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Pathological bacterial translocation in liver cirrhosis

Reiner Wiest1,⇑, Melissa Lawson2, Markus Geuking2

1Department Gastroenterology, Inselspital, University Hospital, Bern 3010, Switzerland; 2Maurice Müller Laboratories, Universitätsklinik für
Viszerale Chirurgie und Medizin (UVCM), University of Bern, Bern 3010, Switzerland
Introduction

Humans harbor nearly 100 trillion intestinal bacteria, which in
terms of numbers, represents around ten times more microbial
cells than eukaryotic cells. The gastrointestinal (GI) tract, the
largest surface area of the body with an epithelial surface of
approximately 400 m2, is in constant exposure to these live
microorganisms. Their peaceful coexistence demonstrated by
the lack of pro-inflammatory responses against commensal bac-
teria implicates the presence of clearly defined lines of communi-
cation. In fact, bacterial translocation (BT), being defined as
translocation of bacteria and/or bacterial products (lipopolysac-
charides, peptidoglycans, muramyl-dipeptides, bacterial DNA,
etc.) from the gut to mesenteric lymph nodes (MLN) [1], is a
physiological process in healthy conditions and crucial for host
immunity. In contrast, in cirrhosis ‘‘pathological’’ BT develops
with a sustained increase in quantity (rate and/or degree) of BT.
However, at least in humans, lack of access to MLN and/or
upstream compartments towards the mucosal barrier until now
hamper establishment of ‘‘cut-off’’ levels for physiological levels
of BT in individual patients. Nonetheless, there appears to exist
a hierarchy of three barriers against pathological BT, each of
which encompasses a distinct set of mechanisms (Fig. 1). First,
there are mediators that limit direct contact between the intesti-
nal bacteria and the epithelial cell surface. Secondly, a layer of
immune protection involves the rapid detection and killing of
bacteria that manage to penetrate. Finally, a set of immune
responses minimizes exposure of bacteria to the systemic
immune system. In advanced liver cirrhosis, at each of these
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levels marked alterations have been developed throughout the
course of the disease.
Background and potential relevance of pathological bacterial
translocation

Pathological BT has been termed the ‘‘Achilles heel’’ in liver dis-
ease [2] playing an important role in the pathogenesis and com-
plications of cirrhosis. The most evidenced clinical expression of
pathological BT is spontaneous bacterial peritonitis (SBP). SBP
often originates from bacteria in the gut that belong to the nor-
mal intestinal microbiota. It has been shown that green fluores-
cent protein (GFP) labelled Escherichia coli administered orally
to cirrhotic rats reveal the presence of these bacteria not only
in the intestinal lumen but also in the mesenteric lymph nodes
(MLN) and ascites [3] (Fig. 2). However, not only culture-positive
SBP and/or bacteremia impact on the cirrhotic host, but also
increased inflow of translocating bacterial products into the hep-
ato-splanchnic as well as systemic circulation. Augmented pro-
inflammatory response to gut-derived products and failure to
control invading bacteria and -products in concert with host sus-
ceptibility determine remote organ injury. This may include
acute-on-chronic liver failure, hepato-renal-syndrome and hepa-
tic encephalopathy [4]. Therefore, understanding the physiology
of gut-bacteria interactions and the pathogenesis of BT can lead
to new therapeutic targets in the prevention of infections and
other complications of cirrhosis.
Compartments involved in pathological bacterial
translocation

Gut associated lymphoid tissue (GALT)

The GALT represents the largest immunological organ in the
human body. Despite the vast improvements made in under-
standing how the microbiota influence host immunity, very little
is still known of the intestinal immune system in cirrhosis.

The innate immune system is considered the ‘‘first line of
defence’’ against invading bacteria or their associated products.
Invading bacteria are detected by the innate immune system
through the recognition of highly conserved bacterial motifs that
are present in all bacteria (microbial-associated molecular pat-
terns, MAMPs) by germline-coded pattern-recognition receptors
(PRR) on intestinal cells [5]. PRR are located on both the cell
14 vol. 60 j 197–209
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Fig. 1. Compartments and key players involved in mediating pathological BT and the associated host response. Three different routes (1–3) of bacterial translocation
can be separated: (1) direct sampling of luminal bacteria (l products) by dendritic cells via processes between epithelial cells, not affecting tight junction function; (2)
injured/inflamed epithelium with dysfunctional epithelial barrier and (3) M-cells overlying Peyer Patches as specialized cells providing access of microbial products to
antigen-presenting cells. Moreover, three different levels of barriers (I–III) against bacterial translocation are shown: (I) lumen and secretory component (e.g., inner and
outer mucus layer, antimicrobial peptides) of gut barrier; (II) mechanical epithelial barrier and the gut-associated lymphatic tissue (GALT) beneath with response elements
to BT (e.g., TNF and other pro-inflammatory cytokines) and autonomic nervous system; (III) systemic immune system as third barrier in case of spreading of bacteria(l
products) beyond MLN including hematogenous (portal venous) and lymphatic (ductus thoracicus) route of delivery. APC, antigen presenting cell; PRR, pattern recognition
receptors; TNF, tumour necrosis factor.
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surface and within endosomal compartments and these receptors
can be further divided into two subgroups: Toll-like receptors
(TLRs) and cytoplasmic NLR (nucleotide binding domain, leu-
cine-rich repeats) proteins.

