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a b s t r a c t

This paper studies the global existence of solutions of the second order nonlinear neutral
delay difference equation

∆(an∆(xn + bxn−τ ))+ f (n, xn−d1n , xn−d2n , . . . , xn−dkn ) = cn, n ≥ n0

with respect to all b ∈ R. A few results on global existence of uncountably many
bounded nonoscillatory solutions are established for the above difference equation. Several
nontrivial examples which dwell upon the importance of the results obtained in this paper
are also included.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

Recently, there has been increasing interest in the study of qualitative analysis of various second order difference
equations, for example, see [1–12] and the references cited there.
Tang [9] discussed the existence of a bounded nonoscillatory solution for the second order linear delay difference

equations

∆2xn = pnxn−k, n ≥ 0, (1.1)

∆2xn =
∞∑
i=1

pi(n)xn−ki , n ≥ 0. (1.2)

Zhang and Li [12] obtained some oscillation criteria for the second order advanced functional difference equation

∆(an∆xn)+ pnxg(n) = 0. (1.3)

Thandapani et al. [10] considered necessary and sufficient conditions for the asymptotic behavior of nonoscillatory solutions
of the difference equation

∆(an∆xn) = qnxn+1, n ≥ 0, (1.4)

and discussed a few sufficient conditions for the asymptotic behavior of certain types of nonoscillatory solutions of the
second order difference equation

∆(an∆xn) = qnf (xn+1), n ≥ 0. (1.5)
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Li and Zhu [6] established the asymptotic behavior of the second order nonlinear difference equation

∆(rn−1∆xn−1)+ qn(∆xn)β − pnxαn = en, n ≥ 0. (1.6)

Cheng et al. [2] and Zhang [11] discussed the asymptotic behaviors of solutions and nonoscillatory solutions for some special
cases of Eq. (1.6), respectively. Recently, Jinfa [3] utilized the contraction principle to study the existence of a nonoscillatory
solution for the second order neutral delay difference equation with positive and negative coefficients

∆2 (xn + pxn−m)+ pnxn−k − qnxn−l = 0, n ≥ n0 (1.7)

under the condition p 6= −1. Migda and Migda [8] gave the asymptotic behavior of the second order neutral difference
equation

∆2 (xn + pxn−k)+ f (n, xn) = 0, n ≥ 1. (1.8)

Very recently, Meng and Yan [7] investigated the sufficient and necessary conditions of the existence of the bounded
nonoscillatory solutions for the second order nonlinear neutral delay difference equation

∆2 (xn − pxn−τ ) =
m∑
i=1

qifi(xn−σi), n ≥ n0. (1.9)

However, to the best of our knowledge, neither did anyone investigate the global existence of nonoscillatory solutions for
Eqs. (1.7)–(1.9) with respect to all p ∈ R, nor did they discuss the existence of uncountably many bounded nonoscillatory
solutions for Eqs. (1.1)–(1.9) and any other second order difference equations.
Motivated by the papers mentioned above, in this paper we investigate the following more general second order

nonlinear neutral delay difference equation

∆ (an∆(xn + bxn−τ ))+ f (n, xn−d1n , xn−d2n , . . . , xn−dkn) = cn, n ≥ n0, (1.10)

where b ∈ R, τ , k ∈ N, n0 ∈ N0, {an}n∈Nn0
and {cn}n∈Nn0

are real sequenceswith an > 0 for n ∈ Nn0 ,
⋃k
l=1{dln}n∈Nn0

⊆ Z, and
f : Nn0 × Rk → R is a mapping. Using the contraction principle, we establish some global existence results of uncountably
many bounded nonoscillatory solutions for Eq. (1.10) relative to all b ∈ R. Our results sharp and improve Theorem 1 in [3].
To illustrate our results, seven examples are also included.
On the other hand, using similar arguments and techniques, the results presented in this paper could be extended to

second order nonlinear neutral delay differential equations. Of course, we shall continue to study these possible extensions
in the future.
Throughout this paper, we assume that ∆ is the forward difference operator defined by ∆xn = xn+1 − xn,∆2xn =

∆(∆xn),R = (−∞,+∞),R+ = [0,+∞),Z and N stand for the sets of all integers and positive integers, respectively,

Na = {n : n ∈ Nwith n ≥ a}, Za = {n : n ∈ Zwith n ≥ a}, a ∈ Z,
α = inf{n− dln : 1 ≤ l ≤ k, n ∈ Nn0}, β = min{n0 − τ , α},
lim
n→∞

(n− dln) = +∞, 1 ≤ l ≤ k,

l∞β denotes the Banach space of all bounded sequences on Zβ with norm

‖x‖ = sup
n∈Zβ
|xn| for x = {xn}n∈Zβ ∈ l

∞

β

and

A(N,M) =
{
x = {xn}n∈Zβ ∈ l

∞

β : N ≤ xn ≤ M, n ∈ Zβ
}
forM > N > 0.

