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Cancer has been characterized as a heterogeneous disease consisting ofmany different subtypes. The early diagnosis
and prognosis of a cancer type have become a necessity in cancer research, as it can facilitate the subsequent clinical
management of patients. The importance of classifying cancer patients into high or low risk groups has ledmany re-
search teams, from the biomedical and the bioinformatics field, to study the application of machine learning (ML)
methods. Therefore, these techniques have been utilized as an aim to model the progression and treatment of can-
cerous conditions. In addition, the ability of ML tools to detect key features from complex datasets reveals their im-
portance. A variety of these techniques, including Artificial Neural Networks (ANNs), Bayesian Networks (BNs),
Support Vector Machines (SVMs) and Decision Trees (DTs) have beenwidely applied in cancer research for the de-
velopment of predictive models, resulting in effective and accurate decision making. Even though it is evident that
the use of ML methods can improve our understanding of cancer progression, an appropriate level of validation is
needed in order for these methods to be considered in the everyday clinical practice. In this work, we present a re-
view of recent ML approaches employed in the modeling of cancer progression. The predictive models discussed
here are based on various supervised ML techniques as well as on different input features and data samples.
Given the growing trend on the application ofMLmethods in cancer research,we present here themost recent pub-
lications that employ these techniques as an aim to model cancer risk or patient outcomes.

© 2014 Kourou et al. Published by Elsevier B.V. on behalf of the Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).
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Fig. 1.Classification task in supervised learning. Tumors are represented as X and classified
as benign or malignant. The circled examples depict those tumors that have been
misclassified.
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1. Introduction

Over the past decades, a continuous evolution related to cancer re-
search has been performed [1]. Scientists applied different methods,
such as screening in early stage, in order to find types of cancer before
they cause symptoms. Moreover, they have developed new strategies
for the early prediction of cancer treatment outcome. With the advent
of new technologies in the field of medicine, large amounts of cancer
data have been collected and are available to the medical research
community. However, the accurate prediction of a disease outcome is
one of themost interesting and challenging tasks for physicians. As a re-
sult, ML methods have become a popular tool for medical researchers.
These techniques can discover and identify patterns and relationships
between them, from complex datasets, while they are able to effectively
predict future outcomes of a cancer type.

Given the significance of personalized medicine and the growing
trend on the application of ML techniques, we here present a review
of studies that make use of these methods regarding the cancer predic-
tion and prognosis. In these studies prognostic and predictive features
are considered which may be independent of a certain treatment or
are integrated in order to guide therapy for cancer patients, respectively
[2]. In addition, we discuss the types of ML methods being used, the
types of data they integrate, the overall performance of each proposed
scheme while we also discuss their pros and cons.

An obvious trend in the proposed works includes the integration of
mixed data, such as clinical and genomic. However, a common problem
that we noticed in several works is the lack of external validation or
testing regarding the predictive performance of their models. It is clear
that the application ofMLmethods could improve the accuracy of cancer
susceptibility, recurrence and survival prediction. Based on [3], the
accuracy of cancer prediction outcome has significantly improved by
15%–20% the last years, with the application of ML techniques.

Several studies have been reported in the literature and are based on
different strategies that could enable the early cancer diagnosis and
prognosis [4–7]. Specifically, these studies describe approaches related
to the profiling of circulating miRNAs that have been proven a promis-
ing class for cancer detection and identification. However, these
methods suffer from low sensitivity regarding their use in screening at
early stages and their difficulty to discriminate benign from malignant
tumors. Various aspects regarding the prediction of cancer outcome
based on gene expression signatures are discussed in [8,9]. These
studies list the potential as well as the limitations of microarrays for
the prediction of cancer outcome. Even though gene signatures could
significantly improve our ability for prognosis in cancer patients, poor
progress has been made for their application in the clinics. However,
before gene expression profiling can be used in clinical practice, studies
with larger data samples and more adequate validation are needed.

In the present work only studies that employed ML techniques for
modeling cancer diagnosis and prognosis are presented.

2. ML techniques

ML, a branch of Artificial Intelligence, relates the problem of learning
from data samples to the general concept of inference [10–12]. Every
learning process consists of two phases: (i) estimation of unknown de-
pendencies in a system from a given dataset and (ii) use of estimated
dependencies to predict new outputs of the system. ML has also been
proven an interesting area in biomedical research with many applica-
tions, where an acceptable generalization is obtained by searching
through an n-dimensional space for a given set of biological samples,
using different techniques and algorithms [13]. There are two main
common types of ML methods known as (i) supervised learning and
(ii) unsupervised learning. In supervised learning a labeled set of train-
ing data is used to estimate or map the input data to the desired output.
In contrast, under the unsupervised learningmethods no labeled exam-
ples are provided and there is no notion of the output during the
learning process. As a result, it is up to the learning scheme/model to
find patterns or discover the groups of the input data. In supervised
learning this procedure can be thought as a classification problem. The
task of classification refers to a learning process that categorizes the
data into a set of finite classes. Two other commonML tasks are regres-
sion and clustering. In the case of regression problems, a learning
function maps the data into a real-value variable. Subsequently, for
each new sample the value of a predictive variable can be estimated,
based on this process. Clustering is a common unsupervised task in
which one tries to find the categories or clusters in order to describe
the data items. Based on this process each new sample can be assigned
to one of the identified clusters concerning the similar characteristics
that they share.

