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Summary

Circadian rhythms are responsive to external and internal
cues, light andmetabolismbeing among themost important.

In mammals, the light signal is sensed by the retina and
transmitted to the suprachiasmatic nucleus (SCN) master

clock [1], where it is integrated into the molecular oscillator
via regulation of clock gene transcription. The SCN synchro-

nizes peripheral oscillators, an effect that can be overruled
by incoming metabolic signals [2]. As a consequence,

peripheral oscillators can be uncoupled from the master

clock when light and metabolic signals are not in phase.
The signaling pathways responsible for coupling metabolic

cues to the molecular clock are being rapidly uncovered
[3–5]. Here we show that insulin-phosphatidylinositol 3-

kinase (PI3K)-Forkhead box class O3 (FOXO3) signaling is
required for circadian rhythmicity in the liver via regulation

of Clock. Knockdown of FoxO3 dampens circadian ampli-
tude, an effect that is rescued by overexpression of Clock.

Subsequently, we show binding of FOXO3 to two Daf-bind-
ing elements (DBEs) located in the Clock promoter area,

implicating Clock as a transcriptional target of FOXO3. Tran-
scriptional oscillation of both core clock and output genes

in the liver of FOXO3-deficient mice is affected, indicating
a disrupted hepatic circadian rhythmicity. Finally, we show

that insulin, a major regulator of FOXO activity [6–9], regu-
lates Clock levels in a PI3K- and FOXO3-dependent manner.

Our data point to a key role of the insulin-FOXO3-Clock
signaling pathway in the modulation of circadian rhythms.

Results

In the past few years, it has become evident that Forkhead box
class O (FOXO) transcription factors are of key importance
in the underlying mechanisms of aging and the regulation of
metabolism [5, 8, 9]. FOXO transcription factors are known
to integrate signals from different pathways and form a
transcriptional endpoint of the insulin-phosphatidylinositol
*Correspondence: m.f.m.hoekman@uva.nl
3-kinase (PI3K) signal transduction pathway. In Drosophila,
FOXO has been shown to modulate the stress sensitivity of
the circadian clock [10]. Furthermore, metabolites and hor-
mones, such as glucagon and insulin, are thought to play
important roles in the dynamic interplay between metabolism
and circadian rhythms [11]. In line with these observations,
we hypothesized that mammalian FOXOs play a key role in
the regulation ofmammalian circadian rhythms upon incoming
metabolic cues.
To identify a possible interplay between FOXO transcription

factors and themammalian circadian clock, we first transiently
overexpressed FOXO1, FOXO3, and FOXO6 [12] in NIH 3T3
cells and analyzed the effect on circadian rhythmicity (Figure 1;
see also Figure S1 available online). Overexpression of FOXO1
or FOXO3 did not affect circadian oscillation, as both ampli-
tude and period were unchanged (Figures 1A and 1C). In
contrast, overexpression of FOXO6 resulted in a considerable
reduction of the amplitude (to 24%6 5%; Figures 1A and 1C).
We next analyzed the effect of transiently suppressing the
expression of FoxO in NIH 3T3 cells (Figures 1 and S1). Small
interfering RNA (siRNA) directed against FoxO3 reduced the
amplitude, whereas FoxO1 siRNA did not disrupt the oscilla-
tion (Figures 1B and 1C). It should be noted that the oscillation
in the presence of FoxO3 siRNA is irregular and that the period
is variable. Interestingly, downregulation of FoxO6 expression
did not affect the amplitude, but slightly increased the period
of the oscillation (Figures 1B and 1C). These results point to
a differential effect of FOXO proteins on circadian rhythm
modulation.
In order to further investigate the mechanism underlying