The mucosal immune system is not ignorant to the commen-
sal bacteria, rather microbial antigens are continuously sampled
via various routes (Fig. 1): (1) Dendritic cells (DCs) that underlie
the epithelium may open tight junctions (TJ) between epithelial
cells, sending processes into the lumen that directly sample
198 Journal of Hepatology 201
microbes [6]; lamina propria DCs compromise two different sub-
sets: CD103+CX3CR1� DCs (inducing development of regulatory T
cells) and CD103�CX3CR1+ DCs (with features of macrophages,
promoting TNF-production and development of Th1/Th17 T cells)
(2) through interaction with antigenic material in underlying tis-
sue that occurs particularly when epithelial integrity is compro-
mised; or (3) through sampling by specialized M cells within
villous epithelium or the follicle-associated epithelium overlying
Peyer patches [7]. Alterations in these sampling mechanisms in
4 vol. 60 j 197–209
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presence of pathological BT in cirrhosis have yet to be delineated.
It has been shown that in CCl4-induced cirrhotic ascitic rats trans-
location of bacterial DNA associates with an increase in total
number of intestinal CD103+ DC’s in the lamina propria (as well
as MLN) [8]. However, whether in cirrhosis these CD103+ DC’s
or other subsets of DC’s (e.g., CX3CR1+) or mononuclear cells are
actually the ‘‘transporter’’ of living bacteria to MLN with patho-
logical BT remains unanswered.

In response to BT, gut epithelial cells release chemokines that
induce the recruitment of DCs to the mucosa. Once activated
mature intestinal DCs have the capability to induce and prime
mucosal B and T cells ultimately shaping the adaptive mucosal
immune system. After maturation, these B and T cells are
released into the blood stream and, due to surface expression
of the appropriate homing markers, home back to reside within
the lamina propria. Microbial antigens presented to B cells induce
a commensal-specific IgA response that aids to prevent the com-
mensals from straying beyond the gut mucosa [9]. Interestingly,
mice deficient in the TLR-adapter molecule MyD88 on B cells lack
commensal-specific immunoglobulin-response with insufficient
bacterial killing that leads to lethal dissemination of commensal
bacteria during colonic damage [10]. In cirrhotic patients, reduc-
tions in memory B cells and hypo-responsiveness to TLR9-stimu-
lation has been reported [11]. However, to what degree this
contributes to pathological BT is currently unknown. Likewise,
the role of intestinal T cells is ill defined in liver cirrhosis but
deserves more attention. T cells are critical in host defense
against the translocation of enteric bacteria [12]. In the absence
of T cells, there is spontaneous systemic BT of members of the
commensal microbiota, such as E. coli [13]. Moreover, T cell
depletion not only causes accumulation of bacteria in MLN in
healthy rats but leads to spreading of bacteria to extraintestinal
sites in alcohol- and burn-injured rats [14].

MLN at the centre of BT
In healthy conditions commensal bacteria transported to MLN by
DCs induce a local immune response and are killed without
Ascites 

Fig. 2. Visualization of Green fluorescent protein (GFP)-marked E. coli in
different compartments after oral gavage in an ascitic rat with cirrhosis. 6 h
after oral inoculation of 108 CFU/ml GFP-labeled E. coli, stool along the GI tract,
ascites and mesenteric lymph nodes (MLN) were harvested. This clarifies the
translocation of those marked bacteria from the gut to MLN as well as into ascites
representing the pathophysiological ‘‘road’’ for the development of SBP in
advanced cirrhosis. Adapted from Teltschik et al. [3].
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inducing systemic immunity. In contrast, if the MLN were surgi-
cally removed, bacterial-laden DC carried commensal bacteria to
the spleen and ultimately triggering a microbial-specific systemic
immune response [15,16]. In humans (or mice) the presence of
immunosuppression permits the translocation of intestinal bac-
teria systemically, which eventually may lead to sepsis and death
[17]. Many mechanisms contribute to the spreading of bacterial
products and/or living bacteria beyond the MLN in cirrhosis.
These include (but are not limited to) relative deficits within both
innate and adaptive immunity that result in a reduced chemotac-
tic, opsonic, phagocytic and killing capacity of mononuclear cells
[18–23], tuftsin activity [24], and impaired reticuloendothelial
system (RES) activity [25].

Intestinal barrier dysfunction: secretory and mechanical components

Only a single layer of epithelial cells separates the sterile host
from trillions of live bacteria. This physical barrier functions to
deliver critical secretory compounds to the intestinal lumen, such
as IgA, mucus proteins and antimicrobial peptides (AMPs) that
help to control bacterial attachment and infiltration into the host.

