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Vitamin D3 is made in the skin from 7-dehydrocholesterol under the influence of UV light. Vitamin D2 (ergocal-
ciferol) is derived from the plant sterol ergosterol. Vitamin D is metabolized first to 25 hydroxyvitamin D
(25OHD), then to the hormonal form 1,25-dihydroxyvitamin D (1,25(OH)2D). CYP2R1 is the most important
25-hydroxylase; CYP27B1 is the key 1-hydroxylase. Both 25OHD and 1,25(OH)2D are catabolized by
CYP24A1. 1,25(OH)2D is the ligand for the vitamin D receptor (VDR), a transcription factor, binding to sites
in the DNA called vitamin D response elements (VDREs). There are thousands of these binding sites regu-
lating hundreds of genes in a cell-specific fashion. VDR-regulated transcription is dependent on comodula-
tors, the profile of which is also cell specific. Analogs of 1,25(OH)2D are being developed to target specific
diseases with minimal side effects. This review will examine these different aspects of vitamin Dmetabolism,
mechanism of action, and clinical application.
With the finding of the vitamin D receptor (VDR) in nearly every

tissue and the more recent discovery of thousands of VDR

binding sites throughout the genome controlling hundreds of

genes, the interest in vitamin D and its impact on multiple bio-

logic processes has accelerated tremendously as evidenced

by the thousands of publications each year for the past several

years. These observations have spawned a major effort to

develop vitamin D analogs that can separate the effects of

the active metabolite 1,25-dihydroxyvitamin D (1,25(OH)2D)

on calcium and phosphate homeostasis from its effects on

these other biologic processes and, in particular, to target

just one such process. For some circumstances, this has

been achieved. For example, calcipotriol and 22-oxa calcitriol

(OCT) are approved for the treatment of psoriasis; paricalcitol,

doxercalciferol, and falecalcitriol are approved for secondary

hyperparathyroidism (nota bene: OCT and falecalcitriol are

approved for use only in Japan). The mechanisms by which

these analogs achieve relative specificity for the application

for which they have been approved are several, including their

affinity for the major vitamin D transport protein in blood

(vitamin D binding protein [DBP]), their metabolism either as

prodrug activation or rates of catabolism, their affinity for the

VDR, and their ability to influence VDR transcriptional activity

through effects on retinoid X receptor (RXR) heterodimerization

and/or comodulator recruitment. Thus, to understand the

future of vitamin D with respect to clinical applications, it is

necessary to understand aspects of vitamin D metabolism

and mechanisms of action that can be manipulated to facilitate

tissue-specific clinical applications. Although for the most part

we are not yet at the point of tissue-specific application, a good

start has been made. In this review, I have had to be selective,

so my apologies in advance to those investigators whose work

I have not cited.

Vitamin D Production
The production of vitamin D3 (D3) in the skin is not an enzymatic

process (Figure 1). D3 (cholecalciferol) is produced from 7-dehy-
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drocholesterol (7-DHC) through a two-step process in which the

B ring is broken by UV light (spectrum 280–320 UVB) radiation

from the sun, forming pre-D3 that isomerizes to D3 in a thermo-

sensitive but noncatalytic process. Both UVB intensity and skin

pigmentation level contribute to the rate of D3 formation (Holick

et al., 1980). Melanin in the skin blocks UVB from reaching

7-DHC, thus limiting D3 production, as do clothing and sun-

screen. The intensity of UVB from sunlight varies according to

season and latitude, so the further one lives from the equator,

the less time of the year one can rely on solar exposure to pro-

duce D3 (Webb et al., 1989). Vitamin D can also be obtained

from the diet. Most foods with the exception of fatty fish contain

little vitamin D unless fortified. The vitamin D in fish is D3, whereas

that used for fortification is often D2 (ergocalciferol). D2 is pro-

duced by UVB irradiation of the ergosterol in plants and fungi

(e.g., mushrooms). It differs from D3 in having a double bond be-

tween C22 and C23 and a methyl group at C24 in the side chain.

D2 can be considered the first vitamin D analog. These differ-

ences from D3 in the side chain lower its affinity for DBP resulting

in faster clearance from the circulation, limit its conversion to

25 hydroxyvitamin D (25OHD) by at least some of the 25-hydrox-

ylases to be described, and alter its catabolism by the 24-hy-

droxyase (CYP24A1) (Houghton and Vieth, 2006; Hollis, 1984;

Horst et al., 1986). Therefore, unless given daily, D2 supplemen-

tation does not result in as high a blood level of 25OHD as

comparable amounts of D3 (Tripkovic et al., 2012). On the other

hand, 1,25(OH)2D2 and 1,25(OH)2D3 have comparable affinities

for the VDR (Hollis, 1984).

Vitamin D Metabolism
The three main steps in vitamin D metabolism, 25-hydroxylation,

1a-hydroxylation, and 24-hydroxylation are all performed by

cytochrome P450 mixed-function oxidases (CYPs). These

enzymes are located either in the endoplasmic reticulum

(ER) (e.g., CYP2R1) or in the mitochondria (e.g., CYP27A1,

CYP27B1, and CYP24A1). The electron donor for the ER

enzymes is the reduced nicotinamide adenine dinucleotide
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Figure 1. The Production andMetabolismof
D2 and D3

D3 is produced in the skin from 7-DHC in a
nonenzymatic process in which the B ring is
broken by UVB radiation, and the pre-D3 formed
isomerizes to D3 in a thermo-sensitive process. D3

is converted to 25OHD3 in the liver and elsewhere
by a number of enzymes of which CYP2R1 is the
most important. The regulation of this step is
modest at best. The kidney and other tissues
metabolize 25OHD to the active metabolite
1,25(OH)2D3 or the first step in the catabolic pro-
cess 24,25(OH)2D3. The enzymes responsible,
CYP27B1 and CYP24A1, respectively, are tightly
controlled. Although the regulation differs in
different tissues, in the kidney, CYP27B1 is stim-
ulated by PTH and inhibited by FGF23 and high
calcium (Ca) and phosphate (P). The regulation of
CYP24A1 is just the opposite. 1,25(OH)2D3 also
regulates its own production directly and by
inhibiting PTH production, stimulating FGF23
production, and inducing CYP24A1.
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phosphate (NADPH)-dependent P450 reductase. The electron

donor chain for themitochondrial enzymes is comprised of ferre-

doxin and ferredoxin reductase. These are not specific for a

given CYP—specificity lies within the CYP. Although of the

CYPs involved in vitamin D metabolism, only CYP2R1 and

CYP24A1 have been crystallized, it is likely that these enzymes

contain a number of common structural features. These include

12 helices (A–L) and loops and a common prosthetic group,

namely the iron-containing protoporphyrin IX (heme) linked to

the thiolate of cysteine. The I helix runs through the center of

the enzyme above the heme where a thr(ser) and asp(glu) pair

is essential for catalytic activity (Sugimoto and Shiro, 2012).