It is easy to see that A(N,M) is a bounded closed and convex subset of l∞β .
By a solution of Eq. (1.10), we mean a sequence {xn}n∈Zβ with a positive integer T ≥ n0 + τ + |α| such that Eq. (1.10) is

satisfied for all n ≥ T . As is customary, a solution of Eq. (1.10) is said to be oscillatory if it is neither eventually positive nor
eventually negative. Otherwise, it is said to be nonoscillatory.

2. Existence of uncountable bounded nonoscillatory solutions

Now we investigate the existence of uncountable bounded nonoscillatory solutions for Eq. (1.10).
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Theorem 2.1. Let M and N be two positive constants with M > N and b = −1. Assume that there exist two sequences {Pn}n∈Nn0
and {Qn}n∈Nn0

satisfying

|f (n, u1, u2, . . . , uk)− f (n, ū1, ū2, . . . , ūk)| ≤ Pnmax{|ul − ūl| : 1 ≤ l ≤ k},
n ∈ Nn0 , ul, ūl ∈ [N,M], 1 ≤ l ≤ k; (2.1)

|f (n, u1, u2, . . . , uk)| ≤ Qn, n ∈ Nn0 , ul ∈ [N,M], 1 ≤ l ≤ k; (2.2)
∞∑
i=1

∞∑
s=n0+iτ

∞∑
t=s

1
as
max {Pt ,Qt , |ct |} < +∞. (2.3)

Then Eq. (1.10) possesses uncountably many bounded nonoscillatory solutions in A(N,M).

Proof. Set L ∈ (N,M). Nowwe construct a contraction mapping SL : A(N,M)→ A(N,M) and prove that its fixed point is a
bounded nonoscillatory solution of Eq. (1.10). It follows from (2.3) that there exist θ ∈ (0, 1) and T ≥ n0+τ +|α| satisfying

θ =

∞∑
i=1

∞∑
s=T+iτ

∞∑
t=s

Pt
as
; (2.4)

∞∑
i=1

∞∑
s=T+iτ

∞∑
t=s

Qt + |ct |
as

≤ min {M − L, L− N} , n ≥ T + 1. (2.5)

Define a mapping SL : A(N,M)→ l∞β by

(SLx)n =

L+
∞∑
i=1

∞∑
s=n+iτ

∞∑
t=s

1
as

(
f (t, xt−d1t , xt−d2t , . . . , xt−dkt )− ct

)
, n ≥ T + 1,

(SLx)T+1, β ≤ n < T + 1
(2.6)

for x ∈ A(N,M). In terms of (2.1), (2.4) and (2.6), we gain that for x, y ∈ A(N,M) and n ≥ T + 1

|(SLx)n − (SLy)n| ≤
∞∑
i=1

∞∑
s=n+iτ

∞∑
t=s

Pt
as
max{|xt−dlt − yt−dlt | : 1 ≤ l ≤ k}

≤

∞∑
i=1

∞∑
s=T+iτ

∞∑
t=s

Pt
as
‖x− y‖.

This leads to

‖SLx− SLy‖ ≤ θ‖x− y‖, x, y ∈ A(N,M). (2.7)

