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a b s t r a c t

The peach potato aphid, Myzus persicae is a globally distributed crop pest with a host range of over 400
species including many economically important crop plants. The intensive use of insecticides to control
this species over many years has led to populations that are now resistant to several classes of insec-
ticide. Work spanning over 40 years has shown that M. persicae has a remarkable ability to evolve
mechanisms that avoid or overcome the toxic effect of insecticides with at least seven independent
mechanisms of resistance described in this species to date. The array of novel resistance mechanisms,
including several ‘first examples’, that have evolved in this species represents an important case study
for the evolution of insecticide resistance and also rapid adaptive change in insects more generally. In
this review we summarise the biochemical and molecular mechanisms underlying resistance in
M. persicae and the insights study of this topic has provided on how resistance evolves, the selectivity of
insecticides, and the link between resistance and host plant adaptation.
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

The peach potato or green peach aphid, Myzus persicae Sulzer
(1776) (Hemiptera: Aphididae) is the most economically important
aphid crop pest worldwide (van Emden and Harrington, 2007).
There are a number of factors that have enhanced the status of this
species as a pest, including its distribution, host range, mechanisms
of plant damage, life cycle, capacity to disperse and ability to evolve
resistance to insecticides. M. persicae is both an extremely cosmo-
politan species with a worldwide distribution (see www.cabi.org
for its current distribution) and highly polyphagous, with a host
range of more than 400 species in 40 different plant families,
including many economically important crop plants (Blackman and
Eastop, 2000). The exceptional ability ofM. persicae to adapt to new
host plants has, in some cases, led to the formation of host races,
the best documented of these being associated with tobacco, and
formally named as M. persicae subsp. nicotianae (Blackman, 1987).
M. persicae causes damage to its host by direct feeding, the
ass).

Ltd. This is an open access article u
transmission of plant viruses and the production of honeydew. The
economic importance of these mechanisms varies depending on
crop plant but in many cases the primary route of damage stems
from the efficiency of this species as a virus vector; it is capable of
transmitting over 100 different plant viruses (Blackman and Eastop,
2000).

The life cycle of M. persicae depends on the climate, the avail-
ability of its primary winter host Prunus spp., especially P. persica
(peach), and the genotypic lineage (Blackman, 1974). In temperate
regions of the world, where P. persica is available and autumn
temperatures are low enough, M. persicae is usually heteroecious
and holocyclic, with the winter sexual phase on P. persica and the
parthenogenetic (asexual) summer generations on a wide number
of secondary herbaceous summer hosts. However, in many coun-
tries where peach is absent and/or a warmer climate permits, the
life cycle is often anholocyclic (continual parthenogenesis
throughout the year). This latter life-cycle, combined with a short
generation time, allows populations to increase rapidly under
favourable conditions and quickly reach damaging numbers. In
addition, this mode of reproduction has significant implications for
population genetics and therefore relevance to the topic of this
review.
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Fig. 2. Cartoon of seven resistance mechanisms characterised inM. persicae. Resistance
mechanisms are numbered 1e7, many of these involve mutation of insecticide targets
in the insect nervous system and a cartoon on an insect synapse is depicted at the top
of the figure. Enhanced expression of E4/FE4 esterase confers resistance to organo-
phosphates (OPs), (mono-methyl) carbamates and, to much a lesser extent, pyre-
throids by sequestering and metabolising these insecticides before they reach the
nervous system. 2. Mutation (S431F) of the acetylcholinesterase enzyme (AChE) results
in resistance to dimethyl carbamates. 3. Mutation (L1014F, M918T, M918L) of the
voltage-gated sodium channel confers resistance to pyrethroids. 4. Mutation (A302G)
of the GABA gated chloride channel confers resistance to cyclodienes. 5. Enhanced
expression of the P450 CYP6CY3 confers resistance to nicotine and cross-resistance to
neonicotinoids. 6. Reduced penetration through the cuticle confers resistance to
neonicotinoids. 7. Mutation (R81T) of the nicotinic acetylcholine receptor (nAChR)
confers resistance to neonicotinoids.
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The control of M. persicae on many crops has relied almost
exclusively on the use of chemical insecticides, and their intensive
use over many years has led to the development of widespread and
multiple forms of resistance. The first report of resistance in this
species dates back to 1955 (Anthon, 1955) with resistance now
reported to most classes of insecticide, including the organophos-
phates, carbamates, pyrethroids, cyclodienes, and neonicotinoids
(Fig. 1), making M. persicae one of the most widely and strongly
resistant species worldwide (www.pesticideresistance.com). The
focus of this review is the biochemical and molecular mechanisms
underlying resistance inM. persicae that have been characterised to
date and the insights this body of work has provided into resistance
and adaptive evolution in insects more generally. The last review of
this topic was published in 1998 (Devonshire et al., 1998) and
included details of the three resistance mechanisms that had been
described up to that point, since then at least four additional
mechanisms of resistance have been described (Fig. 2).

