International Journal of Solids and Structures 46 (2009) 3282–3289
a substrate. The layer then swells in a solvent. Each cylindrical hole
collapses into a slit, and the square lattice breaks the symmetry
and bifurcates into slits of alternating directions. Since the aspect
ratio of the holes is large, we use generalized plane-strain ele-
ments. As shown in Fig. 8, we model a unit cell containing quarters
of four neighboring holes. To help visualize the geometry, we
duplicate the unit cell several times. From the deformed the mesh,
it can be seen that besides the highly inhomogeneous deformation
near the holes, there is also a rotation in the center part of the unit
cell.

Further swelling will cause a snap-through instability and the
elliptic hole will close down to a slit dynamically. ABAQUS Stan-
dard fails to calculate at the unstable point. The arc-length method
(Riks, 1972) is expected to handle this type of instability and pro-
ceed with further calculation. However, in ABAQUS 6.7.1, the arc-
length method has been implemented on the plane of generalized
mechanical load and displacement, but we are unable to find a
similar implementation on the plane of chemical potential and
generalized displacement. Therefore, in the current stage, we are
unable to calculate the whole deformation process from a cylindri-
cal hole to a slit. Future work is needed to make the software more
robust to simulate various forms of instability.

9. Concluding remarks

This paper focuses on inhomogeneous field in a swollen gel in
equilibrium with a solvent and mechanical load. The chemical po-
tential of the solvent molecules is homogeneous in the gel, and is
set by the external solvent. Using a Legendre transformation, we
show that the field in the equilibrated gel is analogous to the field
in a compressible hyperelastic solid. We implement the theory in
the finite element package, ABAQUS, invoking a user-defined sub-
routine. This implementation enables us to use various two- and
three-dimensional elements, and analyze diverse phenomena
accompanying swelling, such as large deformation, contact, and
bifurcation. It is hoped that this approach will help other workers
to model phenomena of interest to themselves.

The user-supplied subroutine for ABAQUS is posted at <http://
imechanica.org/node/3163>
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