Mechanical component
The mucosal epithelium per se closely interacts with antigen-pre-
senting cells beneath and intraepithelial lymphocytes (IEL) within
the lamina propria to maintain intestinal integrity. In human cir-
rhosis, structural changes of the intestinal mucosa including wid-
ening of intercellular spaces, vascular congestion, edema,
fibromuscular proliferation, decreased villous to crypt ratio, and
thickening of the muscularis mucosae have been described [26–
28]. It has also been shown by functional studies utilizing dual
sugar absorption tests or other test substances that there is an
increase in intestinal permeability due to cirrhosis [29–34].

TJs maintain a permeability seal at the apicolateral epithelial
surface restricting paracellular movement of even very small
(2 kDa) molecules and thus, bacteria and macromolecules such
as lipopolysaccharides (LPS). More than 50 different TJ-proteins
are known and members in the claudin family and the zonula
occludens (ZO) proteins [35] are among those most studied. TJ-
function is highly dynamic and controlled by signalling molecules
including myosin light chain kinases (MLCK). In short-term BDL-
mice, increased MLCK activation with concomitant disruption of
TJs (diminished expression of occludin and ZO-1) has been
reported in colonic epithelium [36]. Also in a descriptive pilot
study in human cirrhosis, alterations in TJ-proteins in duodenal
biopsies with reduced expression of occludin and claudin-1 that
gradually increase from crypt to tip of the villi has been demon-
strated [37]. Therefore, in cirrhotic conditions, loosening of TJs
may result in an increased accessibility of bacterial products to
areas of ‘‘free’’ passage. However, most critical for the transloca-
tion of living whole bacteria is the transcellular route. In fact, e.g.,
for E. coli C25 transcytosis across CaCo-2 cells has been evidenced
to occur even independent of changes in paracellular permeabil-
ity [38]. It is epithelial cells under stress that present with
decreased transepithelial resistance and increased translocation
of commensal bacteria [39]. Corresponding investigations on epi-
thelial transcytosis of commensal bacteria in cirrhosis are lacking.

Epithelial tolerance normally avoids inflammatory changes in
response to physiological levels of BT [40]. However, as soon as
inflammation occurs or mucosal load of bacteria(l products)
becomes overwhelming, DCs and other monocytes and neutro-
4 vol. 60 j 197–209 199
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phils are recruited, perpetuating the process of BT [41,42]. Indeed,
in experimental cirrhosis BT has been found to be associated with
mononuclear cell infiltrate in the lamina propria and concomitant
submucosal and mesenteric inflammation [28,43,44]. This is in
line with increased fecal concentrations of polymorphonuclear
elastase [45] and calprotectin [46] being observed in cirrhotic
patients. But are those inflammatory changes on a mucosal level
normal in relation to the rate and severity of pathological trans-
location present in advanced cirrhosis? There are no comparative
studies but it is tempting to speculate that the intestinal inflam-
matory mucosal response is reduced and thus, the cirrhotic
patient is more tolerant to bacteria reaching the epithelium as
compared to the non-cirrhotic healthy individual.

Therefore, at least a state of relative intestinal tolerance to
pathological BT can be proposed in cirrhosis. Correspondingly,
in cirrhotic rats with culturable pathological BT to MLN there
was no significant activation or change in phagocytic and migra-
tory capacity of lamina propria CD103+ DC’s supporting the yet to
be proven hypothesis of relative intestinal tolerance to a vast bac-
terial challenge [8]. These data are in accordance with the
observed ‘‘immune paralysis’’ in patients with sepsis and acute-
on-chronic liver failure, attributed to reductions in HLA-DR-
expression on circulating monocytes [47,48]. It is tempting to
speculate whether such immunosuppression, which has been
reliably associated with increased rates of bacterial infections is
present in advanced human cirrhosis with pathological BT of liv-
ing bacteria to MLN.

Secretory component
Much knowledge has been gained recently on this relatively
impermeable compartment that may define a confined space,
allowing the host to specifically monitor and regulate bacteria
that are in close contact with the intestinal surface.

AMPs include defensins, cathelicidines, resistin-like mole-
cules, bactericidial-permeability-inducing proteins and lectins.
Among defensins only a- and b-defensins have been identified
in the intestinal tract. All mature defensins have broad range
antimicrobial activity by disrupting the structure and function
of microbial membranes. a-defensin genes are expressed only in
a few cell types, which in humans are predominantly neutrophils
and Paneth cells, strategically located at the bottom of each intes-
tinal crypt. The secretion of AMPs by Paneth cells is directly
linked to bacteria and LPS exposure [49] and functions to help
maintain homeostasis at the intestinal host-microbial interface
[50,51]. In contrast, b-defensins are expressed constitutively by
most epithelial cells in both the small and large intestine [52].
CCl4-induced ascitic cirrhotic rats with but not without BT to
MLN present with a relative deficiency in Paneth cell defensins
particularly in the small intestine [3]. In contrast, levels of b-
defensins are unchanged or elevated in presence of increased
BT, demonstrating a normal ß-defensin response in cirrhotic rats.
The observed deficit in a-defensins was accompanied by a dimin-
ished in vitro antibacterial activity against various Enterobacteria-
cea. The potential mechanisms mediating the impairment in
Paneth cell function in cirrhosis are so far unknown but appear
not to relate to the level of portal hypertension since pre-hepatic
portal hypertensive rats show no alterations in Paneth-cell
products [3]. In addition, down-regulation of regenerating islet-
derived proteins (RegIIIb and RegIIIc) has been demonstrated in
the small intestine of mice as well as humans after chronic
alcohol intake [53]. These lectins are known to bind cell wall
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peptidoglycans of gram-positive bacteria and function as bacteri-
cidal proteins even at low micromolar concentrations [54,55].
Therefore, deficiency in various AMPs (a-defensins, RegIII pro-
teins) likely leads to decreased mucosal killing activity resulting
in a shift of the bacterial composition facilitating bacterial over-
growth and increases in BT in cirrhosis.