Suppose for example that we have collected medical records
relevant to breast cancer and we try to predict if a tumor is malignant
or benign based on its size. TheML questionwould be referred to the es-
timation of the probability that the tumor is malignant or no (1 = Yes,
0=No). Fig. 1 depicts the classification process of a tumor beingmalig-
nant or not. The circled records depict any misclassification of the type
of a tumor produced by the procedure.

Another type of ML methods that have been widely applied is
semi-supervised learning, which is a combination of supervised and
unsupervised learning. It combines labeled and unlabeled data in
order to construct an accurate learning model. Usually, this type of
learning is used when there are more unlabeled datasets than labeled.

When applying a ML method, data samples constitute the basic
components. Every sample is described with several features and
every feature consists of different types of values. Furthermore, know-
ing in advance the specific type of data being used allows the right selec-
tion of tools and techniques that can be used for their analysis. Some
data-related issues refer to the quality of the data and the preprocessing
steps tomake themmore suitable forML. Data quality issues include the
presence of noise, outliers, missing or duplicate data and data that is
biased-unrepresentative. When improving the data quality, typically
the quality of the resulting analysis is also improved. In addition, in
order to make the raw data more suitable for further analysis, prepro-
cessing steps should be applied that focus on the modification of the
data. A number of different techniques and strategies exist, relevant to
data preprocessing that focus on modifying the data for better fitting
in a specific MLmethod. Among these techniques some of themost im-
portant approaches include (i) dimensionality reduction (ii) feature se-
lection and (iii) feature extraction. There are many benefits regarding
the dimensionality reduction when the datasets have a large number
of features. ML algorithms work better when the dimensionality is
lower [14]. Additionally, the reduction of dimensionality can eliminate
irrelevant features, reduce noise and can produce more robust learning
models due to the involvement of fewer features. In general, the dimen-
sionality reduction by selecting new features which are a subset of the
old ones is known as feature selection. Three main approaches exist
for feature selection namely embedded, filter and wrapper approaches
[14]. In the case of feature extraction, a new set of features can be
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created from the initial set that captures all the significant information
in a dataset. The creation of new sets of features allows for gathering
the described benefits of dimensionality reduction.

However, the application of feature selection techniques may result
in specific fluctuations concerning the creation of predictive feature
lists. Several studies in the literature discuss the phenomenon of lack
of agreement between the predictive gene lists discovered by different
groups, the need of thousands of samples in order to achieve the desired
outcomes, the lack of biological interpretation of predictive signatures
and the dangers of information leak recorded in published studies
[15–18].

The main objective of ML techniques is to produce a model which
can be used to perform classification, prediction, estimation or any
other similar task. Themost common task in learning process is classifi-
cation. As mentioned previously, this learning function classifies the
data item into one of several predefined classes. When a classification
model is developed, by means of ML techniques, training and generali-
zation errors can be produced. The former refers to misclassification
errors on the training data while the latter on the expected errors on
testing data. A good classification model should fit the training set
well and accurately classify all the instances. If the test error rates of a
model begin to increase even though the training error rates decrease
then the phenomenon of model overfitting occurs. This situation is
related to model complexity meaning that the training errors of a
model can be reduced if the model complexity increases. Obviously,
the ideal complexity of a model not susceptible to overfitting is the
one that produces the lowest generalization error. A formal method
for analyzing the expected generalization error of a learning algorithm
is the bias–variance decomposition. The bias component of a particular
learning algorithmmeasures the error rate of that algorithm. Addition-
ally, a second source of error over all possible training sets of given size
and all possible test sets is called variance of the learning method. The
overall expected error of a classification model is constituted of the
sum of bias and variance, namely the bias–variance decomposition.

Once a classification model is obtained using one or more ML tech-
niques, it is important to estimate the classifier's performance. The per-
formance analysis of each proposed model is measured in terms of
sensitivity, specificity, accuracy and area under the curve (AUC).
Sensitivity is defined as the proportion of true positives that are correct-
ly observed by the classifier, whereas specificity is given by the propor-
tion of true negatives that are correctly identified. The quantitative
metrics of accuracy and AUC are used for assessing the overall
Fig. 2. An indicative ROC curve of two classifiers: (a) Random Guess classifier (red cu
performance of a classifier. Specifically, accuracy is a measure related
to the total number of correct predictions. On the contrary, AUC is a
measure of the model's performance which is based on the ROC curve
that plots the tradeoffs between sensitivity and 1-specificity (Fig. 2).