the effect of FOXO3 and FOXO6 on circadian rhythms, we per-
formed a microarray study on synchronized NIH 3T3 cells
upon transient knockdown of FoxO3 (siO3) or overexpression
of FoxO6 (oeO6). Cells were harvested for RNA isolation 24,
30, 36, and 42 hr after synchronization (Figure S1G). Gene
expression analysis was performed with the Agilent two-color
microarray platform and, to allow a direct comparison, all
samples were hybridized (n = 4 per condition) against a com-
mon pool of mRNA (‘‘reference’’). As gene expression is not
constant throughout the circadian cycle, we focused on
genes that showed a significantly changed expression at least
at one time point. 115 genes were differentially regulated in
both arrays (Figure 2D), but among these no members of
the core clock machinery were present. Gene ontology (GO)
analysis of this group of genes (Figure S1I; Table S1) showed
cell-cycle-related genes to form the predominant group. We
further focused on the unique genes that were differentially
expressed in either the FoxO6 (255 genes) or FoxO3 (1,240
genes) arrays. Remarkably, while in the FOXO6 overexpres-
sion experiment no genes belonging to the core oscillator
were identified for which the expression was significantly
changed (Figure 2E, left), mRNA levels of five core clock
genes were altered (familywise error rate [FWER], p < 0.05)
at minimally one time point after FoxO3 knockdown (Figure 2E,
right). Among the core clock genes modulated by FoxO3
knockdown, Clock expression was most clearly modified,
showing a significant downregulation (p < 0.05) at three time
points (Figure 2E, right). Interestingly, most core clock genes
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Figure 1. Differential Effect of FOXO Transcription Factors on Circadian Oscillation of NIH 3T3 Cells

(A) Representative examples of bioluminescence rhythms in cells cotransfected with anmBmal1::luciferase reporter construct and either empty vector (blue

line), FOXO1-EGFP (left, red line), FOXO3-EGFP (middle, yellow line), or FOXO6-EGFP (right, magenta line).

(legend continued on next page)
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show a decrease in circadian amplitude following FoxO3
knockdown, indicating FOXO3 to be a modulator of circadian
rhythmicity (Figure 2F).

The data presented clearly show a difference in FOXO3-
and FOXO6-mediated regulation of circadian rhythms.
Whereas FOXO3 modulates circadian oscillation via a core
clock-related mechanism, FOXO6 affects rhythmicity through
an alternative, as yet unknown, pathway. We further focused
on the FOXO3-mediated effect on circadian rhythms. As
shown, knockdown of FoxO3 results in a strong decrease of
circadian amplitude (Figure 1C), similar to the effect observed
upon Clock knockdown in U2OS cells [13]. This prompted
us to investigate the possibility that FOXO3 is modulating
circadian oscillation via regulation of Clock transcription. We
scanned the genomic context of the murine Clock gene for
Daf-binding elements (DBEs), recognition sites of FOXO
[14], and identified two perfect DBEs, the first of which was
located at 2,070 nt upstream of the transcription initiation,
and the second of which was situated in the second intron
at 1,743 nt downstream of the transcription initiation (Fig-
ure 2A). To determine whether FOXO3 or FOXO6 is able to
specifically bind these DBEs, we performed a chromatin
immunoprecipitation (ChIP) assay in NIH 3T3 cells transfected
with FoxO3-EGFP or FoxO6-EGFP. Crosslinked chromatin
was pulled down with anti-GFP antibodies, and rabbit immu-
noglobulin G (IgG) was used as a negative control. The results
show that only FOXO3 specifically binds to the identified
DBEs within the Clock locus (Figures 2B and 2C), suggesting
that FOXO3 can regulate Clock transcription. We next investi-
gated whether the FoxO3 knockdown phenotype could be
rescued by Clock overexpression (Figures 2 and S2). As
shown in Figures 2D and 2E, overexpression of Clock restores
to a large extent the oscillation in cells transfected with siRNA
directed against FoxO3, further indicating that FOXO3 regu-
lates Clock transcription. This effect is specific for FOXO3,
validating the idea that FOXO6 is acting via a different mech-
anism (Figures 2F and 2G).

Our data suggest that FOXO3 is essential for the correct
regulation of circadian rhythmicity. Given the fact that
FOXO3 is expressed in the suprachiasmatic nucleus (SCN),
we analyzed the wheel-running behavior of FoxO3 knockout
mice [15]. The circadian behavior of FoxO32/2 is similar to
that of the FoxO3+/+ controls (Figures 3A and 3B), suggesting
that the FOXO3 deficiency does not affect the SCN master
clock. Nevertheless, FOXO3 could be involved in the regula-
tion of circadian rhythms in peripheral clocks, such as the
liver. In fact, FOXOs have been shown to be important in
hepatic glucose and lipid metabolism [16]. To address this hy-
pothesis, we followed real-time luminescence of FoxO32/2

Per2::Luc tissue explants [17] (Figure 3C). Circadian oscilla-
tion in FoxO32/2 and FoxO3+/+ SCN slices does not differ,
confirming the lack of a behavioral phenotype. Similarly,
lung explants and primary fibroblasts (Figure S3A) from
(B) Representative examples of bioluminescence rhythms in cells cotransfecte

FoxO1 siRNA (red line), FoxO3 siRNA (yellow line), or FoxO6 siRNA (magenta l

(C) Graphical representation of the amplitude (y axis) and period length (x axi

represent SD. *p < 0.05, **p < 0.01, ***p < 0.001.