Mucus
Mucins create a layer of glycoproteins that prevents direct con-
tact of bacteria with the microvillus [56]. MUC2 is the major
secretory mucin being stimulated by a wide array of bioactive
factors including microbes/-products, and inflammatory cyto-
kines [57]. The ‘‘firm’’ dense inner mucus layer likely traps
immune exclusion molecules [58] rendering it sterile [59]. In con-
trast, the ‘‘loose’’ outer layer is the habitat for commensal
bacteria that consume the mucus proteins as a carbon source
[60] and provides specific binding sites for bacterial adhesins
[61]. Thus, it is important to differentiate between bacteria that
are found within the intestinal lumen and those inhabiting the
mucus. In fact, the mucosa-associated microbiome differs from
stool flora in cirrhotic patients, particularly in those with hepatic
encephalopathy [62]. In addition, recent elegant studies in alco-
holic patients indicate increased mucus thickness in the duode-
num, suggesting changes induced by cirrhosis and/or alcohol
[63]. Surprisingly, MUC2 deficient mice are protected from bacte-
rial overgrowth in response to alcohol most likely due to
increases in mucosal antimicrobial peptides (RegIIIb and RegIIIc)
[63] further emphasizing the proposed role of mucus as an active
key player in host-microbial interactions [64].

Bile inhibits small intestinal bacterial overgrowth (SIBO) [65],
has a trophic effect on the intestinal mucosa [66], decreases epi-
thelial internalization of enteric bacteria [67], exerts detergent
actions with anti-adherence effects and neutralizes endotoxins
[68,69]. However, bile also impacts on intestinal immunity by
providing retinoids necessary to imprint intestinal CD103+ DC
with the ability to generate gut-tropic T cells [70]. In cirrhosis,
marked decreases in intestinal intraluminal concentrations of
bile acids have been ascribed to decreased secretion and
increased deconjugation by enteric bacteria. In experimental
models the absence of bile in the intestine has been shown to
facilitate BT [71,72] and to enhance susceptibility for further
translocation in response to endotoxins [73]. Notably these
effects are attenuated after oral administration of bile acids [74].

Conjugated bile acids are natural ligands for several nuclear
receptors, of which the transcription factor farnesoid X receptor
(FxR) has gained much attention [75]. Intestinal FxR limits bacte-
rial overgrowth and BT, which has been demonstrated in BDL
mice [76]. A specific FxR agonist (GW4064) repressed bacterial
overgrowth, attenuated mucosal injury and reduced bacterial
invasion into MLN in wild type but not in mice genetically defi-
cient in FxR [76]. Activation of FxR by GW4064 led to the identi-
fication of several novel FxR target genes, including those that
promote antimicrobial defense. How these FxR target genes func-
tion to maintain intestinal homeostasis will surely be an active
area of future investigations.

IgA antibodies
On a daily basis 2–5 g of sIgA is secreted into the gut lumen
accounting for more than 70% of total body immunoglobulin pro-
duction. IgA antibodies effectively bind and aggregate bacteria
preventing mucosal adherence and colonization (immune
4 vol. 60 j 197–209
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exclusion) [77]. Despite increased BT in IgA-deficient mice [15],
commensal-related sepsis is not observed in IgA-deficient ani-
mals or humans, which may be due to the overcompensatory
function of IgM in the absence of mucosal IgA [78]. In cirrhotic
patients, decreased fecal IgA concentrations as well as decreased
secretion of mucosal IgA into the jejunum have been reported
[45], suggesting a potential relationship between IgA and BT,
and the development of infections in cirrhosis, although this
hypothesis has yet to be proven.

Intestinal microbiota; qualitative and quantitative changes

The intestinal microflora consists of a dynamic mixture of
microbes with considerable quantitative and qualitative differ-
ences among individuals and particularly among species. Addi-
tionally, only a small proportion of the enteric bacteria can
currently be examined by conventional culture techniques [79]
limiting diagnostic measures. The proximal small intestine (duo-
denum, jejunum) is sparsely populated with bacteria; however,
from the ileum on there is a sharp increase in microbial density,
from 105 colony forming units (CFU)/ml in the jejunum to 108 in
distal ileum and cecum, up to 1012 in the colon [80].