CYP2R1, like other microsomal CYPs, contains two extra helices

that appear to form a substrate channel in the bilayer of the ER

(Sugimoto and Shiro, 2012). The B0 helix serves as a gate, closing
on substrate binding. Whether a similar substrate channel exists

for the mitochondrial CYPs is not clear.

25-hydroxylase

The liver has been established as the major if not sole source of

25OHD production from vitamin D. Initial studies of the hepatic

25-hydroxlase found activity in both the mitochondrial and

microsomal fractions, and subsequent studies have demon-

strated a number of CYPs with 25-hydroxylase activity.

CYP27A1 is the only mitochondrial 25-hydroxylase. It was

initially identified as a sterol 27-hydroxylase involved in bile

acid synthesis. This CYP is widely distributed in the body, not

just in the liver. However, CYP27A1 does not 25-hydroxylate

D2. Moreover, when it is deleted in the mouse, blood levels of

25OHD actually increase (Zhu et al., 2013), and inactivating

mutations in humans cause cerebrotendinous xanthomatosis

with abnormal bile and cholesterol metabolism, but not rickets

(Moghadasian, 2004). Subsequently, CYP2R1 was identified in

the microsomal fraction of mouse liver (Cheng et al., 2003). This

enzyme 25-hydroxylates both D2 and D3 with comparable

kinetics, unlike CYP27A1. Its expression is primarily in the liver

and testes. CYP2R1 expression is increased in the CYP27A1
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null mouse, likely explaining the in-

creased blood levels of 25OHD in the

CYP27A1 null mouse. When CYP2R1 is
deleted from mice, blood levels of 25OHD fall more than

50%, but not to zero (Zhu et al., 2013). Even the double deletion

of CYP2R1 and CYP27A1 does not reduce the blood level of

25OHD to zero and actually has little impact on blood levels

of calcium and phosphate (Zhu et al., 2013), suggesting

compensation by other enzymes with 25-hydroxylase activity.

In humans, a leu99pro mutation in CYP2R1 has been found in

a Nigerian with severe bone disease associated with biochem-

ical evidence of rickets including a low 25OHD but normal

1,25(OH)2D (Cheng et al., 2004). When tested in vitro, this mu-

tation profoundly decreased the activity of CYP2R1 (Cheng

et al., 2004). However, given the prevalence of rickets in this

population, these findings do not rule out the role for other

25-hydroxylases. CYP3A4, the major drug-metabolizing

enzyme preferentially located in liver and intestine, has 25-hy-

droxylase activity (Gupta et al., 2004). CYP3A4 prefers 1aOHD

to 25OHD as substrate. CYP2J3 is expressed in rat liver and

has 25-hydroxylase activity, but its human homolog, CYP2J2,

has less such 25-hydroxylase activity, is located primarily in

the heart, and appears to function mainly as an arachidonic

acid epooxygenase (Zhu and DeLuca, 2012). The human ho-

molog of CYP2D25, initially isolated from pig liver and kidney

(Postlind et al., 1997), does not have substantial 25-hydroxy-

lase activity (Hosseinpour and Wikvall, 2000). CYP2C11 is ex-

pressed in the liver of male rats. It has 25-hydroxylase activity

for D3 and D2 as well as the 1OHD analogs but is better known

for its hydroxylations of testosterone (Rahmaniyan et al., 2005).

It is not clear if there is a human homolog. Although some

studies have indicated regulation for some of these 25-hydrox-

ylases, in general, regulation of vitamin D 25-hydroxylation is

not a major consideration, and circulating levels of 25OHD

are a useful marker of vitamin D nutrition. Thus, CYP2R1 ap-

pears to be the major 25-hydroxylase, but other enzymes

have 25-hydroxylase activity that may affect levels of 25OHD

within a given tissue and/or contribute to the circulating levels

of 25OHD.
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1a-hydroxylase

The kidney is the major if not the sole source of circulating levels

of 1,25(OH)2D. Unlike 25-hydroxylation, there is only one enzyme

recognized to have 25OHD 1a-hydroxylase activity, and that is

CYP27B1. This enzyme was cloned and sequenced by four

different groups in the same year (Fu et al., 1997; Shinki et al.,

1997; Takeyama et al., 1997; St-Arnaud et al., 1997). Mutations

within the gene have been shown to underlie the condition of

pseudovitamin D deficiency caused by inadequate 1,25(OH)2D

production (Fu et al., 1997; Shinki et al., 1997; Takeyama et al.,

1997; St-Arnaud et al., 1997). CYP27B1 has a high degree of

homology with the other mitochondrial enzymes involved with

vitamin D metabolism: CYP27A1 and CYP24A1. Although the

kidney is the main source of circulating 1,25(OH)2D, a number

of other tissues also express the enzyme, and the regulation of

the extrarenal CYP27B1 differs from that of the renal CYP27B1

(review in Bikle, 2010). Examples include the epithelial cells in

the skin, lungs, breast, intestine, and prostate; endocrine glands

including the parathyroid gland (PTG), pancreatic islets, thyroid,

testes, ovary, and placenta; cells of the immune system

including macrophages, and T and B lymphocytes and dendritic

cells (DCs); osteoblasts and chondrocytes; and a variety of tu-

mors derived from these cells. Unlike the hepatic 25-hydroxy-

lases, the renal 1a-hydroxylase is tightly regulated primarily by

three hormones: parathyroid hormone (PTH), fibroblast growth

factor 23 (FGF23), and 1,25(OH)2D itself. PTH stimulates

whereas FGF23 and 1,25(OH)2D inhibit CYP27B1. Elevated cal-

cium suppresses CYP27B1 primarily via suppression of PTH;

elevated phosphate suppresses CYP27B1 primarily by stimu-

lating FGF23, although these ions can have direct effects on

renal CYP27B1 on their own (Bikle and Rasmussen, 1975; Bikle

et al., 1975). The stimulation by PTH involves cyclic AMP (cAMP)