2. Biochemical and molecular mechanisms of resistance in
M. persicae

2.1. Overproduction of carboxylesterases and resistance to
organophosphate and carbamate insecticides

The first mechanism of resistance to insecticides described in
M. persicae was the enhanced production of carboxylesterases that
confer broad spectrum resistance to members of the organophos-
phate (OP), (mono-methyl) carbamate and, to a much lesser extent,
pyrethroid classes (Fig. 2). This mechanism was first implicated
over 40 years agowhen it was demonstrated biochemically that the
esterases of OP resistant aphids had an enhanced ability to
hydrolyse a model substrate (1-naphthyl acetate) for this enzyme
class (Needham and Sawicki, 1971). Subsequent work showed that
this was due to the overproduction of one of two possible car-
boxylesterases, E4 or FE4, that both hydrolyse and sequester the
insecticide before it can reach the target site in the insect nervous
system (Devonshire and Moores, 1982; Devonshire et al., 1983).
Further studies implicated and then confirmed that amplification of
the structural E4 and FE4 genes (with just one of the two paralo-
gues usually amplified in individual aphids) was the genetic basis of
overproduction (Devonshire and Sawicki, 1979; Field et al., 1988).
The level of amplification was shown to be highly correlated with
the resistance phenotype, with a serial four-fold increase in gene
copy number (up to a maximum of approximately 80 copies),
leading to successively more resistant aphids (R1, R2 and R3 phe-
notypes) (Field et al., 1999). Fluorescence in situ hybridisation
(FISH) was used to demonstrate that amplification of the E4 gene is
closely linked to a chromosomal translocation (the autosomal 1,3
translocation event), and that amplified genes are situated at a
single heterozygous site on autosome 3, as a tandem array of head-
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Fig. 1. Timeline of resistance development in M. persicae. Green bars indicate years
where insecticides provide good control. Red bars indicate the development of control
compromising resistance. OPs: organophosphates. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
to-tail amplicons (Blackman et al., 1995; Field and Devonshire,
1997). In contrast, amplified FE4 genes are not associated with
any visible chromosomal rearrangement and are present at multi-
ple loci in the genome (Blackman et al., 1995, 1999). An interesting
aspect of the resistance resulting from amplified E4 genes is that it
can be unstable, with ‘revertant’ clones displaying a sudden loss of
both esterase gene expression and insecticide resistance within a
single generation (ffrench-Constant et al., 1988). In revertants, the
large reduction in expression is associated with the loss of 5-
methylcytosine (5 mC) present in CpG doublets within the E4
genes, resulting in gene silencing via demethylation (Field, 2000;
Field et al., 1989). This allows the costly production of esterase
enzyme (up to 3% of total protein in R3 aphids) to be ‘switched off’
in the absence of insecticide selection. Although the amplification
of E4 is clearly associated with the chromosomal translocation,
exactly how this results in amplification of the E4 gene is not fully
understood. Even less is known about the mechanism underlying
the amplification of FE4 with speculation that it may have occurred
by inversions, reciprocal exchanges or in association with trans-
posable elements remaining unconfirmed (Blackman et al., 1999).

2.2. Mutation of the acetylcholinesterase enzyme and insensitivity
to dimethyl carbamate insecticides

Certain members of the carbamate class of insecticides, such as
the dimethylcarbamates pirimicarb and triazamate, retain good
efficacy againstM. persicae populations with high levels of esterase
resistance and have excellent selectivity profiles as aphicides
(Foster et al., 2002). However, in the early 1990s significant resis-
tance to these insecticides was detected in populations of M. per-
sicae from Greece (Moores et al., 1994). Biochemical inhibition
assays demonstrated that resistance results from insensitivity of
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the target site, the acetylcholinesterase enzyme (AChE), a serine
hydrolase that terminates nerve impulse transmission by rapidly
hydrolysing the neurotransmitter acetylcholine at cholinergic
synapses (Fig. 2). Modified AChE (MACE) leads to a specific >100-
fold insensitivity to the dimethyl carbamate, pirimicarb (Moores
et al., 1994). However, initial attempts to identify the molecular
basis of MACE by cloning the gene encoding AChE (ace) by ho-
mologywith the dipteranDrosophila melanogaster/Musca domestica
ace locus failed to reveal any amino acid differences between
resistant and susceptible aphid clones (Javed et al., 2003). This
paradox was resolved when several studies revealed that many
insects, including M. persicae, have two ace genes and the gene
encoding the insecticide target (termed ace-1) in these species is
not the orthologue of the D. melanogaster/M. domestica gene
(termed ace-2) (Andrews et al., 2004). Sequencing of the ace-1 gene
of resistant and susceptible M. persicae clones revealed a point
mutation which causes a single amino acid substitution S431F in
the predicted protein sequence of the insensitive enzyme that
correlated with resistance to pirimicarb (Andrews et al., 2002;
Nabeshima et al., 2003). Subsequent recombinant expression of
modified aphid ace-1 provided functional evidence that this mu-
tation strongly affects pirimicarb binding to AChE (Benting and
Nauen, 2004). The S431F substitution is located in the acyl pocket
of AChE which determines the orientation of ligands in the active
site. The substitution of a small serine with a large, hydrophobic
phenylalanine would be predicted to disturb both the space and
hydrophobicity, thus preventing pirimicarb from interacting with
at least one member of the catalytic triad at the centre of the active
site (Andrews et al., 2004; Nabeshima et al., 2003). An interesting
aspect of the S431F substitution seen in the AChE of pirimicarb
resistantM. persicae is that it is the reverse of the situation reported
in non-aphid insect species and vertebrates, where a highly
conserved phenylalanine is the norm at the same position (Fig. 3).
Sequencing of ten additional aphid species confirmed that serine is
the default residue in wild-type aphid AChEs, with the phenylala-
ninemutation associatedwith pirimicarb-insensitivity bringing the
amino acid back in line with other organisms (Andrews et al.,
2004). This finding indicates that the choice of amino acid res-
idue at this position has a strong influence on the selectivity of
Fig. 3. Amino acid alignment of the AChE sequence of aphids, other insects/mites and
humans. The arrow highlights the amino acid at position 431 where a substitution
S431F is observed in M. persicae clones that are resistance to pirimicarb. Genbank
numbers of sequences: Myzus persicae (AY147797); Aphis gossypii (AJ748114); Schiza-
phis graminum (AF321574); Drosophila melanogaster (X05893); Lucilia cuprina
(U88631); Musca domestica (AJ310134); Apis mellifera (AF213012); Plutella xylostella
(AY061975); Rhicephalus microplus (AJ223965); Homo sapiens (M55040).
pirimicarb and that it is the presence of the native serine in aphids
that causes sensitivity to the dimethylcarbamates such as pir-
imicarb and underlies the excellent aphicidal specificity of this
insecticide.