The predictive accuracy of the model is computed from the testing
set which provides an estimation of the generalization errors. In order
to obtain reliable results regarding the predicting performance of a
model, training and testing samples should be sufficiently large and in-
dependent while the labels of the testing sets should be known. Among
the most commonly used methods for evaluating the performance of
a classifier by splitting the initial labeled data into subsets are:
(i) Holdout Method, (ii) Random Sampling, (iii) Cross-Validation and
(iv) Bootstrap. In the Holdout method, the data samples are partitioned
into two separate sets, namely the training and the test sets. A classifica-
tionmodel is then generated from the training setwhile its performance
is estimated on the test set. Random sampling is a similar approach to
the Holdoutmethod. In this case, in order to better estimate the accura-
cy, the Holdout method is repeated several times, choosing the training
and test instances randomly. In the third approach, namely cross-
validation, each sample is used the same number of times for training
and only once for testing. As a result, the original data set is covered
successfully both in the training and in the test set. The accuracy results
are calculated as the average of all different validation cycles. In the last
approach, bootstrap, the samples are separated with replacement into
training and test sets, i.e. they are placed again into the entire data set
after they have been chosen for training.

When the data are preprocessed and we have defined the kind of
learning task, a list of ML methods including (i) ANNs, (ii) DTs,
(iii) SVMs and (iv) BNs is available. Based on the intension of this review
paper, we will refer only to theseML techniques that have been applied
widely in the literature for the case study of cancer prediction and prog-
nosis.We identify the trends regarding the types ofMLmethods that are
used, the types of data that are integrated as well as the evaluation
methods employed for assessing the overall performance of the
methods used for cancer prediction or disease outcomes.

ANNs handle a variety of classification or pattern recognition prob-
lems. They are trained to generate an output as a combination between
the input variables. Multiple hidden layers that represent the neural
connections mathematically are typically used for this process. Even
though ANNs serve as a gold standard method in several classification
tasks [19] they suffer from certain drawbacks. Their generic layered
structure proves to be time-consuming while it can lead to very poor
rve) and (b) A classifier providing more robust predictions (blue dotted curve).



Fig. 3. An illustration of the ANN structure. The arrows connect the output of one node to
the input of another.

Fig. 5. A simplified illustration of a linear SVM classification of the input data. Figure was
reproduced from the ML lectures of [21]. Tumors are classified according to their size
and the patient's age. The depicted arrows display the misclassified tumors.
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performance. Additionally, this specific technique is characterized as a
“black-box” technology. Trying to find out how it performs the classifi-
cation process or why an ANN did not work is almost impossible to de-
tect. Fig. 3 depicts the structure of anANNwith its interconnected group
of nodes.

DTs follow a tree-structured classification scheme where the nodes
represent the input variables and the leaves correspond to decision out-
comes. DTs are one of the earliest andmost prominentMLmethods that
have beenwidely applied for classification purposes. Based on the archi-
tecture of the DTs, they are simple to interpret and “quick” to learn.
When traversing the tree for the classification of a new sample we are
able to conjecture about its class. The decisions resulted from their
specific architecture allow for adequate reasoning which makes them
an appealing technique. Fig. 4 depicts an illustration of a DT with its
elements and rules.

SVMs are amore recent approach ofMLmethods applied in the field
of cancer prediction/prognosis. Initially SVMsmap the input vector into
a feature space of higher dimensionality and identify the hyperplane
that separates the data points into two classes. The marginal distance
between the decision hyperplane and the instances that are closest to
boundary is maximized. The resulting classifier achieves considerable
generalizability and can therefore be used for the reliable classification
Fig. 4. An illustration of a DT showing the tree structure. Each variable (X, Y, Z) is repre-
sented by a circle and the decision outcomes by squares (Class A, Class B). T(1–3) repre-
sents the thresholds (classification rules) in order to successfully classify each variable
to a class label.
of new samples. It is worth noting that probabilistic outputs can also
be obtained for SVMs [20]. Fig. 5 illustrates how an SVM might work
in order to classify tumors among benign and malignant based on
their size and patients' age. The identified hyperplane can be thought
as a decision boundary between the two clusters. Obviously, the exis-
tence of a decision boundary allows for the detection of any misclassifi-
cation produced by the method.

BN classifiers produce probability estimations rather than predic-
tions. As their name reveals, they are used to represent knowledge
coupledwith probabilistic dependencies among the variables of interest
via a directed acyclic graph. BNs have been applied widely to several
classification tasks as well as for knowledge representation and reason-
ing purposes.

Fig. 6 depicts an illustration of a BN acrosswith the calculated condi-
tional probability for each variable.