(Rost et al., 1981), and consensus cAMP response elements are

found in the proximal promoter of the CYP27B1 gene. However,

the precise mechanism of stimulation is not clear and may

involve the transcription factor C/EBPb acting as an inhibitor of

the orphan receptor NR4A2 (Zierold et al., 2007). Similarly, the

precise mechanism by which FGF23 inhibits CYP27B1 remains

unclear. FGF23 signals through select FGF receptors only in

the presence of the coreceptor Klotho. This signaling activates

the mitogen-activated protein kinase (MAPK) cascade, but its

role in CYP27B1 expression remains unclear (Urakawa et al.,

2006). 1,25(OH)2D limits CYP27B1 activity by inhibiting PTH

and increasing FGF23 production as well as reducing

1,25(OH)2D levels by inducing the catalytic enzyme CYP24A1.

However, 1,25(OH)2D3 also directly inhibits CYP27B1 expres-

sion in the kidney through a complex mechanism involving

VDR and a vitamin D inhibitory receptor (VDIR) that brings both

histone deacetylases (HDACs) and DNA methyl transferases to

the promoter of CYP27B1 inhibiting its transcription (Kim et al.,

2007).

Regulation of extrarenal CYP27B1 differs. Most attention

regarding regulation of extrarenal CYP27B1 has focused on

keratinocytes and macrophages. Keratinocytes respond to

PTH with increased 1,25(OH)2D3 production, but these cells do

not have the classic PTH receptor and do not respond to

cAMP (Bikle et al., 1986). The mechanism by which PTH stimu-

lates 1,25(OH)2D production in these cells remains unclear.

However, using a CYP27B1 promoter/luciferase reporter assay,
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Flanagan et al. (2003) demonstrated that PTH stimulated expres-

sion in a kidney cell line but not in keratinocytes, suggesting that

the effect of PTHmay be posttranscriptional. The effect of FGF23

on keratinocyte CYP27B1 expression or function has not been

reported. Unlike the kidney, 1,25(OH)2D does not directly affect

CYP27B1 expression in keratinocytes. Rather, 1,25(OH)2D regu-

lates its own levels in the keratinocyte by inducing CYP24A1, the

catabolic enzyme for 1,25(OH)2D3 (Xie et al., 2002). Tumor necro-

sis factor a (TNF-a) (Bikle et al., 1991) and interferon g (IFN-g)

(Bikle et al., 1989), on the other hand, are potent inducers of

CYP27B1 activity in the keratinocyte.

The production of 1,25(OH)2D by circulating monocytes can

be stimulated by IFN and other cytokines including TNF, inter-

leukin-1 (IL-1), and IL-2 (Gyetko et al., 1993) signaling through

the JAK/STAT, p38 MAPK, and NFkB pathways (Adams and

Gacad, 1985; Pryke et al., 1990; Gyetko et al., 1993; Stoffels

et al., 2006). Although PTH has not been shown to alter macro-

phage CYP27B1 activity, FGF23 has recently been shown to

be inhibitory (Bacchetta et al., 2013). In parathyroid cells, how-

ever, FGF23 has been found to stimulate CYP27B1 expression

(Krajisnik et al., 2007), so its actions are not always inhibitory.

CYP24A1 induction and/or function in macrophages in response

to 1,25(OH)2D is blunted and does not provide the safety valve

found in keratinocytes (Adams and Gacad, 1985). The mecha-

nism appears to involve the expression of a truncated form of

CYP24, which includes the substrate binding domain, but not

the mitochondrial targeting sequence. This truncated form is

postulated to act as a dominant-negative form of CYP24A1,

binding 1,25(OH)2D within the cytoplasm and preventing its

catabolism (Ren et al., 2005).

24-hydroxylase

CYP24A1 is the only established 24-hydroxylase involved with

vitamin D metabolism. This enzyme has both 24-hydroxylase

and 23-hydroxylase activity, the ratio of which is species depen-

dent (Jones et al., 2012). The enzyme in humans has both capa-

bilities, but the rat enzyme is primarily a 24-hydroxylase (Sakaki

et al., 2000). Mutating ala 326 to gly 326 in the human CYP24A1

shifts the profile from one favoring 24-hydroxyation to one favor-

ing 23-hydroxylation (Prosser et al., 2007). Other mutagenesis

studies in combination with the known crystal structure of

CYP24A1 have provided an excellent understanding of the sub-

strate binding pocket as recently reviewed by Jones et al. (2012).

The 24-hydroxylase pathway results in the biologically inactive

calcitroic acid, whereas the 23-hydroxylase pathway ends up

producing the biologically active 1,25-26,23 lactone. All steps

are performed by one enzyme (Sakaki et al., 2000). 1,25(OH)2D

is the preferred substrate relative to 25OHD, but both are 24-hy-

droxylated. 1,24,25(OH)3D has substantial affinity for the VDR

and therefore has biological activity. There may be a physiologic

role for 24,25(OH)2D in the growth plate in that both 1,25(OH)2D

and 24,25(OH)2D appear to be required for optimal endochon-

dral bone formation (Plachot et al., 1982), and evidence for a

specific receptor for 24,25(OH)2D in chondrocytes is gaining

strength (R. St-Arnaud, personal communication). Deletion of

CYP24A1, thus eliminating all 24-hydroxylated metabolites of

vitamin D, results in defectivemineralization of intramembranous

(not endochondral) bone (St-Arnaud et al., 2000). However,

crossing this mouse with one lacking the VDR corrects the

mineralization defect (St-Arnaud et al., 2000), indicating that it
logy 21, March 20, 2014 ª2014 Elsevier Ltd All rights reserved 321
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is the high circulating 1,25(OH)2D not the lack of 24,25(OH)2D

that causes the phenotype. Furthermore, inactivating mutations

in CYP24A1 have recently been found in children with idiopathic

infantile hypercalcemia who present with severe hypercalcemia,

hypercalciuria, and nephrocalcinosis, decreased PTH, low

24,25(OH)2D, and inappropriately normal-to-high 1,25(OH)2D

(Schlingmann et al., 2011). Thus, it appears that the primary

function of CYP24A1 is to prevent the accumulation of toxic

levels of 1,25(OH)2D and 25OHD.