2.3. Mutation of the voltage-gated sodium channel and resistance
to pyrethroid insecticides

Although overproduction of esterases confers modest cross-
resistance to most pyrethroid insecticides, it was subsequently
demonstrated that this is secondary to resistance caused by a
target-site resistance mechanism termed `knockdown resistance'
or kdr (Martinez-Torres et al., 1999) (Figs. 2 and 4). Kdr, alongside
an enhanced allelic form ‘super-kdr’ was initially identified in
houseflies (Sawicki, 1978) and was subsequently shown to be
conferred by mutations in the voltage-gated sodium channel
(Williamson et al., 1996), a transmembrane ion channel that plays
an essential role in the initiation and propagation of action po-
tentials in neurons, and the target of pyrethroids. The kdr mecha-
nism was first reported in M. persicae in 1997 when a leucine-to-
phenylalanine replacement (L1014F) in transmembrane segment
IIS6 of the sodium channel was identified in several pyrethroid
resistant clones (Martinez-Torres et al., 1997, 1999). Several of these
clones had been continuously reared in the laboratory for over
twenty years indicating that this mechanism had been present in
M. persicae populations for some time prior to its discovery. In
M. persicae kdr alone confers 35-fold resistance to the pyrethroid
deltamethrin and cross resistance to DDT (which shares the same
target-site) but resistance is enhanced up to a further 15-fold in
aphids with additional high levels of esterase (Martinez-Torres
et al., 1999). In vitro expression in Xenopus laevis oocytes has
confirmed that insect sodium channels with the kdr mutation are
up to 17-fold less sensitive to the toxic effects of pyrethroids (Vais
et al., 2000). Molecular modelling of insect sodium channels
(O'Reilly et al., 2006), based on the crystal structure of the rat brain
Kv1.2 potassium channel (Long et al., 2005) suggested that the site
of the L1014Fmutation is not part of the pyrethroid binding site and
may confer resistance via a conformational effect that makes the
sodium channel less likely to open (Davies and Williamson, 2009).
An alternative hypothesis that has recently been suggested based
on computer modelling and mutational analysis of a mosquito
(Aedes aegypti) sodium channel is that insect sodium channels
possess two pyrethroid binding sites with L1014F mapping to the
second site (Du et al., 2013). In the absence of a crystal structure of a
eukaryotic sodium channel with bound pyrethroids, further evi-
dence is required to demonstrate if theM. persicae sodium channel
has a dual pyrethroid binding site or a single site that is allosteri-
cally modified by L1014F.

Subsequently, a second mutation, M918T, was identified in
M. persicae alongside the L1014F mutation within the nearby
IIS4eS5 intracellular linker (Eleftherianos et al., 2008). This muta-
tion corresponds to the original super-kdr mutation first identified
in the housefly and was shown to significantly enhance the
phenotypic expression of kdr resistance (Eleftherianos et al., 2008).
Functional expression of the Drosophila para gene with
M918T þ L1014F was shown to reduce the pyrethroid sensitivity of
sodium channels by approximately 100-fold (Vais et al., 2000).
Molecular modelling has indicated that M918T likely confers
resistance through the loss of polar interactions between pyre-
throids and M918 on the IIS4eS5 linker that are critical for their
toxicity (particularly in the case of type II pyrethroids) (O'Reilly
et al., 2006). Both mutations have now been identified in pop-
ulations of M. persicae worldwide, although M918T has never been
observed in the absence of L1014F, and haplotype analysis has
suggested that kdr and super-kdr have arisen as a result of multiple



Fig. 4. Schematic of the voltage-gated sodium channel, target of the pyrethroid insecticides, highlighting the position of kdr/super-kdr mutations that have been associated with
pyrethroid resistance in M. persicae.
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independent de novo mutations (Anstead et al., 2005). More
recently an alternative super-kdr variant (M918L) has been iden-
tified in M. persicae on oilseed rape in France (Fontaine et al., 2011)
and was linked to resistance to lambda-cyhalothrin. In this study a
further polymorphism in the sodium channel at position 932
causing an L932F amino acid substitution was identified in in-
dividuals with the L1014F mutation (Fontaine et al., 2011). How-
ever, the level of resistance conferred by L1014F þ L932F in
M. persicae has yet to be determined using insecticide bioassays. In
most insect species kdr/super-kdr mutations have been shown to
be inherited as largely recessive traits, i.e. little or no phenotype is
observed in heterozygotes (Davies et al., 2007). Intriguingly, this
does not appear to hold true in M. persicae where L1014F, M918T
and M918L heterozygotes all display a resistant phenotype to a
range of pyrethroids (Eleftherianos et al., 2008; Fontaine et al.,
2011).

2.4. Duplication and mutation of the GABA receptor subunit gene
and resistance to cyclodiene insecticides

Although the use of the cyclodiene insecticide endosulfan has
now been largely phased out, for many years it was used as an
aphicide on a range of crops and provided a rotation option for
resistance management programs as it was not cross-resisted by
other mechanisms (e.g. esterases/kdr). After many years of endo-
sulfan use, resistance was reported in M. persicae populations
collected from peach and nectarine orchards in the US (Unruh et al.,
1996). In most insect species resistance to cyclodienes results from
mutations in the GABA receptor, a ligand-gated chloride channel
that responds to the neurotransmitter g-aminobutyric acid (GABA)
inhibiting the firing of new action potentials (ffrench-Constant
et al., 2000) (Fig. 2). Substitutions at a single residue (A302) in
the M2 region of the receptor encoded by the Rdl (resistance to
dieldrin e another cyclodiene insecticide) gene have been identi-
fied in a wide range of insect species, with two resistant alleles,
A302S and A302G, most commonly described (ffrench-Constant
et al., 2000). In M. persicae the situation appears to be more com-
plex with up to four different Rdl alleles found in individual clones,
the wild-type allele A (encoding A302), allele G (glycine302), allele
S (serineTCG302) and allele S0 (serineAGT302) (Anthony et al., 1998).
Southern blot analyses indicated a recent duplication of the Rdl
locus in M. persicae with two independent Rdl loci identified, one
carrying allele A or G and the other allele S or S0. Interestingly,
insecticide bioassays showed that only allele G (locus one) appears
to confer resistance to endosulfan, with heterozygous A/G clones
showing an intermediate level of resistance (Anthony et al., 1998).
The replacement of alanine 302 with a glycine is thought to confer
resistance by both directly affecting the binding site and allosteri-
cally destabilising the insecticide-preferred conformation of the
receptor (ffrench-Constant et al., 1998). To date, the functional
significance of the two Rdl loci in M. persicae remains unknown.