Quantitative changes
Small intestinal bacterial overgrowth (SIBO) has arbitrarily been
defined as >105 CFU/ml and/or the presence of colonic bacteria
in upper jejunal aspirate [81]. Using this gold standard, the prev-
alence of SIBO in cirrhotic patients ranges from 48% to 73%
[82–86]. SIBO has been shown to be particularly frequent in those
with more severe liver disease [87,88] and in those with a prior
history of SBP and/or hepatic encephalopathy [89,90]. In
advanced liver cirrhosis it has been linked to the development
of BT, SBP and endotoxemia [84,86,91]. In fact, in cirrhosis SIBO
is one of the main factors that promotes BT and the occurrence
of BT to MLN in experimental models routinely associates with
SIBO [91,92]. A direct relationship between the density and com-
position of bacteria populating a segment of the intestine and
numbers of viable bacteria of this strain present in MLN has been
demonstrated in mouse models [93]. Importantly, in the absence
of SIBO in experimental cirrhosis BT occurs rarely (0–11%). How-
ever, since BT does not occur in up to half of the cirrhotic animals
with SIBO, it appears that SIBO is supportive but not sufficient per
se for BT to occur. Therefore, other factors, most likely a decrease
in local immunity, play the most important role in inducing BT.
For instance, in experimental ethanol-induced liver injury,
increases in BT do occur prior to changes in intestinal flora
[53]. SIBO in cirrhosis has traditionally been attributed, at least
partly, to a decrease in small-bowel motility and intestinal transit
time [83,94–97]. The proposed contribution of proton pump
inhibitors for the development of SIBO [84,98] and SBP [99,100]
has recently been questioned in a large cohort of cirrhotic
patients [101]. Nonetheless, hypo- and achlorhydria have been
observed in cirrhotics even without acid suppressive medication,
resulting in higher pH in the small intestine and under these cir-
cumstances have been associated with SIBO [102].

Qualitative changes
The full microbial richness in the human population reaches up
to 40,000 species and the bacterial metagenome may exceed
the human genome by 100 fold [103]. However, only 30–40 spe-
cies amount to about 98–99% of the microbiota, and Firmicutes
Journal of Hepatology 201
and Bacteroidetes are the predominant intestinal phyla across
all vertebrates [104]. Using culture-independent techniques such
as pyro-sequencing, analyses of fecal contents could demonstrate
reductions in microbial diversity and distinct dysbiosis in both
animal models as well as human cirrhosis [65,105]. The microbi-
ota of cirrhosis has been associated with the depletion of the ben-
eficial phyla Lachnospiraceae (particularly clostridiae) [105,106]
and bacteroidetes (mainly family of Bacteroidaceae) [105] and
enrichment in the phyla Proteobacteria (mainly class of Gamma-
proteobacteria and among those particularly Enterobacteriaceae)
[105,106]. Interestingly, particularly the depletion of clostridiae
resulted in a pronounced pro-inflammatory profile [106] and cor-
related negatively with Child-Pugh score [105]. Moreover, the
particular relevance of alterations in the mucosa-associated
microbiome has been evidenced by distinct differences between
cirrhotic patients with and without hepatic encephalopathy
being associated with increased levels of inflammation [62].
Finally, similar dysbiosis is observed in inflammatory bowel dis-
ease (reviewed in Danese [107]). In conjunction with recent find-
ings that mucosal inflammation per se modifies microbial
composition inducing the expansion of microorganisms with
genotoxic capabilities (such as E. coli) [108] it remains to be seen
whether inflammation is the cause or the consequence of changes
in microbial composition in those entities.

Anaerobic bacteria do not readily translocate whereas aerobic
gram negative bacteria translocate easily and even across a histo-
logically intact intestinal epithelium [109,110]. Moreover, anaer-
obes outnumber aerobes by 100:1 and limit the colonization and
overgrowth of other potentially invasive microbes, thereby con-
fining potentially pathogenic bacteria. In fact, selective elimina-
tion of anaerobic bacteria facilitates SIBO and translocation of
facultative bacteria [111]. Bacteria that translocate most readily
are facultative intracellular pathogens (e.g., Salmonella, Listeria),
able to resist phagocytic killing. In contrast, commensal bacteria
are easily killed after phagocytosis, surviving only when host
defenses are impaired. Gram-negative bacteria (GNB) (specifi-
cally E. coli, K. pneumoniae, P. aeruginosa and other Enterobacteri-
aceae), enterococci and other streptococci, have been found to be
4 vol. 60 j 197–209 201
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the most adept at translocating to MLN [110]. Interestingly, these
species and among those particularly E. coli are those that most
frequently cause spontaneous bacterial infections in cirrhotic
202 Journal of Hepatology 201
patients [112–116]. As described for other disease patterns which
are accompanied by BT, for example intestinal obstruction, burn
injury or starvation, the translocation of almost exclusively
4 vol. 60 j 197–209
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coliform bacteria underlines the pronounced preference of these
Gram-negative strains to translocate [117,118]. Certain E. coli
strains (e.g., biochemical phenotype C1–C4 or C25) have been
reported to translocate more efficiently than others across intes-
tinal mucosa when it is exposed to metabolic and inflammatory
stress [38,117,119]. However, in cirrhosis E. coli isolates from
SBP cases are genetically diverse [113].
Influencing factors on compartments promoting bacterial
translocation (Fig. 3)