Regulation of CYP24A1is the reciprocal of that of CYP27B1 at

least in the kidney. In essentially all cells in which it is expressed,

CYP24A1 is strongly induced by 1,25(OH)2D and often serves as

a marker of 1,25(OH)2D response in that cell. The promoter of

CYP24A1 contains two vitamin D response elements (VDREs)

around 150 and 250 bp upstream of the transcriptional start

site to which VDR/RXR bind (Zierold et al., 1995) as well as sites

for the transcription factors Ets-1 and C/EBPb. More recently,

chromatin immunoprecipitation (ChIP)-chip data have identified

sites 50–70 kb downstream of the human CYP24A1 gene to

which H4 acetylases and RNA polymerase II are recruited and

that play a role in 1,25(OH)2D induction of CYP24A1 (Meyer

et al., 2010a). PTH attenuates the induction of CYP24A1 by

1,25(OH)2D at least in part by increasing the degradation of

CYP24A1 mRNA through the cAMP/PKA pathway (Zierold

et al., 2000, 2001). However, in osteoblasts, PTH enhances

1,25(OH)2D induction of CYP24A1 transcription through the

same cAMP/PKA pathway (Armbrecht et al., 1998), illustrating

the fact that regulation of these vitamin D-metabolizing enzymes

is cell specific. FGF23 increases CYP24A1 expression in the kid-

ney, but the mechanism is unclear (Perwad et al., 2005), and its

effect on CYP24A1 expression in other tissues responding to

FGF23 has not been studied to my knowledge.

Given that the principal role of CYP24A1 is to control levels of

1,25(OH)2D within tissues and that a number of malignancies

have increased CYP24A1 expression (Anderson et al., 2006),

efforts have been made to develop inhibitors of CYP24A1 to

increase endogenous 1,25(OH)2D levels in tumors in hopes of

increasing the antiproliferative/prodifferentiating effects of

1,25(OH)2D in those cells. A number of azoles such as ketocona-

zole inhibit CYP24A1 activity but with little specificity with

respect to other CYPs including CYP27B1. VID-400, an imid-

azole derivative, was developed and shown to have a 40-fold

selectivity for CYP24A1 over CYP27B1 at least in keratinocytes

(Schuster et al., 2001). More recently, CTA091, a vitamin D

analog with a 24(S)-NH phenyl sulfoximine D-ring side chain,

has been developed with no VDR binding but that is highly selec-

tive for CYP24A1 inhibition (Posner et al., 2010). Other vitamin D

analogs such as CTA018 have both VDR agonist activity and

selective antagonist activity for CYP24A1 expression (Posner

et al., 2010). CTA018 is in phase II of a clinical trial for secondary

hyperparathyroidism (Cytochroma), but not for cancer.

3-epimerase

3-epimerase (3-epi) activity was first identified in the keratino-

cyte where it produced the 3-epi form of 1,25(OH)2D (Reddy

et al., 2001). It has also been identified in a number of other cells

such as colon cancer cells (Caco2), parathyroid cells, osteo-

blasts, hepatocyte-derived cells (HepG2), but not in the kidney

(Bailey et al., 2013). The enzyme per se has not yet been purified

and sequenced, so it is not clear that one gene product is
322 Chemistry & Biology 21, March 20, 2014 ª2014 Elsevier Ltd All r
involved. The 3-epi isomerizes the C-3 hydroxy group of the A

ring of all natural vitamin D metabolites from the a to b orienta-

tion. This does not restrict the action of CYP27B1 or CYP24A1.

However, the C-3 epimer of 25OHD has reduced binding to

DBP relative to 25OHD, and the C-3 epimer of 1,25(OH)2D has

reduced affinity for the VDR relative to 1,25(OH)2D, thus reducing

its transcriptional activity andmost biologic effects (Kamao et al.,

2004). Surprisingly, however, it is equipotent to 1,25(OH)2D with

respect to PTH suppression (Brown et al., 1999). Clinically, inter-

est in the C-3 epimerase arises because the C-3 epimer of

25OHD (or 1,25(OH)2D) is not distinguished from 25OHD (or

1,25(OH)2D) by liquid chromatography-mass spectroscopy

without special chromatographic methods to separate the epi-

mers prior to mass spectroscopy. Thus, the measurement of

25OHD using standard mass spectroscopic procedures results

in a value increased above true levels to the extent that the

sample contains the C-3 epimer. Immunoassays by and large

do not recognize the C-3 epimer and so are not affected. This

issue is particularly important in assessing 25OHD levels in in-

fants where levels of the C-3 epimer of 25OHD can equal or

exceed that of 25OHD (Bailey et al., 2013). However, levels in

adults can also be substantial (Bailey et al., 2013). Given that

the C-3 epimer does have biologic activity and that the epimers

can be separated prior to mass spectroscopy, there may be

justification for measuring both epimers to provide a more com-

plete picture of vitamin D status at least in future research

protocols or when assessing infant samples. At this point, it is

not clear whether the cost/benefit of such additional effort

justifies its application to adult samples measured routinely.