2.5. Overexpression of the cytochrome P450 CYP6CY3 and
resistance to nicotine and neonicotinoid insecticides

As a result of the widespread resistance to OPs, carbamates,
cyclodienes and pyrethroids, the neonicotinoids, which are unaf-
fected by resistance mechanisms that had evolved to the older
compounds, rapidly became amainstay for control ofM. persicae on
many crops after their introduction in the early 1990s (Nauen and
Denholm, 2005). Interestingly, low level resistance to members of
this chemical class described as ‘natural tolerance’ was observed
very soon after the introduction of the first neonicotinoid imida-
cloprid in certain M. persicae populations, especially the tobacco
adapted M. persicae nicotianae (Devine et al., 1996; Nauen et al.,
1996). In 2007 a clone of M. persicae nicotianae (5191A) was
collected from tobacco in Greece that exhibited 30e60-fold resis-
tance (in topical bioassays) to different neonicotinoids when
compared to a reference susceptible strain (Philippou et al., 2009;
Puinean et al., 2010). Insecticide bioassays using enzyme in-
hibitors suggested P450-mediated detoxification plays a primary
role in resistance although additional mechanisms may contribute
(Philippou et al., 2009; Puinean et al., 2010). Microarray analysis,
using an array populated with probes corresponding to all known
detoxification genes in M. persicae, revealed constitutive over-
expression (22-fold) of a single P450 gene (CYP6CY3) (Fig. 2) in
the 5191A clone and quantitative PCR using genomic DNA as tem-
plate showed that the over-expression is due, at least in part, to
gene amplification (Puinean et al., 2010).

The overexpression of CYP6CY3 was initially identified in a
tobacco-adapted clone and the possibility that this P450 also plays
a role in providing protection from the plant secondary metabolite
nicotine was explored in a subsequent study (Bass et al., 2013).
Previous work had shown that M. persicae nicotianae shows a
reduced sensitivity to the plant alkaloid nicotine and cross-
resistance to neonicotinoids (Devine et al., 1996; Nauen et al.,
1996) and this was confirmed using an artificial feeding assay for
five clones of M. persicae nicotianae from three continents ((Bass
et al., 2013) and our unpublished data). Quantitative PCR showed
that CYP6CY3 was highly overexpressed (10e75-fold) in all five
clones compared with M. persicae sensu strictu and the level of
expression was significantly correlated with observed mortality to
nicotine in bioassays. Significantly, two of theM. persicae nicotianae
clones tested had been collected prior to the introduction of
neonicotinoids, categorically indicating that the use of these in-
secticides had not selected for CYP6CY3 overexpression. Functional
expression of CYP6CY3 in an insect cell line revealed that it is
remarkably efficient at metabolizing nicotine to less toxic
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metabolites in vitro and can also detoxify the neonicotinoids imi-
dacloprid and clothianidin although with much lower efficiency
(Bass et al., 2013). When compared with CYP2A6 the main high-
affinity metabolizer of nicotine in humans, CYP6CY3 was found to
metabolise both nicotine and neonicotinoids with greater effi-
ciency. This may result from the larger active site of CYP6CY3 being
more easily able to accommodate these substrates (see Fig. 5).
Confirmation that CYP6CY3 confers resistance in vivo came from
transgenic expression in D. melanogaster, with flies expressing the
transgene displaying significant resistance to both nicotine and
clothianidin. Together these findings suggest that overexpression of
CYP6CY3 was a prerequisite for the host shift of M. persicae to to-
bacco and has preadapted M. persicae nicotianae to resist neon-
icotinoid insecticides.

The fact that the host shift of M. persicae to tobacco occurred
recently (Margaritopoulos et al., 2009) allowed the genetic basis of
CYP6CY3 overexpression to be explored (Bass et al., 2013). Exami-
nation of CYP6CY3 gene copy number revealed that overexpression
resulted, at least in part, from gene amplification with the five
M. persicae nicotianae clones carrying 14e100 copies of the gene
(compared to 2 copies in clones of M. persicae s.s.). Sequencing of
the CYP6CY3 coding sequence and 50 flanking region supported a
single origin and then global spread of the amplification event and
also suggested it occurred recently. Both these findings are
consistent with previous studies of the global genetic structure of
M. persicae s.l. populations which have suggested that adaptation to
tobacco arose as a recent, single evolutionary event, originating in
East Asia where tobacco-adapted races were first described
(Margaritopoulos et al., 2009). Interestingly for all but one of the
fiveM. persicae nicotianae clones the increase in gene copy number
was approximately half the increase seen in the level of mRNA
expression, suggesting that other factors in addition to gene
amplification may be involved in the enhanced expression of this
gene in at least four of the clones. Genome walking and sequencing
of the 50 putative promoter region of CYP6CY3 revealed that an
AC(n) dinucleotide microsatellite present in M. persicae s.s. has
expanded in four of the M. persicae nicotianae clones from 15 to 48
repeat units. The functional significance of this polymorphism was
investigated using reporter gene assays which revealed that the
promoter with the longer AC(n) repeat drives around twofold
greater expression than the shorter M. persicae s.s. insert. Sequence
analysis of CYP6CY3 amplicons suggest that the microsatellite
Fig. 5. Crystal structure of the human P450 CYP2A6 (orange) and homology model of the ap
shown in enlarged view with those amino acids closest in distance to the docked nicotine lig
larger than the corresponding CYP2A6 cavity (volume estimate: 458 Å3). Nicotine is shown
CYP6CY3 was constructed using the crystal structure of human CYP3A4 (PDB-Id 1TQN) as
interpretation of the references to colour in this figure legend, the reader is referred to the
expansion predates the amplification of this gene and has ‘hitch-
hiked’ on the amplification event, effectively doubling the level of
expression of the gene as a result.