In view of (2.2), (2.5) and (2.6), we infer that for any x ∈ A(N,M) and n ≥ T

|(SLx)n − L| ≤
∞∑
i=1

∞∑
s=T+iτ

∞∑
t=s

Qt + |ct |
as

≤ min {M − L, L− N} ,

which yields that SL(A(N,M)) ⊆ A(N,M). Hence (2.7)means that SL is a contractionmapping and it has a unique fixed point
x ∈ A(N,M). It follows that for n ≥ T + τ + 1

xn = L+
∞∑
i=1

∞∑
s=n+iτ

∞∑
t=s

1
as

(
f (t, xt−d1t , xt−d2t , . . . , xt−dkt )− ct

)
,

xn−τ = L+
∞∑
i=1

∞∑
s=n+(i−1)τ

∞∑
t=s

1
as

(
f (t, xt−d1t , xt−d2t , . . . , xt−dkt )− ct

)
,

which give that

∆(xn − xn−τ ) =
∞∑
t=n

1
an

(
f (t, xt−d1t , xt−d2t , . . . , xt−dkt )− ct

)
,

∆ (an∆(xn − xn−τ )) = −f (n, xn−d1n , xn−d2n , . . . , xn−dkn)+ cn

for n ≥ T + τ + 1. That is, x a bounded nonoscillatory solution of Eq. (1.10).
Let L1, L2 ∈ (N,M) and L1 6= L2. For each j ∈ {1, 2}, we choose a constant θj ∈ (0, 1), a positive integer Tj ≥

n0 + τ + |α| and a mapping SLj satisfying (2.4)–(2.6), where θ, L and T are replaced by θj, Lj and Tj, respectively, and
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∞

i=1
∑
∞

s=T3+iτ
∑
∞

t=s
Pt
as
<
|L1−L2|
2M for some T3 > max{T1, T2}. Obviously, the contraction mappings SL1 and SL2 have the

unique fixed points x, y ∈ A(N,M), respectively. That is, x and y are bounded nonoscillatory solutions of Eq. (1.10) in
A(N,M). In order to show that Eq. (1.10) possesses uncountably many bounded nonoscillatory solutions in A(N,M), we
prove only that x 6= y. In fact, by (2.6) we gain that for n ≥ T3 + 1

xn = L1 +
∞∑
i=1

∞∑
s=n+iτ

∞∑
t=s

1
as

(
f (t, xt−d1t , xt−d2t , . . . , xt−dkt )− ct

)
,

yn = L2 +
∞∑
i=1

∞∑
s=n+iτ

∞∑
t=s

1
as

(
f (t, yt−d1t , yt−d2t , . . . , yt−dkt )− ct

)
.

It follows that

|xn − yn| ≥ |L1 − L2| −
∞∑
i=1

∞∑
s=n+iτ

∞∑
t=s

1
as

×
∣∣f (t, xt−d1t , xt−d2t , . . . , xt−dkt )− f (t, yt−d1t , yt−d2t , . . . , yt−dkt )∣∣

≥ |L1 − L2| −
∞∑
i=1

∞∑
s=n+iτ

∞∑
t=s

Pt
as
‖x− y‖

≥ |L1 − L2| − 2M
∞∑
i=1

∞∑
s=T3+iτ

∞∑
t=s

Pt
as

> 0, n ≥ T3 + 1,

that is, x 6= y. This completes the proof. �

Theorem 2.2. Let M and N be two positive constants with M > N and b = 1. Assume that there exist two sequences {Pn}n∈Nn0
and {Qn}n∈Nn0

satisfying (2.1) and (2.2) and

∞∑
s=n0

∞∑
t=s

1
as
max{Pt ,Qt , |ct |} < +∞. (2.8)

Then Eq. (1.10) possesses uncountably many bounded nonoscillatory solutions in A(N,M).

Proof. Let L ∈ (N,M). Nowwe construct a contraction mapping SL : A(N,M)→ A(N,M) and prove that its fixed point is a
bounded nonoscillatory solution of Eq. (1.10). Clearly (2.8) implies that there exist θ ∈ (0, 1) and T ≥ n0+τ+|α| satisfying

θ =

∞∑
s=T

∞∑
t=s

Pt
as
; (2.9)

∞∑
s=T

∞∑
t=s

Qt + |ct |
as

≤ min {M − L, L− N} . (2.10)