CYP11A1

Recently, an alternative pathway for vitamin D activation at least

in keratinocytes has been identified, namely 20-hydroxylation of

vitamin D by CYP11A1, the side-chain cleavage enzyme essen-

tial for steroidogenesis (Slominski et al., 2010). The product,

20OHD, or its metabolite, 20,23(OH)2D, appears to have activity

similar to 1,25(OH)2D, at least for some functions. Whether this

pathway can explain the differences in phenotype between

animals and humans lacking VDR compared to those lacking

CYP27B1 remains to be seen.

Vitamin D Mechanism of Action
Genomic actions are reviewed in Pike and Meyer (2010) and

Haussler et al. (2011). All genomic actions of 1,25(OH)2D are

mediated by the VDR. VDR is a transcription factor and member

of the steroid hormone nuclear receptor family. It is comprised of

three domains: the N-terminal DNA binding domain with two zinc

fingers that bind to the grooves of the DNA at discrete sites

(VDREs), the C-terminal ligand binding domain, and the hinge re-

gion binding these two domains together. The ligand binding

domain structure has been solved by x-ray crystallography

(Rochel et al., 2000). It is comprised of 12 helices. The terminal

helix serves as a gating mechanism closing around the incorpo-

rated ligand and forming an interface for coactivators as well as

facilitating the interaction of VDR with its heterodimer partner,

generally RXR. Although there is substantial variability in the

sequence of VDREs, most of those with the highest affinity for

VDR are direct repeats of hexanucleotides with a spacing of

3 nt between the half sites, a motif called a DR3. VDR binding

to its VDRE then recruits coregulatory complexes required for
ights reserved



Figure 2. Clinically Used Analogs of 1,25(OH)2
The structures of various vitamin D analogs currently in use clinically.
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its genomic activity. These complexes can be both gene and cell

specific, enabling the selectivity of 1,25(OH)2D action from cell

type to cell type. These complexes include a subunit that directly

binds to the VDR generally through an LXXLL motif along with a

number of subunits that contain enzyme activity such as histone

acetyl transferases (coactivators such as the SRC family) or

deacetylases (corepressors such as SMRT and NCoR), methyl

transferases and demethylases, ATPase-containing nucleo-

somal-remodeling activity (SWI/SNF), and links to RNA polymer-

ase II (Mediator complex).

The newer techniques of microarray, ChIP-chip, and ChIP-seq

have markedly expanded our understanding of vitamin D mech-

anism of action at the genomic level. For example, in the mouse

osteoblast, 1,200 VDR binding sites were found under basal (i.e.,

no 1,25(OH)2D) conditions, whereas 8,000 sites were observed

following 1,25(OH)2D administration (Meyer et al., 2010b). In a

separate study with human lymphoblastoid cell lines treated

with 1,25(OH)2D, 2,776 VDR binding sites were found altering

the expression of 229 genes (Ramagopalan et al., 2010). The

profile of VDR binding sites and genes activated varies from

cell to cell with some albeit far from total overlap especially

when comparing results with different time courses of

1,25(OH)2D exposure (Carlberg et al., 2012). Moreover, these

VDR binding sites can be anywhere in the genome, often many

thousands of base pairs away from the gene being regulated.

These sites are generally found associated with binding sites

for other transcription factors. In osteoblasts, these include

RUNX2, C/EBPa, and C/EBPb, among others (Zella et al.,

2010; Meyer et al., 2012). These sites often demonstrate a

distinct epigenetic histone signature involving methylation

and/or acetylation of lysines within H3 and H4 (Ernst et al.,

2011). In their recent review, Pike and Meyer (2010) enunciated

six principles of VDR/RXR action on target genomes: ‘‘1) the

number of VDR binding sites on the genome is cell type-specific;

2) the active transcription unit is predominantly, but not exclu-

sively, the VDR/RXR heterodimer; 3) VDR binding sites are

predominantly, but not exclusively, classic hexamer half-sites
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separated by 3 base pairs; 4) enhancers are located promoter-

proximal (near), promoter distal (far) or a combination thereof,

relative to transcriptional start sites: many enhancers are located

in clusters hundreds of kilobases from their target genes; 5) en-

hancers are modular in nature, containing binding sites for a

number of different transcription factors; 6) enhancers that

populate a genome are cell type-unique and highly dynamic.’’

Nongenomic Actions

1,25(OH)2D also exerts effects that are too rapid to involve a

genomic action. The first of these that was identified involved

the rapid stimulation of intestinal calcium transport in a vitamin

D replete chick, called transcaltachia (Norman et al., 1997). An-

alogs of 1,25(OH)2D with little genomic activity were comparable

in function to 1,25(OH)2D with respect to transcaltachia. Other

examples emerged including effects on the chondrocytes in

the growth plate (Norman et al., 1997) and keratinocytes in the

skin (Sequeira et al., 2012). Identification of the receptor for

1,25(OH)2D has focused on the VDR itself albeit in a different

configuration to enable binding by nongenomic VDR agonists

(Mizwicki and Norman, 2009) and membrane-associated rapid

response steroid binding protein (MARRS), also known as

ERp57/GRp58/ERp60 (Nemere et al., 2004). These receptors

are located in the membrane within caveolae/lipid rafts (Huhta-

kangas et al., 2004) where they are poised to activate kinases,

phosphatases, and ion channels. The crystallographic form of

VDR would indicate that it can accommodate only agonists

with a 6-s-trans configuration, yet those agonists specific for

the rapid responses are in a 6-s-cis configuration. However, a

model of the VDR has been proposed with an alternative ligand

pocket that can accommodate the 6-s-cis analogs (Mizwicki and

Norman, 2009). Crystallographic evidence for this configuration

has not been obtained. In the three examples mentioned above,

both the MARRS and VDRs have been implicated, and in the

skin, both receptors were found to be involved in the same study

examining photoprotection (Sequeira et al., 2012).

Thus, the panoply of pathways now known to be regulated by

1,25(OH)2D opens up a large selection of targets for clinical

application, with the proviso that functional selectivity can be

achieved to match what the cell-specific genomic selectivity

would seem to promise. This realization has spawned great

interest in developing 1,25(OH)2D analogs to do just that.