(D) Venn diagram showing the genes for which expression is significantly reg

(magenta) and siFoxO3 versus siControl (yellow). 115 genes overlap between

(E) Heatmap representation of core clock genes in the FoxO6 array (left) and F

(F) Relative expression of clock-controlled genes in time (FoxO3 array). This is a

to siControl; yellow line corresponds to siFoxO3. The y axis represents fold ch

expression data are shown in Figure S1.
FoxO3 knockout mice and control littermates show circadian
oscillations with comparable amplitudes. In marked contrast,
liver explants derived from FOXO3-deficient mice display a
very weak (almost absent) rhythm, suggesting FOXO3 to be
a modulator of hepatic circadian rhythms. We attribute the
difference observed between NIH 3T3 cells and primary
fibroblasts to the differences in cell type (NIH 3T3 are immor-
talized) and to the type of experiment (NIH 3T3 cells were
transfected). The clear difference between the liver and the
SCN (and other tissues) can be explained by differences
in expression: FOXO3 is highly expressed in the liver, and
FoxO3 mRNA displays a robust oscillation in this organ
[18, 19], whereas in the SCN FoxO3 mRNA is present at
low, weakly oscillating levels [20]. To understand how the
FOXO3 deficiency affects the liver circadian clock and its
output in vivo, we performed gene expression analysis on
liver tissue collected from FoxO32/2 mice and wild-type con-
trol littermates sacrificed at zeitgeber time (ZT) 2, 6, 10, 14, 18,
and 22. Our results validate the oscillation of FoxO3 mRNA in
the liver [19] (Figure S3B) and show that the hepatic oscillator
is affected in the absence of FOXO3 (Figures 3D and S3B).
Oscillation of most clock genes is flattened and the oscillation
of clock-controlled and output genes is altered in FoxO3
knockout livers. Interestingly, a group of liver metabolic
genes displays an oscillation with a period of 10–12 hr (statis-
tical analysis represented in Tables S2 and S3). This suggests
that the coupling with the circadian clock is lost and these
genes only respond to feeding, which has been shown to
display two daily peaks [21]. Although FoxO3 siRNA affects
the expression and oscillation of the mBmal1::luciferase
construct, expression of Bmal1 in the FoxO3-deficient liver
is not largely affected. This is likely due to differences in tran-
scriptional regulation between the overexpressed plasmid
(carrying part of the promoter) and the endogenous locus.
Circadian oscillation in expression of the Clock gene is among
the most affected in the FoxO3 knockout mouse, further con-
firming regulation of Clock transcription via FOXO3. Interest-
ingly, circadian expression of the insulin and insulin growth
factor (IGF) receptors is disrupted (Figures 3D and S3B).
This result points to an incorrect insulin responsiveness in
the FoxO3 knockout livers.
Our data show that FOXO3modulates circadian rhythms via

transcriptional regulation of Clock, suggesting that hepatic
circadian rhythms can be modulated by insulin signaling,
which directly regulates activity of FOXO3 via the PI3K axis.
In this scenario, insulin should have a negative effect on Clock
transcription and decrease the level of Clock mRNA. To test
this hypothesis, we analyzed the effect of insulin on Clock
mRNA levels in a liver cell line (Hepa 1-6). As shown in Fig-
ure 4A, the levels of Clock mRNA were significantly lower in
the presence of insulin as compared to mock-treated cells.
Importantly, the effect of insulin on Clock expression could
be reversed by Ly294002, an inhibitor of PI3K (Figure 4A).
d with a mBmal1::luciferase reporter construct and control siRNA (blue line),

ine).

s) under FOXO overexpression (left) or FoxO knockdown (right). Error bars

ulated (p < 0.05) at least at one time point in FOXO6 versus empty vector

the two arrays.

oxO3 array (right). White asterisks indicate significance (FWER, p < 0.05).

different means of representing the data shown in (E). Blue line corresponds

ange compared to the common reference. Raw bioluminescence data and



Figure 2. Clock Can Rescue the FoxO3 siRNA

Phenotype

(A) Schematic representation of part of the mouse

Clock gene locus. The arrow represents transcrip-

tion initiation. E1 and E2 are the first two exons.