Define a mapping SL : A(N,M)→ l∞β by

(SLx)n =

L−
∞∑
i=1

n+2iτ−1∑
s=n+(2i−1)τ

∞∑
t=s

1
as

(
f (t, xt−d1t , xt−d2t , . . . , xt−dkt )− ct

)
, n ≥ T ,

(SLx)T , β ≤ n < T

(2.11)

for x ∈ A(N,M). Using (2.1), (2.9) and (2.11), we conclude that for x, y ∈ A(N,M) and n ≥ T

|(SLx)n − (SLy)n| ≤
∞∑
i=1

n+2iτ−1∑
s=n+(2i−1)τ

∞∑
t=s

Pt
as
max

{
|xt−dlt − yt−dlt | : 1 ≤ l ≤ k

}
≤ θ‖x− y‖,

which yields (2.7). Note that (2.2), (2.10) and (2.11) ensure that for any x ∈ A(N,M) and n ≥ T

|(SLx)n − L| ≤
∞∑
s=T

∞∑
t=s

Qt + |ct |
as

≤ min{M − L, L− N},
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which means that SL(A(N,M)) ⊆ A(N,M). That is, (2.7) ensures that SL is a contraction mapping and it has a unique fixed
point x ∈ A(N,M). It follows that for n ≥ T + τ

xn = L−
∞∑
i=1

n+2iτ−1∑
s=n+(2i−1)τ

∞∑
t=s

1
as

(
f (t, xt−d1t , xt−d2t , . . . , xt−dkt )− ct

)
,

xn−τ = L−
∞∑
i=1

n+(2i−1)τ−1∑
s=n+2(i−1)τ

∞∑
t=s

1
as

(
f (t, xt−d1t , xt−d2t , . . . , xt−dkt )− ct

)
,

which imply that

∆(xn + xn−τ ) =
∞∑
t=n

1
an

(
f (t, xt−d1t , xt−d2t , . . . , xt−dkt )− ct

)
, n ≥ T + τ

and

∆(an∆(xn + xn−τ )) = −f (n, xn−d1n , xn−d2n , . . . , xn−dkn)+ cn, n ≥ T + τ .

Therefore x a bounded nonoscillatory solution of Eq. (1.10). The rest of the proof is similar to that of Theorem 2.1 and is
omitted. This completes the proof. �

Theorem 2.3. Let |b| ∈ [0, 12 ), M and N be two positive constants with M(1−2|b|) > N. Assume that there exist two sequences
{Pn}n∈Nn0

and {Qn}n∈Nn0
satisfying (2.1), (2.2) and (2.8). Then Eq. (1.10) possesses uncountably many bounded nonoscillatory

solutions in A(N,M).

Proof. Let L ∈ (N + |b|M,M(1 − |b|)). Now we construct a contraction mapping SL : A(N,M) → A(N,M) and verify
that its fixed point is a bounded nonoscillatory solution of Eq. (1.10). It follows from (2.8) that there exist θ ∈ (0, 1) and
T ≥ n0 + τ + |α| satisfying

θ = |b| +
∞∑
s=T

∞∑
t=s

Pt
as
; (2.12)

∞∑
s=T

∞∑
t=s

Qt + |ct |
as

≤ min {M(1− |b|)− L, L− |b|M − N} , n ≥ T + 1. (2.13)

Define a mapping SL : A(N,M)→ l∞β by

(SLx)n =

L− bxn−τ −
∞∑
s=n

∞∑
t=s

1
as

(
f (t, xt−d1t , xt−d2t , . . . , xt−dkt )− ct

)
, n ≥ T + 1,

(SLx)T+1, β ≤ n ≤ T
(2.14)

for x ∈ A(N,M). On account of (2.1), (2.12) and (2.14), we derive that for x, y ∈ A(N,M) and n ≥ T + 1

|(SLx)n − (SLy)n| ≤ |b|‖x− y‖ +
∞∑
s=n

∞∑
t=s

Pt
as
max

{
|xt−dlt − yt−dlt | : 1 ≤ i ≤ k

}
≤ θ‖x− y‖,

which implies (2.7). It follows from (2.2), (2.13) and (2.14) that for any x ∈ A(N,M) and n ≥ T + 1

|(SLx)n − L| ≤ |b|M +
∞∑
s=T

∞∑
t=s

Qt + |ct |
as

≤ |b|M +min{M(1− |b|)− L, L− |b|M − N},

which yields that SL(A(N,M)) ⊆ A(N,M). Thus (2.7) guarantees that SL is a contraction mapping and it has a unique fixed
point x ∈ A(N,M). It is clear that x is a bounded nonoscillatory solution of Eq. (1.10). The rest of the proof is similar to that
of Theorem 2.1 and is omitted. This completes the proof. �

Theorem 2.4. Let b < −1, M and N be two positive constants with M > N. Assume that there exist two sequences {Pn}n∈Nn0
and {Qn}n∈Nn0

satisfying (2.1), (2.2) and (2.8). Then Eq. (1.10) possesses uncountably many bounded nonoscillatory solutions in
A(N,M).
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Proof. Put L ∈ (M(1+ b),N(1+ b)). Now we construct a contraction mapping SL : A(N,M)→ A(N,M) and show that its
fixed point is a bounded nonoscillatory solution of Eq. (1.10). In terms of (2.8), we choose θ ∈ (0, 1) and T ≥ n0 + τ + |α|
satisfying

θ = −
1
b

(
1+

∞∑
s=T

∞∑
t=s

Pt
as

)
; (2.15)

∞∑
s=T

∞∑
t=s

Qt + |ct |
as

≤ min{L− (1+ b)M,N(1+ b)− L}, n ≥ T + 1. (2.16)

Define a mapping SL : A(N,M)→ l∞β by

(SLx)n =


L
b
−
xn+τ
b
−
1
b

∞∑
s=n+τ

∞∑
t=s

1
as

(
f (t, xt−d1t , xt−d2t , . . . , xt−dkt )− ct

)
, n ≥ T + 1,

(SLx)T+1, β ≤ n ≤ T
(2.17)

for x ∈ A(N,M). Thus (2.1) together with (2.15) and (2.17) implies that for x, y ∈ A(N,M) and n ≥ T + 1

|(SLx)n − (SLy)n| ≤ −
‖x− y‖
b
−
1
b

∞∑
s=n+τ

∞∑
t=s

Pt
as
max

{
|xt−dlt − yt−dlt | : 1 ≤ l ≤ k

}
≤ θ‖x− y‖,

which gives (2.7). By virtue of (2.2), (2.16) and (2.17), we conclude that for any x ∈ A(N,M) and n ≥ T + 1

(SLx)n ≤
L
b
−
M
b
−
1
b

∞∑
s=T

∞∑
t=s

Qt + |ct |
as

≤
L
b
−
M
b
−
1
b
min{L− (1+ b)M,N(1+ b)− L}

≤ M

and

(SLx)n ≥
L
b
−
N
b
+
1
b

∞∑
s=T

∞∑
t=s

Qt + |ct |
as

≥
L
b
−
N
b
+
1
b
min{L− (1+ b)M,N(1+ b)− L}

≥ N,

which imply that SL(A(N,M)) ⊆ A(N,M). Thus (2.7) gives that SL is a contraction mapping and hence it has a unique fixed
point x ∈ A(N,M). It is easy to verify that x is a bounded nonoscillatory solution of Eq. (1.10).
Put L1, L2 ∈ (M(1+ b),N(1+ b)) and L1 6= L2. For each j ∈ {1, 2}, we select a constant θj ∈ (0, 1), a positive integer

Tj ≥ n0 + τ + |α| and a mapping SLj satisfying (2.15)–(2.17), where θ, L and T are replaced by θj, Lj and Tj, respectively,
and

∑
∞

s=T3

∑
∞

t=s
Pt
as
<
|L−K |
2M for some T3 > max{T1, T2}. Note that the contraction mappings SL1 and SL2 have the unique

fixed points x, y ∈ A(N,M), respectively, and x and y are bounded nonoscillatory solutions of Eq. (1.10) in A(N,M). In order
to show that Eq. (1.10) possesses uncountably many bounded nonoscillatory solutions in A(N,M), we need to prove that
x 6= y. In fact, by (2.17) we gain that for n ≥ T3 + 1

xn =
L1
b
−
xn+τ
b
−
1
b

∞∑
s=n+τ

∞∑
t=s

1
as

(
f (t, xt−d1t , xt−d2t , . . . , xt−dkt )− ct

)
,

yn =
L2
b
−
yn+τ
b
−
1
b

∞∑
s=n+τ

∞∑
t=s

1
as

(
f (t, yt−d1t , yt−d2t , . . . , yt−dkt )− ct

)
.

It follows that for n ≥ T3 + 1∣∣∣∣xn − yn + xn+τ − yn+τb

∣∣∣∣ ≥ −|L1 − L2|b
+
1
b

∞∑
s=n+τ

∞∑
t=s

Pt
as
max

{
|xt−dlt − yt−dlt | : 1 ≤ l ≤ k

}
≥ −
|L1 − L2|
b

+
1
b

∞∑
s=n+τ

∞∑
t=s

Pt
as
‖x− y‖
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≥ −
|L1 − L2|
b

+
2M
b

∞∑
s=T3

∞∑
t=s

Pt
as

> 0,

that is, x 6= y. This completes the proof. �

The proofs of Theorems 2.5–2.7 below are analogous to that of Theorems 2.3 and 2.4, and hence are omitted.