Vitamin D Analogs
Thousands of analogs have been synthesized (reviews in Jones,

2010; Brown et al., 1999; Brown and Slatopolsky, 2008)

(Figure 2). The earliest analogs were prodrugs requiring further

metabolism to be active. Such drugs include D2, 1aOHD3 (alpha-

calcidol) and 1aOHD2 (doxercalciferol), and dihydrotachysterol

(DHT). Alphacalcidol is approved in Europe and Japan for the

treatment of osteoporosis. Doxercalciferol is approved in the

USA for the treatment of secondary hyperparathyroidism. DHT

is no longer used clinically. As noted earlier, D2 like D3 undergoes

25-hydroxylation and 1a-hydroxylation to become active.

Different 25-hydroxylases distinguish between D2 and D3 (i.e.,

D2 is a poor substrate for CYP27A1 but is an equivalent substrate

for CYP2R1). CYP27B1 does not distinguish between the two

forms of 25OHD, but 1,25(OH)2D2 is metabolized differently by

CYP24A1 than 1,25(OH)2D3 because of the methyl group in

C24 and the double bond between C22 and C23. Moreover,
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D2 and its metabolites have lower affinity for DBP so are cleared

faster from the bloodstream. Similar differences would be ex-

pected for 1aOHD3 and 1aOHD2 that must undergo 25-hydrox-

ylation to be active. DHT, when 25-hydroxylated, was thought to

be biologically active because the 3b OH group assumed a

pseudo 1a position, but subsequent studies have shown 1a-hy-

droxylation of the 25OHDHT, which enhances its biologic activity

(Qaw et al., 1993).

An early analog of 1,25(OH)2D is 26,27 F6-1,25(OH)2D3 (fale-

calcitriol), which is currently approved for use in osteoporosis,

secondary hyperparathyroidism, and hypoparathyroidism in

Japan. The fluoride components in the side chain reduce its

metabolism because the 23-hydroxylated metabolite resists

further metabolism but retains biologic activity (Imanishi et al.,

1999). However, falecalcitriol is not selective for the PTG or

bone. Other analogs were designed to reduce the affinity for

DBP, increasing clearance, with the hope of reducing the impact

on intestinal calcium transport and bone resorption. Calcipotriol

has a C22-C23 double bond, a C24 hydroxyl group, and a cyclo-

propane ring. This drug has seen success in the treatment of

psoriasis in numerous countries, in part because it can be

applied topically to the involved skin and undergo substantial

metabolism in the skin limiting its access to the circulation. Cal-

cipotriol has also been used in cancer trials. OCT (maxacalcitol)

has an oxygen group instead of carbon at the 22 position. It is

approved for psoriasis and secondary hyperparathyroidism in

Japan. It was found to be substantially less hypercalcemic

than 1,25(OH)2D while retaining substantial ability to suppress

PTH secretion (Brown et al., 1993) at least in part because of

the rapid clearance of the drug from the circulation limiting its

accumulation in the intestine. 19-nor-1a 25(OH)2D2 (paricalcitol)

lacks the C19 methylene group in ring A of 1,25(OH)2D2. It is

approved for secondary hyperparathyroidism in chronic kidney

disease (CKD). It has substantially less hypercalcemic effect

relative to its inhibition of PTH secretion (Slatopolsky et al.,

1995) and blocks PTG hyperplasia. Furthermore, paricalcitol

appeared to have a lower risk of vascular calcification than

1,25(OH)2D3 (Cardús et al., 2007) or doxercalciferol (Mizobuchi

et al., 2007). The reason for the selective effect of paricalcitol is

not clear because its clearance from the bloodstream is compa-

rable to that of 1,25(OH)2D (Brown et al., 2000). ED-71 (eldecal-

citol) has a 2-hydroxypropoxy group in the A ring. It is nearing

approval for use in osteoporosis in Japan because it restores

bone mass with minimal effect on serum calcium levels (Matsu-

moto and Kubodera, 2007). Unlike the other analogs discussed,

ED-71 has a higher affinity for DBP with a longer half-life in blood

that may contribute to its selective effect on bone (Nishii et al.,

1993). 2-methylene-19 nor (20S)-1,25(OH)2D3 (2MD) likewise

appears to be specific for bone formation (Shevde et al., 2002)

but is no longer in clinical trials. BXL628 (Crescioli et al., 2004;

Adorini et al., 2007) combines fluorination, 16-ene and 23-yne

double bonds, 26,27 homologation, and 20-epimerization, mod-

ifications found singly in other analogs with potent antipro-

liferative activity. It is undergoing clinical trials for prostate

hypertrophy, cancer, and prostatitis. In addition to modifications

of the basic vitamin D structure, high-throughput screening has

been used to identify nonsecosteroid VDR modulators, of which

LY2109866 is one example (Ma et al., 2006). This class of

compounds has not yet been tested clinically to my knowledge.
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Mechanisms invoked to explain the relative specificity of these

analogs other than their pharmacokinetic properties have been

examined. One surprising result from crystallographic data is

that different analogs did not appear to alter the configuration

of the VDR (Rochel et al., 2000; Tocchini-Valentini et al., 2001).

That said, different analogs led to different profiles with respect

to proteolytic digestion of the VDR/agonist complex (Peleg

et al., 1995). Moreover, different analogs appear to affect the

recruitment of different coactivator complexes differently, with

higher affinity of VDR for these coactivators with analogs with

super agonist properties (Eelen et al., 2006). Examples include

two 14-epi analogs (TX527 and TX522) that are ten times as

potent as 1,25(OH)2D with respect to their antiproliferative ac-

tions with 50–400 times lower calcemic effects; these drugs

have comparable affinity as 1,25(OH)2D for the VDRwith compa-

rable impact on VDR/RXR binding to VDREs (Verlinden et al.,

2001) but induced stronger interactions between VDR and the

SRC coactivators (Eelen et al., 2006). Other examples include

the analog 2MD, which induced stronger interaction among

VDR, SRC2, andMED1 (Yamamoto et al., 2003), andOCT, which

induced stronger binding between VDR and SRC2 (Takeyama

et al., 1999).