Ovals represent DBEs (DBE1, green; DBE2, or-

ange). The numbers indicate the position relative

to transcription initiation (base pairs).

(B and C) Graphic representation of the ChIP

assay (FOXO3-EGFP in B, FOXO6-EGFP in C).

Green bars, fragments around DBE1; orange

bars, fragments around DBE2; black bar, non-

DBE fragment. Three primer sets surrounding

each DBE were used. The y axis represents rela-

tive abundance as fold enrichment (anti-GFP/IgG).

(D) Representative examples of bioluminescence

rhythms in NIH 3T3 cells cotransfected with a

mBmal1::luciferase reporter construct and siC +

empty vector (top, dark blue), siC + Clock (top,

light blue), siFoxO3 + empty vector (bottom, yel-

low), or siFoxO3 + Clock (bottom, orange).

(E) Graphical representation of the amplitude

(y axis) and period length (x axis).

(F) Representative examples of bioluminescence

rhythms in NIH 3T3 cells cotransfected with

a mBmal1::luciferase reporter construct and ev +

empty vector (top, dark blue), ev + Clock (top,

light blue), FOXO6-EGFP + empty vector (bottom,

magenta), or FOXO6-EGFP + Clock (bottom,

purple).

(G) Graphical representation of the amplitude

(y axis) and period length (x axis). Figure S2 shows

the corresponding raw bioluminescence data and

RNA quantification data.

Error bars represent SD. *p < 0.05, **p < 0.01.
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This indicates that the signaling of insulin to Clock tran-
scription occurs via the PI3K pathway, which directly signals
to FOXO3. Additionally, overexpression of FOXO3 abolished
the effect of insulin on Clock expression (Figure 4B), which
validates that FOXO3 is regulating Clock expression in
response to insulin/PI3K signaling. Finally, we analyzed the
effect of insulin on circadian oscillation of Hepa 1-6 cells. As
shown in Figure 4C, insulin treatment reduces the amplitude
of oscillation of synchronized Hepa 1-6 (similar effects were
observed with the mBmal1::luciferase and the mPer2::lucifer-
ase reporter constructs, Figure S4). Together, these data
show that insulin can modulate circadian
oscillation via FoxO3 regulation of Clock
transcription.

Discussion

The results described here demon-
strate that FOXO3 regulates circadian
rhythms via Clock in response to insulin
signaling, identifying a novel transcrip-
tional feedback loop in mammals that
links insulin-like metabolic cues and
circadian rhythms. As shown, FOXO3
elicits its effect via regulation of Clock.
We postulate that the FoxO3 knockout
mouse resembles the Clock knockout:
it is in fact a liver-specific Clock knock-
down. Whereas circadian amplitude in
wild-type animals is robust and tightly
regulated, amplitude is dampened in peripheral tissues of
Clock2/2 [22, 23] and in the liver of FoxO32/2 animals (this
study). FOXO3 is critical in the regulation of metabolic pro-
cesses in the liver, such as gluconeogenesis and lipid meta-
bolism [16, 24, 25], and we now show that FOXO3 is also
necessary for regulation of circadian rhythms in this organ.
As expression of both core clock and output genes in the liver
of FOXO3-deficient mice is deregulated, the data indicate that
FOXO3 is crucial for the correct regulation of hepatic circa-
dian oscillations and thus for the intact functioning of the liver,
specifically in response to metabolic signals. Remarkably, the



Figure 3. The Hepatic Circadian Oscillator Is Affected in FoxO3 Knockout Mice

(A) Circadian behavior of FoxO3 knockout mice in a Per2::Luc background (bottom, n = 16) and control wild-type littermates (top, n = 12). Animals were kept

under normal light conditions (light:dark 12:12 hr) and subsequently exposed to constant darkness (DD) (indicated by gray shade). Representative examples

of double-plotted actograms are shown.