Theorem 2.5. Let b ∈ [0, 1), M and N are two positive constants with M(1 − b) > N. Assume that there exist two sequences
{Pn}n∈Nn0

and {Qn}n∈Nn0
satisfying (2.1), (2.2) and (2.8). Then Eq. (1.10) possesses uncountably many bounded nonoscillatory

solutions in A(N,M).

Theorem 2.6. Let b ∈ (−1, 0], M and N be two positive constants with M > N. Assume that there exist two sequences {Pn}n∈Nn0
and {Qn}n∈Nn0

satisfying (2.1), (2.2) and (2.8). Then Eq. (1.10) possesses uncountably many bounded nonoscillatory solutions in
A(N,M).

Theorem 2.7. Let b > 1, M and N be two positive constants with M > N. Assume that there exist two sequences {Pn}n∈Nn0
and {Qn}n∈Nn0

satisfying (2.1), (2.2) and (2.8). Then Eq. (1.10) possesses uncountably many bounded nonoscillatory solutions in
A(N,M).

Remark 2.1. Theorems 2.1 and 2.7 are generalizations of Theorem 1 in [3].

3. Examples

Now we construct seven examples to explain the results presented in Section 2.

Example 3.1. Consider the second order nonlinear neutral delay difference equation

∆(n4∆(xn − xn−τ ))+
(xn−5)3

n3 + |xn+2|
=

(−1)n−1

n(2n− 1)
, n ≥ n0 = 1, (3.1)

where τ ∈ Nn0 is fixed. LetM and N be two positive constants withM > N and

k = 2, an = n4, b = −1, d1n = 5, d2n = −2, cn =
(−1)n−1

n(2n− 1)
,

f (n, u, v) =
u3

n3 + |v|
, Pn =

M2(4M + 3n2)
(n3 + N)2

, Qn =
M3

n3 + N
, n ≥ 1, u, v ∈ R.

It is easy to see that the conditions (2.1)–(2.3) are satisfied. Thus Theorem 2.1 implies that Eq. (3.1) possesses uncountably
many bounded nonoscillatory solutions in A(N,M). But Theorem 1 in [3] is not valid for Eq. (3.1).

Example 3.2. Consider the second order nonlinear neutral delay difference equation

∆((n+ 1)
3
2∆(xn + xn−τ ))+

(xn(n−1))5

n2 + (xn(n−1))2
=
(−1)n−1 ln n

n
3
2

, n ≥ n0 = 1, (3.2)

where τ ∈ Nn0 is fixed. LetM and N be two positive constants withM > N and

k = 1, an = (n+ 1)
3
2 , b = 1, d1n = n(2− n), cn =

(−1)n−1 ln n

n
3
2

,

f (n, u) =
u5

n2 + u2
, Pn =

M4(5n2 + 3M2)
(n2 + N2)2

, Qn =
M5

n2 + N2
, n ≥ 1, u ∈ R.

Obviously, the conditions (2.1), (2.2) and (2.8) hold. Therefore Theorem 2.2 guarantees that Eq. (3.2) possesses uncountably
many bounded nonoscillatory solutions in A(N,M). But Theorem 1 in [3] is inapplicable for Eq. (3.2).

Example 3.3. Consider the second order nonlinear neutral delay difference equation

∆

(
n2∆

(
xn +

1
4
xn−τ

))
+
(xn−(−1)n)2

n2
=

1− 1
n

n(n+ 1)
, n ≥ n0 = 1, (3.3)



594 Z. Liu et al. / Computers and Mathematics with Applications 57 (2009) 587–595

where τ ∈ Nn0 is fixed. LetM and N be two positive constants withM > 2N and

k = 1, an = n2, b =
1
4
, d1n = (−1)n, cn =

1− 1
n

n(n+ 1)
,

f (n, u) =
u2

n2
, Pn =

2M
n2
, Qn =

M2

n2
, n ≥ 1, u ∈ R.