3. ML and cancer prediction/prognosis

The last two decades a variety of differentML techniques and feature
selection algorithms have been widely applied to disease prognosis and
prediction [3,22–27]. Most of these works employ ML methods for
modeling the progression of cancer and identify informative factors
that are utilized afterwards in a classification scheme. Furthermore, in
almost all the studies gene expression profiles, clinical variables as
well as histological parameters are encompassed in a complementary
manner in order to be fed as input to the prognostic procedure. Fig. 7
depicts the distribution in published papers using ML techniques to
predict (i) cancer susceptibility, (ii) recurrence and (iii) survival. The in-
formation was collected based on a variety of query searches in the
Scopus biomedical database. More specifically, queries like “cancer
risk assessment” AND “Machine Learning”, “cancer recurrence” AND
“Machine Learning”, “cancer survival” AND “Machine Learning” as
well as “cancer prediction” AND “Machine Learning” yielded the num-
ber of papers that are depicted in Fig. 3. No limitations were imposed
in the resulted hits except the exclusion of articles published before
2010. As mentioned above, the number of papers presented in Fig. 7
refers to the exact numbers yielded from the databases without any
refinement except the date that they were published.

The success of a disease prognosis is undoubtedly dependent on the
quality of a medical diagnosis; however, a prognostic prediction should
take into accountmore than a simple diagnostic decision.When dealing
with cancer prognosis/prediction one is concerned with three predic-
tive tasks: (i) the prediction of cancer susceptibility (risk assessment),
(ii) the prediction of cancer recurrence/local control and (iii) the predic-
tion of cancer survival. In the first two cases one is trying to find (i) the
likelihood of developing a type of cancer and (ii) the likelihood of
redeveloping a type of cancer after complete or partial remission. In
the last case, the prediction of a survival outcome such as disease-
specific or overall survival after cancer diagnosis or treatment is the
main objective. The prediction of cancer outcome usually refers to the
cases of (i) life expectancy, (ii) survivability, (iii) progression and
(iv) treatment sensitivity [3].



Fig. 6. An illustration of a BN. Nodes (A–D) represent a set of random variables across with their conditional probabilities which are calculated in each table.
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Major types of ML techniques including ANNs and DTs have been
used for nearly three decades in cancer detection [22,28–30]. According
to the recent PubMed results regarding the subject of ML and cancer
more than 7510 articles have been published until today. The vast ma-
jority of these publications makes use of one or more ML algorithms
and integrates data from heterogeneous sources for the detection of
tumors as well as for the prediction/prognosis of a cancer type. A grow-
ing trend is noted the last decade in the use of other supervised learning
techniques, namely SVMs and BNs, towards cancer prediction and prog-
nosis [24,31–36]. All of these classification algorithms have beenwidely
used in a wide range of problems posed in cancer research.

In the past, the typical information used by the physicians conclude
with a reasonable decision regarding cancer prognosis and included his-
tological, clinical and population-based data [23,37]. The integration of
features such as family history, age, diet, weight, high-risk habits and
exposure to environmental carcinogens play a critical role in predicting
the development of cancer [38–40]. Even though this type of macro-
scale information referred to a small number of variables so that stan-
dard statisticalmethods could be used for prediction purposes, however
these types of parameters do not provide sufficient information for
making robust decisions. With the rapid advent of genomic, proteomic
and imaging technologies a new kind of molecular information can be
obtained. Molecular biomarkers, cellular parameters as well as the ex-
pression of certain genes have been proven as very informative indica-
tors for cancer prediction. The presence of such High Throughput
Fig. 7.Distribution of published studies,within the last 5 years, that employML techniques
for cancer prediction.
Technologies (HTTs) nowadays has produced huge amounts of cancer
data that are collected and are available to the medical research com-
munity. However, the accurate prediction of a disease outcome is one
of the most interesting and challenging tasks for physicians. As a result,
MLmethods have become a popular tool for medical researchers. These
techniques can discover and identify patterns and relationships be-
tween them, from complex datasets, while they are able to effectively
predict future outcomes of a cancer type. Additionally, feature selection
methods have been published in the literature with their application in
cancer [41–43]. The proposed computational tools aim at identifying
informative features for accurately identification of disease class.

There are nowadays separate subgroups among the same type of
cancer based on specific genetic defects that have different treatment
approaches and options as well as different clinical outcomes. This is
the foundation of the individualized treatment approach, in which com-
putational techniques could help by identifying less costly and effectively
such small groups of patients. Furthermore, the development of a com-
munity resource project, namely The Cancer Genome Atlas Research
Network (TCGA) has the potential support for personal medicine as it
provides large scale genomic data about specific tumor types. TCGA pro-
vides with the ability to better understand the molecular basis of cancer
through the application of high-throughput genome technologies.