(legend continued on next page)
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FOXO3-deficient liver is at least partially unresponsive to
incoming insulin-like signals, as the expression of the insulin
and IGF receptors is disrupted. Taken together, one would
expect that this deregulation of hepatic circadian rhythms,
as a consequence of FOXO3 deficiency, would lead to phys-
iological effects at the whole-body level. However, Zhang
and coworkers [16] observed no apparent phenotype in
FOXO3-deficient animals; levels of insulin and hepatic and
serum lipids were unaltered. This could be the consequence
of a metabolically nonstressed situation. It is conceivable
that a phenotype will be observed when FOXO3-deficient an-
imals are metabolically stressed. As shown, insulin regulates
Clock transcription via FOXO3. As a consequence, transcrip-
tional deregulation of clock-controlled genes was observed
in the FoxO32/2 mice (Figures 4 and S4; Tables S2 and S3).
Both Nampt and Rev-erba have been shown to form key
components in molecular mechanisms linking metabolism
and the circadian oscillator, indicating that various signaling
pathways, including the insulin-FOXO3-Clock axis, crosstalk
in response to metabolic cues [26–29].

In conclusion, the data presented here identify FOXO3 as a
crucial component of hepatic circadian rhythmicity exerting
its action via the core clock transcription factor Clock. Given
that the activity of FoxO transcription factors is mainly
controlled by the insulin/IGF-1 signal transduction route and
that insulin decreases Clock expression levels in a PI3K-
dependent manner, our data point to a key role of the insu-
lin-FOXO3-Clock signaling pathway in conveying external
metabolic cues in order to modulate circadian rhythms in the
liver. It is likely that other tissues use different mechanisms
to respond to the metabolic status that do not require
FOXO3. We propose that a FOXO3 deficiency induces disrup-
tion of hepatic circadian rhythmicity, and as a consequence a
deregulated response to metabolic, insulin-like cues. Further
studies will be required to explore the possibility that the insu-
lin-FOXO3-CLOCK axis is necessary for a correct alignment
between metabolism and circadian rhythms. This is of major
importance in conditionswhere the circadian system is contin-
uously challenged and becomes deregulated, such as shift
work or jet lag.

Experimental Procedures

All experiments involving animals were approved by DEC Consult, an inde-

pendent Animal Ethical Committee (Dutch equivalent of Institutional Animal

Care and Use Committee) under permit numbers EMC2026, EMC2027,

EMC2382, and EMC2383. Detailed methods are provided in the Supple-

mental Experimental Procedures.

Real-Time Bioluminescence Monitoring

Cells were synchronized, and bioluminescence was recorded for several

days with a LumiCycle 32-channel automated luminometer (Actimetrics).

Microarray Experimental Setup

RNA was isolated, purified on a column, and analyzed using a 2100

BioAnalyzer (Agilent Technologies). Experimental samples in quadruplicate

were hybridized against a common pool of mRNA. Microarrays used were

Mouse Whole-Genome Gene Expression Microarrays V1 (Agilent Technolo-

gies). RNA amplifications, labeling, hybridization, and data analysis were

performed as described previously [30–32].
(B) Graphic representation of the free-running period (t) in constant darkness.

(C) Representative examples of bioluminescence rhythms in tissue explants o

(D) Gene expression analysis (quantitative RT-PCR) of liver mRNA collected a

relative to the first time point of the control, corrected for a housekeeping gen
ChIP Assay

ChIP was performed using a ChIP kit from Upstate (Millipore).

Mouse Lines and Monitoring of Circadian Behavior

FoxO3 knockout mice [15] in a FVB-129-C57BL/6J mixed background and

Per2::luciferase mice [17] in a C57BL/6J background were used for wheel-

running behavior. The mouse strain FVB;129S6-Foxo3tm1.1Rdp/Mmcd was

obtained from the Mutant Mouse Regional Resource Center (MMRRC)

and was donated to the MMRRC by Ron DePinho of the Dana-Farber Can-

cer Institute.

Tissue Slicing

Tissues (SCN, lungs, and liver) were processed and sliced as described pre-

viously [17, 33].

Accession Numbers

Genome-wide expression profiling data have been submitted to the

NCBI Gene Expression Omnibus database under the accession number

GSE41566.

Supplemental Information

Supplemental Information includes four figures, three tables, and Supple-

mental Experimental Procedures and can be found with this article online

at http://dx.doi.org/10.1016/j.cub.2014.04.018.
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