Any increase in translocation of bacteria(l) products to the GALT
triggers a concert of pro-/anti-inflammatory cytokine release.
Among those TNF has gained most attention because it increases
TJ-permeability in the intestine via decreases in expression of TJ-
proteins but also activation of MLCK [120]. In BDL mice, increased
numbers of infiltrating monocytes in the lamina propria express-
ing TNF have been demonstrated to disrupt epithelial TJs result-
ing in pathological BT [36]. Most importantly, anti-TNF
monoclonal antibody as well as pentoxifylline treatment signifi-
cantly decreases incidences of BT in experimental cirrhosis
[121,122]. Interestingly, functional polymorphism of the MCP-1
gene, known to confer increased MCP-1 expression and thus
increased chemotaxis of monocytes – the major source of TNF –
has been shown to be a risk factor for the development of SBP
in patients with alcoholic cirrhosis [123]. TNF-secretion is like-
wise increased in MLN and serum in experimental and human
cirrhosis with ascites [124–126] and was found to be predictive
for bacterial infections post-transplantation [124]. Therefore,
enhanced TNF levels in the GALT appears to play a central role
in promoting pathological BT in cirrhosis. Also IL6 and IFN-
gamma have been shown to increase intestinal epithelial perme-
ability [127] and induce transcytotic translocation of commensal
E. coli across epithelial cells [128], respectively. Although
increased serum levels of IL6 and IFN-gamma are present in
advanced cirrhotic patients [129–131] no data on their role in
promoting BT in portal hypertension are available. Important to
note is that production of TNF and IL6 stimulated by LPS and/or
bacterial DNA is excessively augmented in cirrhosis as compared
to healthy controls [8,132–135] setting the stage for a vicious
circle to perpetuate pathological BT (see hypothesis).

Reactive oxygen species (ROS) impact on epithelial cells
increasing the in vitro internalization rate of E. coli [136], modu-
lating responses to bacterial stimuli [137] and changing brush
border glycosylation increasing bacterial adherence [138]. In
experimental cirrhosis, intestinal mucosal oxidative damage has
been evidenced by increased lipid peroxidation and altered
enterocyte mitochondrial function [139,140]. Besides ROS, nitric
oxide (NO) is important in modulating macrophage function,
cytokine release and bactericidal killing capacity [141,142], as
well as maintaining gut barrier function [143]. Overproduction
of NO, known to be particularly present in the splanchnic circula-
tion [144], has been shown to be deleterious to the integrity of
the intestinal epithelium. In fact, NO at high concentrations
induces gastric mucosal damage, decreases the viability of rat
colonic epithelial cells [145,146], directly dilates TJs in intestinal
epithelial monolayers, inhibits ATP-formation and hence,
increases intestinal permeability [147,148]. The importance of
iNOS-derived NO production in promoting BT has been evidenced
experimentally after insults such as endotoxemia, hemorrhagic
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shock, or thermal injury but also recently in human cirrhosis
[149–151]. This has been confirmed in iNOS knockout mice
exposed to LPS that exhibit a reduced mortality and absent BT
[152].

The gut is one of the most intensely innervated organs and the
autonomic nervous system has recently been realized to influence
mucosal barrier function [153]. In cirrhotic ascitic rats splanchnic
specific sympathectomy has been shown to prevent translocation
and spreading of E. coli, being associated with increased chemo-
taxis and phagocytic capacity of mononuclear cells [154]. Addi-
tional proposed beneficial effects of sympathectomy are
accelerated intestinal transit time [92], prevention of gram-nega-
tive bacterial overgrowth [155] and improvement in gastrointes-
tinal permeability [34]. Propranolol has likewise been used and
found to lower rate of BT in experimental cirrhosis [92] as well
as incidence of infectious complications in cirrhotic patients
[156]. In contrast, parasympathetic input and effects on BT have
not been addressed in portal hypertension. However, vagal nerve
stimulation attenuates inflammatory response to endotoxin
[157] and intestinal inflammation [158], protecting against
burn-induced intestinal injury [159]. Finally, neural stimulation
of mast cells modulates intestinal barrier function and mast cell
stabilization with ketotifen has been reported to reduce splanch-
nic inflammatory response in portal hypertensive rats [160].

Diet and nutrition are key for host-microbiome interactions.
Starvation has deleterious effects on gut mucosal integrity, epi-
thelial cell proliferation and synthesis of mucins and antimicro-
bial peptides [161]. Moreover, mucosal epithelial cells under
metabolic stress perceive commensal bacteria as threat respond-
ing with increased endocytotic activity and resulting in increased
inflammatory response [162]. Liver cirrhosis in advanced stages
is frequently associated with malnutrition [163], which has been
reported to contribute to enhanced BT [164] and increased per-
meability [33].