4. Survey of ML applications in cancer

An extensive search was conducted relevant to the use of ML tech-
niques in cancer susceptibility, recurrence and survivability prediction.
Two electronic databases were accessed namely PubMed, Scopus. Due
to the vast number of articles returned by the search queries, further
scrutinization was needed in order to maintain the most relevant arti-
cles. The relevance of each publication was assessed based on the key-
words of the three predictive tasks found in their titles and abstracts.
Specifically, after reading their titles and abstracts we only selected
those publications that study one of the three foci of cancer prediction
and included it in their titles. Themajority of these studies use different
types of input data: genomic, clinical, histological, imaging, demograph-
ic, epidemiological data or combination of these. Papers that focus on
the prediction of cancer development bymeans of conventional statisti-
calmethods (e.g. chi-square, Cox regression)were excluded aswere pa-
pers that use techniques for tumor classification or identification of
predictive factors. According to [3] and their survey based on ML appli-
cations in cancer prediction, we noted a rapid increase in papers
that have been published in the last decade. Although it is impossible
to achieve a complete coverage of the literature, we believe that a
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significant number of relevant papers were extracted and are presented
in this review. As mentioned above, from the initial group of papers we
selected a representative list that follows a well-organized structure.
Specifically, we selected these studies that make use of recognizable
ML techniques and integrated data from heterogeneous sources in
order to predict the desirable outcome. We focused mainly on studies
that have been published the last 5 years as an aim to present the
most recent state of the art in the field and their advances in comparison
to older publications. Tables 1a, 1b, and 1c depict some of the publica-
tions presented in this review. Cancer type, ML method, number of
patients, type of data as well as the overall accuracy achieved by each
proposed method are presented. Each sub-table corresponds to studies
regarding a specific scenario (i.e. cancer susceptibility prediction, cancer
recurrence prediction and cancer survival prediction). It should be
noted that in articles that more than one ML techniques are applied
for prediction, we decided to present here the most accurate predictive
model.

A detailed analysis of more recent studies revealed that there is a
growing trend in risk assessment as well as the prediction of recurrence
of a cancer type regardless the ML technique used. Many research
groups have tried to predict the possibility of redeveloping cancer
after remission and appeared to improve the accuracy of predictions
compared to alternative statistical techniques. Moreover, the vast
majority of these publications used molecular and clinical data in
order to make their predictions. The use of such measurable features
as input data is a growing trend based on the advent of HTTs.

In the following, we are going to discuss one case for each of the ob-
jectives of predicting (i) susceptibility, (ii) recurrence and (iii) survival,
all by means of ML techniques. Each sub-section summarizes the repre-
sentative studies we have selected based on their predictive outcomes.
We only selected those publications that have been accepted the last 5
years and make use of distinguishable ML methods. We provide the
readers with the appropriate details of the most recent techniques
used for the prediction and prognosis of most frequent cancer types.

4.1. Prediction of cancer susceptibility

We performed a Scopus and a PubMed advanced search which was
limited to the last 5 years. Out of these results one of the publications
employs ML techniques for the prediction of susceptibility in a cancer
type [55]. The authors perform a genetic epidemiology study of bladder
cancer susceptibility in terms of Learning Classifying Systems (LCSs).
We decided to exclude this work from the present case study as it
deals with genetic information and examines further genetic problems.
Based on these limitations we continued our search to the specific bio-
medical databases. Most of these titles neither referred to the specified
keywords that are mentioned in the relevant survey nor used ML
techniques for their predictions. Among the most recent publications
that resulted after our limited literature search regarding the cancer
risk assessment prediction [19,56–58], we selected a recent and very in-
teresting study to present relevant to the breast cancer risk estimation
bymeans of ANNs [19]. It is a different study among the others present-
ed in this review article regarding the data type used. Although all of the
Table 1a
Publications relevant to ML methods used for cancer susceptibility prediction.