2.6. Reduced penetration of insecticides through the cuticle and
resistance to neonicotinoid insecticides

The initial study of the neonicotinoid resistant clone 5191A
suggested that the overexpression of CYP6CY3 was not the only
mechanism involved in the resistant phenotype. Firstly, suscepti-
bility could not be completely restored using enzyme inhibitors
(Philippou et al., 2009; Puinean et al., 2010), secondly the resistance
phenotype (LC50 value) assessed in feeding assays was 17 times
lower than that calculated in topical application bioassays using the
neonicotinoid clothianidin (Puinean et al., 2010). Finally, the level of
resistance in topical assays of the 5191A clone and a second clone
926B, that have similar expression levels of CYP6CY3, is signifi-
cantly different (10-fold vs. 50 fold) to imidacloprid but very similar
in oral feeding assays with nicotine and clothianidin ((Bass et al.,
2013) and our unpublished data). Together these findings sug-
gested that reduced penetration of insecticide was an additional
mechanism of resistance in the 5191A clone (Fig. 2). A further piece
of evidence supporting this idea came from the results of the
microarray comparison of 5191A with the susceptible clone 4106A
which showed that a large number of ESTs (expressed sequence
tags) encoding cuticular proteins (CPs) are up-regulated in 5191A
(Puinean et al., 2010). Although it was difficult to ascertain the exact
number of unique genes represented by these ESTs, as many were
short reads generated by 454 sequencing, all three members of the
CPR group of CPs (the largest structural CP family in arthropods)
were represented along with several CPs of the CPG family. In the
aphid Acyrthosiphon pisum, CP genes were found to be clustered in
the genome and may also be co-regulated which may explain why
several ESTs encoding CPs were identified as being over-expressed
in the M. persicae 5191A clone (Gallot et al., 2010). Finally in vivo
penetration assays using [3H] imidacloprid confirmed that there are
significant differences in the penetration of insecticide through the
cuticle of the 5191A M. persicae clone compared with the suscep-
tible clone with only 22% of the initial imidacloprid dose recovered
from the cuticle after 50 h for the susceptible and more than half
the initial dose recovered for the resistant clone (Puinean et al.,
2010). The mechanism by which insecticide penetration through
hid P450 CYP6CY3 (green) each with nicotine docked in the active site. The active site is
and highlighted. The active site of CYP6CY3 (volume estimate: 1556 Å3) is considerably
as a capped-stick model (carbon ¼ yellow, nitrogen ¼ blue). The homology model of
a template (due to the closer sequence similarity with this P450 than CYP2A6). (For
web version of this article.)
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the cuticle is altered in the 5191A clone has not been determined
and may result from changes to the cuticle structure, composition
or both.

2.7. Mutation of the nicotinic acetylcholine receptor (nAChR) and
resistance to neonicotinoid insecticides

Although enhanced CYP6CY3 expression and/or reduced pene-
tration confer moderate levels of resistance to neonicotinoids in
topical bioassays, their practical significance is limited as they are
insufficient to impair the field effectiveness of these insecticides
when they are applied at recommended rates. However, this situ-
ation changed significantly when in 2009 a clone of M. persicae
(FRC) was collected from peach in Southern France that was shown
to exhibit extremely potent resistance to neonicotinoids, easily
sufficient to compromise the field effectiveness of members of this
insecticide class (Bass et al., 2011; Slater et al., 2011). Synergist
bioassays implied the presence of two resistance mechanisms in
FRC, one based on enhanced detoxification by cytochrome P450s,
and another unaffected by piperonyl butoxide (PBO) (Bass et al.,
2011). Furthermore, microarray and quantitative real-time PCR
analyses showed that CYP6CY3was overexpressed but at a level not
significantly different from that exhibited by other clones with
modest resistance (Bass et al., 2011). These findings suggested
additional mechanism(s) of resistance underlie the extreme resis-
tance phenotype of the FRC clone, with alteration of the neon-
icotinoid target-site, the nicotinic acetylcholine receptor (nAChR) a
neurotransmitter-gated ion channel that plays an important role in
nerve signalling at the post-synaptic membrane, an obvious pos-
sibility. Binding of [3H]-imidacloprid to membrane preparations of
FRC aphids revealed that the high affinity [3H]-imidacloprid bind-
ing site present in susceptible M. persicae is completely lost in this
clone and the remaining lower affinity site is overexpressed and
slightly altered compared to susceptible clones resulting in a sub-
stantial overall reduction in binding affinity (Bass et al., 2011).
Interestingly, the observed binding site overexpression was lost
after maintaining the FRC strain under laboratory selection
Fig. 6. Homology model of the M. persicae a1b1 nAChR dimer. Model was constructed us
stagnalis (PDB-Id 1UW6) and Aplysia californica (PDB-Id 2BYQ) with imidacloprid docked i
SYBYLx2.0 and are inspired by figures in (Shimomura et al., 2006). Only imidacloprid, T81
nitrogen ¼ blue; oxygen ¼ red; chlorine ¼ green), while the protein backbone of the a1 and
the electrostatic interaction of the imidacloprid nitro moiety with the basic arginine residu
(T81). (For interpretation of the references to colour in this figure legend, the reader is ref
conditions for two years, however, this was shown to have no effect
on neonicotinoid resistance levels (Beckingham et al., 2013).