Susceptibility genes for pathological BT have recently been
reported mainly influencing innate host defense mechanisms.
NOD2 is highly expressed in monocytes and Paneth cells [165]
and recognizes muramyl dipeptide (MDP), a component of the
peptidoglycan present in the bacterial wall of gram-positive
and -negative bacteria. After ligand recognition, NOD2 switches
on the NFkB- and MAPK cascade culminating in the induction
of pro-inflammatory cytokines and chemokines. Mutant NOD2
has been implicated in the pathogenesis of mucosal inflammation
in Crohn’s disease [166,167] and in gastrointestinal graft-versus-
host disease [168], conditions also known to associate with
increased BT. Three common single nucleotide polymorphisms
in NOD2 (the frame shift mutation 1007fs (3020insC, SNP 13)
the two missense mutations R702W (2104C >T, SNP 8) and
G908R [2722G >C, SNP 12] have been most thoroughly investi-
gated. The presence of any of those mutated NOD2 alleles
has been reported to be an independent risk factor for SBP
[169–171]. Mechanisms for increased BT by deficient NOD2 func-
tion include (i) promotion of bacterial overgrowth via impaired
Paneth cell function and diminished production of subgroups of
AMPs [172,173]. Indeed, MDP induces bacterial killing in vitro
in ileal crypts and intestinal crypts lacking NOD2 are unable to
kill bacteria efficiently [174]. (ii) Impaired intracellular bacterial
killing after engulfment into mononuclear cells of the GALT via,
e.g., failure to recruit autophagy protein ATG16L1 and thus
impaired wrapping of invading bacteria by autophagosomes
[175].
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TLR2 is expressed on the cell surface of macrophages and

other immune competent cells and recognizes PAMPs of gram-
positive organisms. Among the multiple polymorphisms existing
in the TLR2 gene, increased risk for SBP has been reported for cir-
rhotic patients with the TLR2–16934 TT genotype and carriers
with both TLR2 GT tandem repeat alleles present in frequencies
greater than 20 in both alleles [176]. Although not reported for
every TLR2 variant the TLR2–16934 TT genotype has been found
to associate with increased TLR2 function [177]. This underlines
the promotive role of TLR2 in mediating pathological BT in BDL
mice since, TLR2 deficient mice present with markedly attenu-
ated BT to MLN and endotoxinemia [36]. In cirrhotic patients
TLR2 and NOD2 variants seem to represent supplementary risk
factors since simultaneous presence of both unfavourable poly-
morphisms markedly increases the risk for SBP in cirrhotic
patients [176]. This underlines the known interaction of NOD2
and TLRs in particular the modulation of TLR2-dependent cyto-
kine responses by NOD2 [178]. The latter is particularly relevant
for bacterial killing, which appears to be dose dependent
[179,180]. Most interestingly to note, benefit of probiotica-pulsed
DC treatment in experimental colitis depends on intact functional
NOD2- and TLR2-signalling [181]. Therefore, alterations in NOD2-
and TLR2-function at various cellular sites appear to play a key
role for the susceptibility of pathological BT.
Stage of disease, route and site of pathological bacterial
translocation

Severity of liver disease

Rate and degree of pathological BT increases with severity of liver
disease (Fig. 4). Pathological translocation of vital bacteria to MLN
is a phenomenon of the decompensated stage. In experimental
cirrhosis, this occurs only in animals with ascites but not in rats
without ascites [43,182]. These data are in accordance with stud-
ies in cirrhotic patients demonstrating significant increases in
lipopolysaccharide-binding-protein (long-term marker of gram-
negative pathological BT) [183] and intestinal permeability
[32,184] in ascitic cirrhotics but not in patients without ascites
as compared to healthy controls. Correspondingly, modulators
of pathological BT such as SNS and malnutrition are typically fea-
tures of the decompensated stadium [185,186]. In principle how-
ever, level of portal hypertension [34] and liver insufficiency
[187–189] are the driving forces for BT. The latter appears to be
the culprit since, chronic pre-hepatic portal hypertension without
liver insufficiency does not lead to pathological BT [190], whereas
in galactosamine-induced liver failure, a model that does not
develop portal hypertension, BT is observed in all liver failure ani-
mals compared to only 0–16% in controls [191]. Also SIBO is
observed in increasing frequency with worsening of severity of
liver diseases [192], reaching incidences above 80% in advanced
cirrhotic patients with ascites [90]. However, today no data on
the exact determinant of liver insufficiency mediating the risk
of BT and/or utilization of quantitative liver function tests (indo-
cyanine green clearance or methacetin breath test) for prediction
of BT are available. Nonetheless, surrogate markers of pathologi-
cal BT such as systemic endotoxin levels incrementally increase
in relation with severity of liver cirrhosis graded by Child-classi-
fication [193,194]. Moreover, direct data on culturable BT to MLN
revealed a significantly higher rate in Child C cirrhotic patients
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(30%) as compared to Child B or A (8% and 3%, respectively)
patients and Child-Pugh score was the only independent predic-
tor for pathological BT [195]. In contrast, presence of bacterial
DNA or LPS in MLN has been evidenced to occur already in pre-
ascitic animals [196,197] and the detection of bacterial DNA in
the systemic circulation was not associated with differences in
severity of liver insufficiency [198]. This hints to different
mechanisms responsible for translocation of bacterial DNA as
compared to viable bacteria in liver cirrhosis. Finally, gastrointes-
tinal hemorrhage has been shown to increase BT in healthy ani-
mals [199] and portal hypertensive rats are particularly
susceptible for shock-induced BT to MLN and blood [200]. Pre-
existing increases in intestinal permeability in portal hyperten-
sion most likely is the underlying mechanism since (i) prior expo-
sure to bacterial DNA has been shown to strongly aggravate
systemic inflammation and gut barrier loss in experimental hem-
orrhagic shock [201] and (ii) higher intestinal permeability in
decompensated cirrhotic patients with active GI hemorrhage is
an independent predictor for development of bacterial infections
[202].