Publication Method Cancer type No of
patients

Type of data

Ayer T et al. [19] ANN Breast cancer 62,219 Mammographic,
demographic

Waddell M et al. [44] SVM Multiple myeloma 80 SNPs

Listgarten J et al. [45] SVM Breast cancer 174 SNPs

Stajadinovic et al. [46] BN Colon carcinomatosis 53 Clinical, pathologic
publications selected make use of molecular, clinical or population-
based data, this work encompassesmammographic findings and demo-
graphic characteristics to the model. Even though this work doesn't fit
our general statement regarding our search criteria, we decided to
include it in this case study because no other search result met our
needs. We excluded this work from our general statement because no
other search result met our needs. The major intense in developing
decision-making tools that can discriminate among benign and malig-
nant findings in breast cancer is commented by the authors. They also
mention that when developing prediction models, risk stratification is
of major interest. According to their knowledge, existing studies
based on the use of computer models, have also utilized specific ML
techniques, such as ANNs, in order to assess the risk of breast cancer pa-
tients. In their work, ANNs are employed in order to develop a predic-
tion model that could classify malignant mammographic findings from
benign. They built their model with a large number of hidden layers
which generalizes better than networks with small number of hidden
nodes. Regarding the collected data in this study, 48.774mammograph-
ic findings as well as demographic risks factors and tumor characteris-
tics were considered. All of the mammographic records were
reviewed by radiologists and the reading information was obtained.
This dataset was then fed as input to the ANN model. Its performance
was estimated by means of ten-fold cross validation. Additionally, in
order to prevent the case of overfitting the authors used the ES ap-
proach. This procedure, generally, controls the network error during
training and stops it if overfitting occurs. The calculated AUC of their
model was 0.965 following training and testing by means of ten-fold
cross validation. The authors claimed that their model can accurately
estimate the risk assessment of breast cancer patients by integrating a
large data sample. They also declared that their model is unique
among others if we consider that the most important factors they
used to train the ANN model are the mammography findings with
tumor registry outcomes. One very interesting characteristic in this
study is the calculation of two main components of accuracy, namely
discrimination and calibration. Discrimination is a metric that someone
calculates in order to separate benign abnormalities from malignant
ones, while calibration is a measurement used when a risk prediction
model aims to stratify patients into high or low risk categories. The
authors plotted (i) a ROC curve in order to evaluate the discriminative
ability of their model and (ii) a calibration curve for comparing after-
wards their model's calibration to the perfect calibration of predicting
breast cancer risk. Apart from these findings, the authors also noted
that the use of a mix of screening and diagnostic datasets cannot be
reliably separated when feeding as input to the ANN. So, in order to
overcome such limitations the authors should consider the purpose of
preprocessing steps for transforming the raw data into appropriate for-
mats for subsequent analysis.

4.2. Prediction of cancer recurrence

Based on our survey, we here present the most relevant and recent
publications that proposed the use of ML techniques for cancer recur-
rence prediction. A work which studies the recurrence prediction of
Accuracy Validation method Important features

AUC = 0.965 10-fold cross validation Age, mammography findings

71% Leave-one-out cross
validation

snp739514, snp521522, snp994532

69% 20-fold cross validation snpCY11B2 (+) 4536 T/C snpCYP1B1
(+) 4328 C/G

AUC = 0.71 Cross-validation Primary tumor histology, nodal staging,
extent of peritoneal cancer



Table 1b
Publications relevant to ML methods used for cancer recurrence prediction.

Publication ML method Cancer type No of patients Type of data Accuracy Validation method Important features

Exarchos K et al. [24] BN Oral cancer 86 Clinical, imaging tissue genomic,
blood genomic

100% 10-fold cross validation Smoker, p53 stain, extra-tumor
spreading, TCAM, SOD2

Kim W et al. [47] SVM Breast cancer 679 Clinical, pathologic, epidemiologic 89% Hold-out Local invasion of tumor
Park C et al. [48] Graph-based SSL

algorithm
Colon cancer,
breast cancer

437
374

Gene expression, PPIs 76.7%
80.7%

10-fold cross validation BRCA1, CCND1, STAT1, CCNB1

Tseng C-J et al. [49] SVM Cervical cancer 168 Clinical, pathologic 68% Hold-out pathologic_S, pathologic_T, cell
type RT target summary

Eshlaghy A et al. [34] SVM Breast cancer 547 Clinical, population 95% 10-fold cross validation Age at diagnosis, age at menarche
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oral squamous cell carcinoma (OSCC) is proposed in [24]. They sug-
gested a multiparametric Decision Support System in order to analyze
the basis of OSCC evolvement after total remission of cancer patients.
They exploited heterogeneous sources of data (clinical, imaging and
genomic) in order to predict a possible relapse of OSCC and thus a
subsequent recurrence. A total number of 86 patients were considered
in this study, 13 of which have been identified with a relapse while
the remaining was disease free. A specific feature selection procedure
was followedwith the employment of two feature selection algorithms,
namely CFS [59] and wrapper algorithm [60]. As a result, any bias could
be avoided when selecting the most informative features of their refer-
ence heterogeneous dataset. Then the selected important variables
could be used as input vectors to specific classifiers. Before the employ-
ment of the feature selection techniques the total number of the clinical,
imaging and genomic features was 65, 17 and 40 in each category. Sub-
sequently, after the employment of the CFS algorithm the total number
of clinical, imaging and genomic data used in each classifierwas 8, 6 and
7, respectively. More specifically, among the clinical variables the most
informative ones, for each classification algorithm, were the smoker,
tumor thickness and p53 stain. Concerning the imaging and the geno-
mic features, after the utilization of the CFS algorithm, the most impor-
tant were the extra-tumor spreading, the number of lymph nodes and
the SOD2, TCAM and OXCT2 genes.