Subsequent sequencing of genes encoding the nAChR, a pen-
tameric ligand-gated ion channel that may be assembled from a
and non-a subunits, identified a point mutation in the loop D re-
gion of the b1 subunit that causes an arginine to threonine sub-
stitution (R81T) (Fig. 2). Loop D is one of three regions (D, E and F) of
the b1 subunit that in combination with loops A, B and C of a
subunits form the binding site for the natural ligand acetylcholine
and certain agonists including neonicotinoids (Grutter and
Changeux, 2001). The amino acid at the position corresponding to
R81 in M. persicae is highly conserved in insect b1 receptors with a
positively charged arginine normally present; in contrast, verte-
brate b subunits rarely have a positively charged amino acid at this
positionwith a threonine themost common residue observed (Bass
et al., 2011). Indeed, the selectivity of neonicotinoids for insect
nAChRs is thought to be directly influenced by interactions be-
tween positively charged residues in loop D (with R81 particularly
implicated) of b subunits and the distinctive electronegative
pharmacophore (nitro or cyano group) of these insecticides
(Shimomura et al., 2006; Tomizawa and Casida, 2003, 2005) (Fig. 6).
The importance of R81 in neonicotinoid binding had been high-
lighted by site-directed mutagenesis and homology modelling
studies of vertebrate and insect recombinant receptors in earlier
studies (Shimomura et al., 2006). Substituting the threonine res-
idue in the chicken b2 subunit at this position with arginine or
another basic residue was shown to greatly enhance the affinity of
recombinant nAChRs (such as D. melanogaster Da2/chicken b2 hy-
brids) for imidacloprid. Modelling suggested this resulted from
direct interaction of the nitro group of imidacloprid with the
introduced basic residue at this position (Shimomura et al., 2006).
The R81T mutation therefore appears to confer a ‘vertebrate-like’
quality to the b1 subunit of resistant aphids resulting in reduced
sensitivity of the nAChR to neonicotinoids through the loss of direct
electrostatic interactions of the electronegative pharmacophore
with the basic arginine residue at this key position within loop D.
More recent work has demonstrated that other insecticide classes
ing the crystal structures of the acetylcholine binding protein (AChBP) from Lymnea
nto the ligand binding site formed by the two subunits. Models were produced using
, and R81 are shown in a space-filling representation (atom colours: carbon ¼ grey;
b1 subunit is illustrated by green and brown ribbons, respectively. Enlarged views show
e (R81) 81 within loop D of the b1 subunit that is lost when replaced with a threonine
erred to the web version of this article.)
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that act on the nAChR are also affected by the R81T mutation
including the sulfoxamines (Sulfoxaflor) and butenolides (Fluy-
pyradifurone) ((Cutler et al., 2013) and our unpublished data).

2.8. Other potential mechanisms of resistance

2.8.1. Induced resistance
All of the resistance mechanisms described above are consti-

tutive (with the revertant esterase phenomenon a possible excep-
tion) and no inducible mechanism of resistance has been
convincingly demonstrated for M. persicae. A single study has
examined the potential role of induced resistance to insecticide in
this species (Silva et al., 2012). In this study the transcriptional
response of three aphid clones (a lab susceptible clone, a clone with
the kdr L1014F mutation and a clone with the kdr mutation and the
MACEmutation) was compared after the application of a sub-lethal
dose of pirimicarb. The greatest transcriptional response was
observed in the lab susceptible clone, however, changes in gene
expression were low and likely represent a general stress response
to pirimicarb exposure rather than anything that would result in a
measurable resistant phenotype. Regretfully, the pirimicarb resis-
tance status of aphids after ‘priming’ with pirimicarb was not
examinedwhichmay have confirmed or refuted this interpretation.
Interestingly, the two clones with resistance mutations showed
very few significant changes in gene expression, demonstrating
that inter-clone variation in response to insecticide exposure exists.
In the case of the clone with MACE it is likely that the protection
this mutation confers from pirimicarb toxicity limited the stress
response observed. However, the reason for the low level response
of the clone with the kdr mutation (which confers no cross resis-
tance to pirimicarb) is unclear, although with only one clone rep-
resenting each of these resistance types there is a danger of over-
interpreting the significance of differences in their responses.

2.8.2. Behavioural resistance
Several studies have described the behaviour modifying effects

of insecticides on aphids (Nauen, 1995; Nauen and Elbert, 1997) but
more recently behavioural ‘avoidance’ has been suggested as a
mechanism of resistance of M. persicae to neonicotinoids (Fray
et al., 2014). In this study a comparison of the dispersal behaviour
of the neonicotinoid resistant FRC and 5191A clones with that of an
insecticide susceptible clone (US1L) revealed that FRC aphids spent
a greater proportion of time on untreated leaf tissue than insecti-
cide treated tissue, compared to the other two clones in a choice
test. Such behaviour could confer resistance by allowing such
aphids to more rapidly disperse from neonicotinoid treated leaves
to untreated plant material (Fray et al., 2014). Although this has
interesting implications for aphid management further work is
required to confirm this hypothesis as only a single susceptible
clone was used in the study. In earlier work a susceptible strain of
aphids also showed a significant migratory response away from
imidacloprid treated leaves to untreated leaves, suggesting differ-
ences in avoidance behaviour may not necessarily be linked to an
aphid's resistance status (Nauen, 1995).