Clearly, the conditions (2.1), (2.2) and (2.8) are satisfied. Thus Theorem 2.3 guarantees that Eq. (3.3) possesses uncountably
many bounded nonoscillatory solutions in A(N,M). However, Theorem 1 in [3] is not applicable for Eq. (3.3).

Example 3.4. Consider the second order nonlinear neutral delay difference equation

∆
(
n2 ln n∆(xn − 50xn−τ )

)
+
(−1)n(xn2)

2

n
3
2

=
− sin(1− n3)

n
√
n+ 3

, n ≥ n0 = 1, (3.4)

where τ ∈ Nn0 is fixed. LetM and N be two positive constants withM > N and

k = 1, an = n2 ln n, b = −50, d1n = n(1− n), cn =
− sin(1− n3)

n
√
n+ 3

,

f (n, u) =
(−1)nu2

n
3
2

, Pn =
2M

n
3
2
, Qn =

M2

n
3
2
n ≥ 1, u ∈ R.

It is clear that the conditions (2.1), (2.2) and (2.8) hold. Hence Theorem 2.4 ensures that Eq. (3.4) possesses uncountably
many bounded nonoscillatory solutions in A(N,M). However, Theorem 1 in [3] is not valid for Eq. (3.4).

Example 3.5. Consider the second order nonlinear neutral delay difference equation

∆

(
n ln2 n∆

(
xn +

4
5
xn−τ

))
+

(
x 1
2 n(n+3)

)3
n(n+ 4)

=
(−1)n

2

n3 + 1
, n ≥ n0 = 1, (3.5)

where τ ∈ Nn0 is fixed. Let ε0 =
1
6 ,M and N be two positive constants withM > N and

k = 1, an = n ln2 n, b =
4
5
, d1n =

1
2
n(n+ 3), cn =

(−1)n
2

n3 + 1
,

f (n, u) =
u3

n(n+ 4)
, Pn =

3M2

n(n+ 4)
, Qn =

M3

n(n+ 4)
, n ≥ 1, u ∈ R.

It is a simple matter to verify that the conditions (2.1), (2.2) and (2.8) hold. Thus Theorem 2.5 gives that Eq. (3.5) possesses
uncountably many bounded nonoscillatory solutions in A(N,M). However, Theorem 1 in [3] is not applicable for Eq. (3.5).

Example 3.6. Consider the second order nonlinear neutral delay difference equation

∆

(
(2n+ cos n)2∆

(
xn −

6
7
xn−τ

))
+

(
xn(n+1)

)2
(n+ 2)(n+ 5)

=
n− 1

n

n3
, n ≥ n0 = 1, (3.6)

where τ ∈ Nn0 is fixed. LetM and N be two positive constants withM > N and

k = 1, an = (2n+ cos n)2, b = −
6
7
, d1n = −n2, cn =

n− 1
n

n3
,

f (n, u) =
u2

(n+ 2)(n+ 5)
, Pn =

2M
(n+ 2)(n+ 5)

, Qn =
M2

(n+ 2)(n+ 5)
, n ≥ 1, u ∈ R.

It is easy to verify that the conditions (2.1), (2.2) and (2.8) hold. Thus Theorem 2.6 yields that Eq. (3.6) possesses uncountably
many bounded nonoscillatory solutions in A(N,M). However, Theorem 1 in [3] is inapplicable for Eq. (3.6).

Example 3.7. Consider the second order nonlinear neutral delay difference equation

∆
(
(n+ 1)2∆(xn + 30xn−τ )

)
+
(−1)n−1

(
xn(n−2)

)2
n2 + 3n+ 10

=
1

(n+ 1) ln2 n
, n ≥ n0 = 1, (3.7)
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where τ ∈ Nn0 is fixed. LetM and N be two positive constants withM > N and

k = 1, an = (n+ 1)2, b = 30, d1n = n(3− n), cn =
1

(n+ 1) ln2 n
,

f (n, u) =
(−1)nu2

n2 + 3n+ 10
, Pn =

2M
n2 + 3n+ 10

, Qn =
M2

n2 + 3n+ 10
, n ≥ 1, u ∈ R.

It follows that the conditions (2.1), (2.2) and (2.8) hold. Thus Theorem 2.7 guarantees that Eq. (3.7) possesses uncountably
many bounded nonoscillatory solutions in A(N,M). However, Theorem 1 in [3] is not valid for Eq. (3.7).
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