The basic idea in this study is summarized in the discrimination of
patients into those with a disease relapse and those without after the
performance of five classification algorithms. The employed algorithms
include the BNs, ANNs, SVMs, DTs and RF classifiers. After the perfor-
mance of each ML method an evaluation technique, namely ten-fold
cross-validation, was employed for evaluation purposes. Additionally,
accuracy, sensitivity and specificity were also calculated for comparison
reasons among the employed classification schemes. The analysis of
ROC curve was considered by the authors for evaluation purposes as
well. Their predictive results regarding the classification schemes
employed were obtained based on the classification of data without
performing feature selection and on the classification of data after
employing a feature selection algorithm. Regarding their outputs the
authors claimed that the BN classifier without applying any feature
Table 1c
Publications relevant to ML methods used for cancer survival prediction.

Publication ML method Cancer type No of patients Type of data

Chen Y-C et al. [50] ANN Lung cancer 440 Clinical, gene expr

Park K et al. [26] Graph-based SSL
algorithm

Breast cancer 162,500 SEER

Chang S-W et al. [32] SVM Oral cancer 31 Clinical, genomic
Xu X et al. [51] SVM Breast cancer 295 Genomic

Gevaert O et al. [52] BN Breast cancer 97 Clinical, microarra

Rosado P et al. [53] SVM Oral cancer 69 Clinical, molecular
Delen D et al. [54] DT Breast cancer 200,000 SEER

Kim J et al. [36] SSL Co-training
algorithm

Breast cancer 162,500 SEER
selection scheme performed better in the discrimination with directly
input of the clinical and imaging features (78.6% and 82.8% accuracy, re-
spectively). In a similarmanner, genomic-based classification results re-
vealed that the best performing classifier was the BN in conjunction
with the CFS algorithm (91.7% accuracy). In the final stage of their
study, the authors combined the more accurate individual predictors
(i.e. BN and BN coupled with the CFS) in order to yield a consensus de-
cision for discrimination between patients with and without an OSCC
relapse. A comparison of this approach to other studies in the literature
revealed that this proposal yields robust results than other methodolo-
gies. The proposed study illustrated in an explanatory way how the in-
tegration of heterogeneous sources of data, by means of ML classifiers,
can produce accurate results regarding the prediction of cancer recur-
rence. Furthermore, the authors usedmore than one classification tech-
nique in order to obtain robust results. It is clear thatwhen you estimate
the performance of a classifier predictor among others, then you are
able to find the most optimal tool. However, we should highlight an
important aspect of this work regarding the small sample size. Only
86 patients were considered with their clinical, imaging and genomic
features. Although their classification results were very promising, we
should consider that a relatively small sample size compared to data
dimensionality can lead to misclassification and biased predictors. An-
other interesting article published in the same year with [24] proposed
an SVM-based model for the prediction of breast cancer recurrence,
called BCRSVM [47]. The authors support the idea that the classification
of cancer patients into high-risk or low-risk groups allows experts to ad-
just a better treatment and follow-up planning. Their study is based on
the development of a predictive model regarding the breast cancer
recurrence within five years after surgery. SVM, ANN as well as
Cox-proportional hazard regression were employed for producing the
models and find the optimal one. The authors claimed that after
comparing the three models based on their resulted accuracies, they
found that the BCRSVM model outperformed the other two. From the
initial set of 193 available variables in their dataset, only 14 features
were selected based on their clinical knowledge. These data refer to
clinical, epidemiological and pathological variables of 733 patients con-
sidered out of 1.541. In the final stage of the feature selection, Kaplan–
Accuracy Validation method Important features

ession 83.5% Cross validation Sex, age, T_stage, N_stage
LCK and ERBB2 genes

71% 5-fold cross validation Tumor size, age at diagnosis,
number of nodes

75% Cross validation Drink, invasion, p63 gene
97% Leave-one-out cross

validation
50-gene signature

y AUC = 0.851 Hold-Out Age, angioinvasion, grade
MMP9, HRASLA and RAB27B genes

98% Cross validation TNM_stage, number of recurrences
93% Cross validation Age at diagnosis, tumor size,

number of nodes, histology
76% 5-fold cross validation Age at diagnosis, tumor size,