Clinical Applications
The literature assessing the relationship of vitamin D adequacy

to human disease is vast, and attempts to summarize it in a

few short paragraphs is not feasible. However, there are several

points that can be made about some of the clinical applications

that have received the most study.

The Skeleton

There is little controversy that adequate vitamin D is necessary to

prevent rickets and osteomalacia. More controversy exists with

respect to the role of vitamin D in the prevention of osteoporosis

and fractures (Bikle, 2012a). However, a meta-analysis of a num-

ber of randomized controlled trials demonstrated a positive

dose-response relationship between vitamin D supplementation

and fracture prevention (Bischoff-Ferrari et al., 2009). At least

part of the protection could be attributed to a vitamin D-related

reduction in falls (Murad et al., 2011). It is not settled whether

this beneficial action of vitamin D on bone is due solely to the abil-

ity of vitamin D via 1,25(OH)2D to provide adequate levels of cal-

cium and phosphate from the diet by promoting their intestinal

absorption, or whether 1,25(OH)2D also exerts a direct action

on cartilage and bone to promote normal skeletal development

and turnover. Mice and humans lacking a functional VDR or

CYP27B1 develop rickets, but this can be prevented by a diet

high in calcium and lactose (rescue diet) to enhance calcium ab-

sorption or with infusions of calcium and phosphate. Moreover,

expressing the VDR only in the intestine of a VDR null mouse

prevents the rickets from developing (Xue and Fleet, 2009). How-

ever, longer-term studies demonstrated that in the CYP27B1 null

or CYP27B1/VDR double null mouse raised on the rescue diet to

normalize serum calcium, phosphate, and PTH, osteopenia and

defective osteoblast function were demonstrated (Panda et al.,

2004). Thus, vitamin D appears to have direct and indirect effects

on bone development and remodeling, important clinically to

prevent rickets in the developing skeleton and osteoporosis

and fractures in the aging skeleton. The major controversy

regarding the latter is what level of vitamin D is sufficient.
ights reserved
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The PTG

The inverse relationship between circulating 25OHD levels (but

not 1,25(OH)2D levels) and PTH levels is well established, but

the degree of variability in the population with respect to this rela-

tionship is large. Nevertheless, PTH levels are a useful marker for

vitamin D sufficiency, andmaintaining adequate levels of 25OHD

in the blood will reduce the risk for PTG hyperplasia and elevated

PTH secretion with its potential deleterious effects on bone. The

PTG expresses both the VDR and CYP27B1. The PTH gene con-

tains a negative response element for 1,25(OH)2D /VDR (Demay

et al., 1992). Most likely, part of the inverse relationship between

25OHD (but not 1,25(OH)2D) and PTH is due to the ability of the

PTG to produce its own 1,25(OH)2D. 1,25(OH)2D also induces

the calcium-sensing receptor in the PTG making the PTG more

sensitive to suppression by calcium as well as 1,25(OH)2D. In

CKD, the PTG becomes less sensitive to both 1,25(OH)2D

and calcium as levels of their respective receptors decrease re-

sulting in secondary hyperparathyroidism. Several analogs of

1,25(OH)2D and 1,25(OH)2D itself are approved for the treatment

of secondary hyperparathyroidism in CKD, in particular doxer-

calciferol, paricalcitol, falecalcitriol, and maxacalcitol (the latter

two only in Japan). These analogs consistently reduce PTH

levels with an acceptable increase in serum calcium. The bene-

fits of these analogs on mortality in CKD (generally cardio-

vascular) have consistently been found in observational studies

(Duranton et al., 2013). As discussed below, this may reflect

not only an effect of these vitamin D analogs on the PTG but

also an effect on the cardiovascular system.

The Skin

The use of the 1,25(OH)2D analogs calcipotriol and maxacalcitol

for the treatment of the hyperproliferative skin disease psoriasis

represents another approved clinical application outside of the

skeleton for vitamin D and its analogs. Psoriasis is a disorder

with hyperproliferation and decreased or abnormal differentia-

tion driven by an abnormal immunologic component. The suc-

cessful use of 1,25(OH)2D and several of its analogs is likely

due to their ability to inhibit the proliferation, stimulate the differ-

entiation, and suppress the immune activity associated with

this disease (Bikle, 2012b). Nonmelanoma skin cancer also rep-

resents a condition of increased proliferation and decreased

differentiation of keratinocytes. Mice lacking the VDR in their

keratinocytes are predisposed to UVB and chemically induced

skin cancer (Teichert et al., 2011), and topical application of

1,25(OH)2D appears to be photoprotective (Mason and Reich-

rath, 2013). However, this potential has not been examined

clinically.

Obesity, Diabetes Mellitus, and Metabolic Syndrome

25OHD levels are typically lower in obese individuals who are

more likely to develop diabetes mellitus and the metabolic syn-

drome. Adipocytes express the VDR, and 1,25(OH)2D promotes

increased lipogenesis and decreased lipolysis (Shi et al., 2001).

The pancreatic b cell expresses the VDR, and 1,25(OH)2D

promotes insulin secretion (Norman et al., 1980). Moreover,

vitamin D deficiency is associated with insulin resistance (Kaya-

niyil et al., 2010). Clinical trials in individuals with diabetes melli-

tus or who are prediabetic suggest a benefit from vitamin D

administration with respect to improving or preventing the devel-

opment of frank diabetes (Mitri et al., 2011; Pittas et al., 2007),

but longer and larger randomized clinical trials are required.
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Cancer

The data from animal and cell culture studies are very promising

that 1,25(OH)2D or its analogs can prevent cancer development

or retard its progress/metastasis once developed (Bikle, 2004).

The mechanisms by which 1,25(OH)2D can suppress tumor

development are numerous and in many cases cell specific.

These include inhibition of proliferation by blocking elements of

the cell cycle or interference with signaling by growth factors,

inducing apoptosis, stimulation of DNA damage repair, preven-

tion of tumor angiogenesis, and inhibition of metastasis. How-

ever, most of the clinical data stem from observational studies.