3. Fitness costs associated with resistance mechanisms

Most of the resistance mechanisms detailed above involve the
increased production of metabolic enzymes or alteration of
important receptors in the insect nervous system and might be
expected to reduce aphid fitness in the absence of insecticide se-
lection because they are energetically costly or alter the efficiency
of a receptor to carry out its native function. This may be especially
likely forM. persicaewhere the accumulation of multiple resistance
mechanisms in individual clonesmight be hypothesised to lead to a
similar accumulation of fitness handicaps. Some of the most well
characterised examples of fitness penalties associated with insec-
ticide resistance come from a series of studies examining the
relative fitness of M. persicae with and without different resistance
mechanisms, particularly under times of stress. Evidence of a
fitness cost for carboxylesterase overproduction was initially sug-
gested by monitoring data of UK M. persicae populations which
showed a reduction in the frequency of aphids with the esterase
amplification over several winters compared to the previous au-
tumns (Furk et al., 1990). In a series of field studies it was
demonstrated that aphid clones with higher levels of esterase
production overwintered more poorly than susceptible aphids and
differences in survival weremost pronounced during colder, wetter
winters (Foster et al., 1996). The behaviour of esterase over-
producing aphids was shown to be modified, with these aphids
migrating away from deteriorating leaves significantly more slowly
than susceptible aphids (Foster et al., 1997). A second behavioural
change associated with both enhanced esterase production and the
kdr mutation was an altered response to the aphid alarm phero-
mone (E)-b-farnesene (Foster et al., 1999, 2003). This pheromone is
released by the cornicles of M. persicae when disturbed by natural
enemies and provides a signal to neighbouring aphids to stop
feeding and disperse. However, aphids with kdr or esterase resis-
tance showed a significantly reduced response to (E)-b-farnesene
compared with susceptible aphids and, as a result, were signifi-
cantly more likely to be parasitized by the aphid parasitoid,
Diaeretiella rapae in predation bioassays (Foster et al., 2011, 2007,
1999). Beyond behavioural changes, aphids producing the highest
levels of esterase (R3 clones) and aphids with MACE have been
shown to have a reduced reproductive fitness (intrinsic rate of in-
crease) (Foster et al., 2000), although a more recent study of
M. persicae from Chile found no evidence for energy or reproductive
fitness costs associated with total esterase activity or MACE
(Castaneda et al., 2011). In the latter study the total esterase activity
measured in the resistant Chilean genotypes were only at R1 levels
which likely explains the lack of a fitness cost associated with
esterase resistance in these clones. The differences between this
study and earlier studies is more difficult to explain for MACE but
may be related to the different host plants on which aphids fed
(Chinese cabbage vs. pepper).

In the case of carboxylesterase resistance, the molecular basis of
the fitness penalties described may relate to the significant in-
vestment of resources in extreme over-production of the carbox-
ylesterase enzyme, which in R3 forms represents about 3% of total
body protein (Devonshire and Moores, 1982). For the kdr mecha-
nism, there is growing evidence that resistance mutations have a
direct effect upon nerve function through the associated alteration
to sodium channel proteins in insect nerves. Neurophysiological
studies incorporating kdr mutations into the insect para gene,
which codes for this protein, and expressing them in vitro using
Xenopus oocytes, have shown that the resulting single amino acid
substitution has two effects. Not only does it confer resistance
through reduced sensitivity to pyrethroids and DDT but it also al-
ters sodium channel gating properties resulting in an abnormal
elevation in action potential thresholds (Vais et al., 2001, 2000).
In vivo this would cause a general reduction in the excitability of an
insect's nervous system and thereby potentially disrupt the
perception and behavioural response to various other stimuli that
are important for survival such as semiochemicals and plant
compounds.

4. Insights into adaptive evolution and future directions

The significant body of work carried out on the development of
resistance in a single aphid species has provided a number of major
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advances in our understanding of how rapid adaptive traits evolve
in insects. Together these studies have broadly confirmed that
resistance to synthetic and natural insecticides most commonly
arises through enhanced metabolic detoxification or target-site
insensitivity.

For metabolic resistance, gene amplification appears to be a key
evolutionary driver in M. persicae in rapidly increasing the pro-
duction of specific enzymes that detoxify or sequesterman-made or
plant toxins and this may be a more common mechanism of adap-
tive evolution in arthropods than previously anticipated. Study of
gene amplification in this species has also demonstrated that the
increased enzyme production resulting from this process is not
necessarily ‘irreversible’ but can be regulated by epigenetic mech-
anisms avoiding the energetic cost incurred in producing large
amounts of enzyme in the absence of any selective advantage (Field
and Blackman, 2003). To date, the mechanism(s) by which detoxi-
fication genes are amplified in M. persicae has not been identified
and further work is required to identify precisely how genes are
copied and then moved around the genome. Sequencing of the re-
gions flanking the break points of amplified gene copies and inter-
rogation of the sequence obtained against the recently sequenced
genome of this species will likely shed light on this subject.

In addition to gene amplification, study of the molecular basis of
CYP6CY3 overexpression in M. persicae has confirmed that cis-
acting factors in promoter regions play a role in enhancing the
expression of detoxification genes and provided evidence that such
factors may include dinucleotide microsatellites. Microsatellites
such as AC(n) repeats have been historically considered non-
functional neutral markers or ‘junk DNA’. However more recent
studies on humans and yeast have provided evidence that theymay
be important cis-regulatory DNA sequences that have direct influ-
ence on both gene expression and phenotypic variation (Rockman
and Wray, 2002; Vinces et al., 2009) and the work on M. persicae
has now demonstrated that dinucleotide microsatellite variation is
also a driver of adaptive change in gene expression during insect
evolution. It would be extremely interesting to examine the fre-
quency and location of AC(n) repeats in theM. persicae genome and
other insect genomes more generally to examine if they are
observed at greater frequency in gene promoter regions where they
might influence transcription. In the M. persicae example AC(n) re-
peats appear to work in concert with gene amplification to drive
high levels of gene expression and the frequency of this association
could also be explored in other insects.

Work on metabolic resistance in M. persicae has also provided
clear support for the hypothesis that the capacity of insects and
mites to evolve metabolic resistance to synthetic insecticides/
acaricides may result from the recruitment of detoxification
mechanisms that have evolved to process plant allelochemicals
(Dermauw et al., 2013). Study of the host shift of M. persicae to
tobacco has shown that the mechanisms that had evolved to
detoxify nicotine also pre-adapted such aphids to resist neon-
icotinoid insecticides, with the active site of CYP6CY3 able to
accommodate both plant and man-made insecticides (Bass et al.,
2013). This finding highlights the potential risk of resistance
development to insecticides that have structural similarity to nat-
ural compounds encountered by phytophagous insects. M. persicae
is highly polyphagous and it has been suggested that generalist
herbivores may have a particular propensity to evolve insecticide
resistance as a result of the broad spectrum of natural defence
compounds they encounter in their diet (Dermauw et al., 2013). In
support of this idea it is noteworthy thatM. persicae has at least 40%
more genes encoding cytochrome P450s than the specialist pea
aphid A. pisum (Ramsey et al., 2010).