BT-route
Despite obvious differences in size, chemical structure and
receptor-ligand interactions between all various types of bacte-
rial products as well as viable bacteria, the question how this
impacts on the route of translocation namely para- vs. transcel-
lular and lymphatic vs. hematogenous is unanswered. This could
be of clinical relevance, since the lymphatic route connects the
gut with the lung and mesenteric lymph duct ligation has been
shown to protect from hemorrhagic shock induced pulmonary
injury in rats [203]. In respect to vital culturable bacteria, exper-
imental models of severe inflammatory insults reveal their
appearance in the portal circulation earlier and to an excessively
higher degree than in the lymphatic system [204]. In experi-
mental cirrhosis positive portal culture has likewise been
reported in the majority of cases with BT to MLN [205]. This
also points towards the importance of hematogenous spreading
of viable bacteria after crossing the epithelial barrier in cirrho-
sis. Nonetheless, comparative and kinetic studies assessing the
lymphatic and portalvenous route in parallel are not available
in liver cirrhosis.

Site of bacterial translocation
The colon is used to harbour a vast number of bacteria, and nor-
mally is more efficient at eliminating translocating bacteria and
presents with higher transepithelial resistance than the small
bowel [206]. Experimental studies have shown that after inocula-
tion of equal concentrations of E. coli into small or large bowel, BT
occurs at higher a rate after small bowel inoculation [207]. In
addition, proximal gut colonization has been associated with
increased BT and septic morbidity in surgical intensive care
patients [208,209], indicating that small intestinal bacterial over-
growth has the greatest potential for promoting BT. As for liver
cirrhosis, this is supported by a study that showed that lower
BT rates in cisapride-treated cirrhotic animals were associated
to lower jejunal but not cecal bacterial counts [86]. Histological
changes however, have been shown to be most marked in the
cecum in experimental cirrhosis [28,43,44]. Moreover, elegant
recent loop-experiments, assessing intestinal permeability by
local injection of FITC-marked dextran or GFP-marked E. coli at
different sites in BDL mice, revealed that the cecum and colon
4 vol. 60 j 197–209
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are the sites with the largest rate of BT and increase in intestinal
permeability [36,65]. Most interestingly, these changes did pre-
cede alterations of the microbiome re-inforcing the primary role
of permeability and host response to BT. However, these experi-
ments were performed 1 day after BDL and thus, in non-cirrhotic
conditions and it remains to be seen whether this applies also to
other models and cirrhotic stages of liver disease.
Hypothesis

The orchestra of players contributing to and/or combating
pathological BT in cirrhosis is exclusively complex and likely
differs in dependency on type of translocating agents, genetic
susceptibility of the host, environmental factors as well as stage
and etiology of disease. However, we would like to propose that
in early stages (in absence of increased permeation of viable
bacteria) slight but constant increases in paracellular transloca-
tion of bacterial products trigger an augmented pro-inflamma-
tory cytokine response and release of ROS and NOx within the
GALT aiming to enhance bacterial defence (Fig. 4). This however,
further loosens TJ-function perpetuating BT but also shapes the
immune system to adapt and tolerize enhanced BT. Ultimately,
in decompensated cirrhosis secretion of antimicrobial peptides
diminishes, SIBO accelerates and intestinal permeability further
increases including enhanced transcellular epithelial crossing of
viable bacteria.

Key Points

• Bacterial translocation (BT) is a healthy phenomenon
but is pathologically increased in quantity in liver
cirrhosis. Whereas rate and degree of translocating
bacterial products is increased in early cirrhosis
pathological translocation of viable bacteria occurs in
the decompensated stage

• Compartments (alterations) involved in promoting
pathological BT in cirrhosis include the microbiota
(bacterial overgrowth), the intestinal barrier 
(deficiencies in secretory and mechanical barrier
function) and the gut-associated lymphatic tissue
(GALT) with an immune response aiming to eradicate
invading bacteria and/or bacterial products

• Influencing factors that impact on those compartments
driving pathological BT in cirrhosis are multiple and
key players are pro-inflammatory cytokines (e.g., 
TNF), malnutrition, sympathetic hyperactivity (e.g.,
norepinephrine), genetic susceptibility (NOD2, TLR2)
and lack of bile acids

• Hypothesis proposed for pathological BT in cirrhosis
includes (1) increased paracellular translocation of
bacterial products in early stages, induced by various
causes (dependent on etiology) as trigger and priming
event and (2) a relative (in proportion to degree of BT)
(i) epithelial tolerance avoiding overwhelming mucosal
inflammation, (ii) immune deficiency within the GALT,
once increased translocation of viable bacteria occurs
perpetuating a vicious circle
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