These studies consistently show a likely benefit for vitamin D

supplementation in colon and breast cancer, but randomized

clinical trial data of sufficient size and duration with sufficient

doses of vitamin D to be definitive are lacking (Chung et al.,

2011; Manson et al., 2011). Development of an analog with

tissue specificity relative to effects on calcium absorption/bone

resorption would enhance the chances of success in treating

malignancies.

Cardiovascular Disease

The VDR and CYP27B1 are expressed in the heart, both in the

myocytes and in the fibroblasts (Chen et al., 2008). 1,25(OH)2D

and its analogs suppress markers of cardiac hypertrophy, and

deletion of the VDR specifically from the heart results in hypertro-

phy (Chen et al., 2011; Gardner et al., 2013). VDR and CYP27B1

null mice are also hypertensive with increased production of

renin from kidneys and heart resulting in increased circulating

angiotensin II levels (Zhou et al., 2008). The increase in renin-

angiotensinmay contribute to the acceleration of atherosclerosis

observed in VDR null mice (Szeto et al., 2012). Severe vitamin D

deficiency in humans is associated with cardiomyopathy (Uysal

et al., 1999), and in a number of large epidemiologic studies,

the association of increased cardiovascular disease (CVD) risk

with reductions in 25OHD levels has been found (Brøndum-Ja-

cobsen et al., 2012). However, to date, no large randomized clin-

ical trials have been performed specifically designed to test the

role of vitamin D or any of its analogs in the prevention/treatment

of CVD, and the results from fracture studies with CVD as a

secondary outcome have not been compelling.

Immune Function

The immune system is comprised of two distinct but interacting

types of immunity: innate and adaptive. The innate immune

response involves the activation of Toll-like receptors (TLRs) in

polymorphonuclear cells (PMNs), monocytes, andmacrophages

as well as in a number of epithelial cells. TLRs are an extended

family of host noncatalytic transmembrane pathogen-recogni-

tion receptors that interact with specific membrane patterns

(pathogen-associated molecular pattern [PAMP]) shed by infec-

tious agents that trigger the innate immune response in the host.

Activation of TLRs leads to the induction of antimicrobial pep-

tides (AMPs) such as cathelicidin and reactive oxygen species

(ROS), which kill the organism. The expression of cathelicidin is

induced by 1,25(OH)2D in bothmyeloid and epithelial cells (Gom-

bart et al., 2005). Stimulation of TLR2 by a lipopeptide from an

infectious organism such as M. tuberculosis in macrophages

(Liu et al., 2006) results in increased expression of CYP27B1

and VDR, which in the presence of adequate substrate

(25OHD), results in the induction of cathelicidin. Thus, adequate

levels of vitamin D promote the innate immune response. The
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adaptive immune response is initiated by cells specialized in

antigen presentation, DCs and macrophages in particular, acti-

vating the cells responsible for subsequent antigen recognition,

the T and B lymphocytes. Importantly, the type of T cell acti-

vated, CD4 or CD8, or within the helper T cell class Th1, Th2,

Th17, Treg, and subtle variations of those, is dependent on the

context in which the antigen is presented by which cell and in

what environment. Systemic factors such as vitamin D influence

this process. Vitamin D in general exerts an inhibitory action on

the adaptive immune system. 1,25(OH)2D decreases thematura-

tion of DCs decreasing their ability to present antigen and so

activate T cells (van Etten and Mathieu, 2005). Furthermore, by

suppressing IL-12 production, important for Th1 development,

and IL-23 and IL-6 production important for Th17 development

and function, 1,25(OH)2D inhibits the development of Th1 cells

capable of producing IFN-g and IL-2, and Th17 cells producing

IL-17 (Daniel et al., 2008). Clinically, there are no approved

vitamin D drugs for immune modulation. However, the associa-

tion of tuberculosis with vitamin D deficiency is well known

(Ustianowski et al., 2005), but adequately powered randomized

clinical trial data showing efficacy with vitamin D supplementa-

tion are lacking (Martineau, 2012). Animal studies demonstrating

the benefit of 1,25(OH)2D and its analogs in the treatment

of autoimmune diseases (Adorini and Penna, 2008) and as ad-

juncts to immunosuppressants following transplantation proce-

dures (van Etten et al., 2000) are also compelling, but as for

the treatment of infections, randomized clinical trial data are

lacking.

Summary and Conclusions
Vitamin D, whether produced in the skin from 7-DHC or ab-

sorbed from the diet, must be activated first to 25OHD and

then to its active form 1,25(OH)2D. The production of vitamin D

is not enzymatic but depends on UVB. The 25-hydroxylation of

vitamin D can be accomplished by a number of enzymes, but

the most important appears to be CYP2R1. CYP27B1 is the

only enzyme responsible for the subsequent 1a-hydroxylation

to 1,25(OH)2D. The renal CYP27B1 is likely responsible for

most of the circulating 1,25(OH)2D, but CYP27B1 is found in a

number of other tissues where 1,25(OH)2D is likely to serve a

paracrine/autocrine function. Control of extrarenal CYP27B1 dif-

fers from renal CYP27B1. CYP24A1 is responsible for the catab-

olism of both 25OHD and 1,25(OH)2D, although some data

suggest that 24,25(OH)2D and certainly 1,24,25(OH)3D have bio-

logic activity. CYP24A1 is found in nearly every cell expressing

VDR. 1,25(OH)2D is the major biologically active metabolite,

the hormonal form of vitamin D. It is a steroid hormone binding

to its nuclear hormone receptor VDR. VDR typically as a hetero-

dimer with RXR binds to specific sites in the genome (VDREs) to

activate or in some cases suppress transcription. Hundreds of

genes and thousands of VDRE sites have been identified. Given

the widespread expression of VDR and CYP27B1, there is great

interest in identifying means to target specific cells with analogs

that do not also increase intestinal calcium absorption and/or

bone resorption. This effort has been partially successful, and

analogs have been developed for the treatment of hyperprolifer-

ative skin diseases, hyperparathyroidism, and osteoporosis.

But for many of the potential applications including the treat-

ment/prevention of cancer, CVD, infections, and autoimmune
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diseases, solid data from randomized clinical trials are lacking

despite promising epidemiologic data and animal studies.
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