The study of resistance inM. persicae has also demonstrated the
importance of target-site mechanisms in conferring high levels of
resistance by reducing insecticide binding to receptors in the insect
nervous system. However, beyond this, such work has also pro-
vided significant insights into the selectivity of different classes of
insecticides, and has revealed that key amino acid residues that
underlie the selectivity of insecticides are often evolutionary tar-
gets for change, leading to target-site resistance due to a loss or
reduction of species or insect selectivity (Andrews et al., 2004; Bass
et al., 2011; Nabeshima et al., 2003). In a remarkable example of
this, the amino acid at position 81 of the M. persicae nAChR b1
subunit was predicted as a key determinant of neonicotinoid
selectivity for insect nAChRs and hence a resistance ‘hotspot’
(Shimomura et al., 2006) five years prior to the discovery of the
R81T mutation. Furthermore, this position in loop D has also been
suggested to confer imidacloprid selectivity between M. persicae
and its natural enemy Pardosa pseudoannulata which has a polar
glutamine residue at position R81 (Song et al., 2009).

Although theM. persicae case study has revealed that resistance
may come with a fitness cost in the absence of selection, it has also
shown that several resistance mechanisms can coexist in the same
aphid individual resulting in populations of M. persicae that are
resistant to multiple insecticides (Panini et al., 2013). In two ex-
amples (pyrethroid and neonicotinoid resistance) it appears that
low level resistance has evolved first as a result of metabolic
mechanisms, followed by target site mutation to confer much
higher levels of resistance. In the case of neonicotinoid resistance, a
target site change appears to have evolved in a genetic background
of enhanced P450 production (Bass et al., 2011) and indeed, to date,
these two mechanisms have never been found in isolation (our
unpublished work). As a result the relative role of the two mech-
anisms in determining the resistance phenotype is currently un-
known and future work is required to investigate if these
mechanisms act additively or synergistically. Furthermore,
although the fitness of aphid lineages with one or two mechanisms
has been examined further work is urgently required to assess the
fitness of individuals carrying three or more mechanisms. Such
information is valuable, as fitness penalties may result in the
restoration of susceptibility to an insect population in the absence
of selection and this may be exploited in control strategies. Un-
fortunately, manipulation of M. persicae genetics (e.g. to establish
different combinations of resistance alleles in a common genetic
background) is greatly hampered by the frequency of anholocycly
and the time and effort required to produce progeny from crosses
between aphids that can be induced to form sexual stages under
laboratory conditions.

5. Implications and prospects for M. persicae resistance
management

Another legacy of work onM. persicae has been a reinforcement
of the dangers of widespread and long-term reliance on a very
limited supply of insecticidal classes for aphid control. For almost
50 years, control ofM. persicae depended on three chemical classes
that encompass just two modes of action, i.e. OPs and carbamates
acting on AChE, and pyrethroids acting on the voltage-gated so-
dium channel. The introduction of neonicotinoid insecticides
(Table 1) in principle expanded the portfolio of chemistry/modes of
action in many agricultural systems and diversified the selection
pressure being imposed by insecticides. Unfortunately, by this
point widespread resistance had been reported to OPs and carba-
mates, and although for some time pyrethroids retained efficacy
against M. persicae, resistance to this insecticide class followed. In
addition, OPs have widely fallen out of favour due to their unfav-
ourable environmental profile and were replaced rather than
complemented by neonicotinoids. The ensuing reliance on neon-
icotinoids, particularly for certain crops, must overmany years have



Table 1
Major insecticide modes of action and chemical classes marketed globally forMyzus
persicae control (registrations and availability of individual modes of action or
chemical classes may differ regionally).

IRAC
groupa

Target site Chemical class Introduction Example

1 AChE Organophosphates 1940s Dimethoate
Carbamates 1950s Pirimicarb

3 VGSC Pyrethroids 1970s Deltamethrin
4 nAChR Neonicotinoids 1991 Imidacloprid

Sulfoximines 2012 Sulfoxaflor
Butenolides 2014 Flupyradifurone

9 Chordotonal
organs

Pyridine
azomethines

1990s Pymetrozine

Carboxamides 2010 Flonicamid
23 ACCase Tetramic acids 2007 Spirotetramat
28 RyR Diamides 2013 Cyantraniliprole

a IRAC e Insecticide Resistance Action Committee (www.irac-online.org) (Nauen
et al., 2012).
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exerted strong selection for resistance, but despite this it took 20
years for resistance to emerge (R81T mutation in the nAChR b1
subunit) that was sufficiently potent to result in control failure.
Target-site resistance to neonicotinoids is currently restricted to
peach growing regions in southern France, Spain and Italy but in
the latter has very recently been observed in a small number of
samples collected from herbaceous hosts (Panini et al., 2013; Slater
et al., 2011) . Control strategies in these regions are now reliant on
insecticides with novel modes of action that are not cross-resisted
by existing resistance mechanisms in M. persicae. These include
pymetrozine and flonicamid acting on insect chordotonal organs,
and spirotetramat acting on acetyl-CoA carboxylase (Ausborn et al.,
2005; Nauen et al., 2008). A further compound recently developed
for M. persicae control is the diamide insecticide cyantraniliprole
which acts on insect ryanodine receptors (Foster et al., 2012; Selby
et al., 2013). There are currently 10 different chemical classes of
insecticides addressing six different modes of action that are
potentially available for use against M. persicae (Table 1). However,
half of these modes of action can be compromised by known
metabolic and/or target-site resistance mechanisms. In order to
ensure effective and sustainable control of this pest it is important
to identify and exploit simultaneously all the insecticide classes
that are approved and known to be effective on a particular crop
and in a particular region. Strategies based on the alternation of
new mode of action groups and carefully tailored to local condi-
tions (including the prevailing pest complex) have the potential to
keep aphids below economic damage thresholds and to reduce the
intensity of selection for new resistance mechanisms. We recom-
mend that such regional resistance management guidelines are
developed and disseminated through appropriate channels of
communication, and monitoring programmes are implemented to
detect shifts in susceptibility that may herald the appearance of
novel resistance genes and mechanisms. The history of resistance
development inM. persicae as detailed in this paper provides ample
warning against complacency when contending with such an
adaptable species.
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