number of nodes, extension of tumor



15K. Kourou et al. / Computational and Structural Biotechnology Journal 13 (2015) 8–17
Meier analysis and Cox regression were applied which resulted in 7
variables as most informative. These features were then entered as
input to the SVMandANNclassifiers aswell as to theCox regression sta-
tistical model. In order to evaluate the performance of the models, the
authors employed the hold-out method, which splits the data sample
into two sub-sets, namely training and testing set. As in most studies
in the literature, accuracy, sensitivity and specificity were calculated
for a reliable estimation of the models. Based on these metrics, the au-
thors claimed that BCRSVM outperformed the ANN and Cox regression
models with accuracy 84.6%, 81.4% and 72.6%, respectively. Comparison
among the performance of other previously established recurrence pre-
diction models revealed that BCRSVM has superior performance. It
should be noted that this study estimated also the importance of prog-
nostic factors by means of normalized mutual information index (NMI)
[61]. Based on these calculations for each of the three predictivemodels,
they suggest that the most significant factor regarding the prediction of
breast cancer recurrence was the local invasion of tumor. However, if
someone reviews this work would certainly mention some major limi-
tations. As the authors noted, the exclusion of a large number of patients
(n = 808) due to the lack of clinical data in the research registry, influ-
enced the performance of their models. Furthermore, the fact that the
authors used only their clinical knowledge to select 14 out of 193 vari-
ablesmay have resulted in significant bias, thus giving no robust results.
Apart from this limitation, the authors could also improve the perfor-
mance of their proposed model, namely BCRSVM, by validating it with
external datasets from other sources. Among the initial list of publica-
tions resulted from our literature survey, we noticed a growing trend
the last years regarding the prediction of cancer disease by means of
SSL learning. So, we believed it would be of interest to present the
most recent study that makes use of this type of ML techniques for the
analysis of breast cancer recurrence [48]. The proposed algorithm is
based on the use of SSL for the construction of a graph model while it
integrates gene expression data with gene network information in
order to predict cancer recurrence. Based on biological knowledge, the
authors selected gene pairs that indicate strong biological interactions.
The sub-gene network identified by the proposedmethod is constituted
of the BRCA1, CCND1, STAT1 and CCNB1 genes. Their methodology is
divided in three sections including: (i) the determination of gene pairs
for building the graph model with only labeled samples, (ii) the devel-
opment of sample graphs based on informative genes and (iii) the reg-
ularization of the graph resulting in finding the labels of unlabeled
samples. The dataset used through this study consists of gene expres-
sion profiles found in the GEO repository [62] as well as of PPIs derived
from the I2D database [63]. Specifically, five gene expression datasets
were downloaded from GEO including 125, 145, 181, 249 and 111
labeled samples. These samples were classified into three groups:
(i) recurrence, (ii) non-recurrence and (iii) unlabeled samples and re-
ferred to cancer types like breast and colon cancer. Additionally, they
downloaded from the I2D database a sample of human PPIs composed
of 194.988 known, experimental and predicted interactions. After
removing the duplicated PPIs and the interactions that do not contain
proteins mapped to a gene they resulted in an amount of 108,544 inter-
actions. Based on the results of this study, the authors showed that the
gene networks derived from the SSL learningmethod includemany im-
portant genes related to cancer recurrence. They also claimed that their
approach outperforms other existingmethods in the case of breast can-
cer recurrence prediction. The estimated performance of the proposed
method compared to other known methods that make use of PPIs for
the identification of informative genes showed an accuracy of 80.7%
and 76.7% in the breast and colon cancer samples, respectively.
Ten-fold cross validation was used for estimating the experimental re-
sults. Although this type of ML methods differs considerably from
these of supervised and unsupervised learning on the algorithms that
they employ, it is clear that it provides more advantages relevant to
the collection of datasets and their sizes. Unlabeled data are cheap and
can be easier extracted. On the contrary, labeled samples may require
experts and special devices in order to be collected. This study reveals
that SSL can be an alternative to supervised approaches which usually
suffers from small labeled samples.

4.3. Prediction of cancer survival

In [26] a predictive model is developed for the evaluation of survival
in women that have been diagnosed with breast cancer, while they ad-
dressed the importance of robustness under themodel's parameter var-
iation. They compared three classification models namely SVM, ANN
and SSL based on the SEER cancer database [64]. The dataset is com-
posed of 162,500 records with 16 key features. A class variable was
also considered, namely survivability, referring to patients that had
not survived and those that had survived. Among the most informative
features are (i) the tumor size, (ii) the number of nodes and (iii) the age
at diagnosis. By comparing the best performance of each of the three
models they found that the calculated accuracy for ANN, SVM and SSL
was 65%, 51% and 71% respectively. Five-fold cross validation was used
for evaluating the performance of the predictive models. Concerning
those findings the authors proposed the SSL model as a good candidate
for survival analysis by the clinical experts.We should note that no pre-
processing steps were mentioned by the authors regarding the collec-
tion of the most informative features. They proceeded with the entire
SEER datasets and the box-whisper-plot was used for estimating the
performance variation across 25 combinations of model parameters. A
small box area of a specific model indicates more robustness and stabil-
ity under parameter combination. The small boxes of the SSL model re-
vealed its better accuracy than the other models. A relevant study was
published the next yearwhich attempts to assess the survival prediction
of non-small cell lung cancer (NSCLC) patients through the use of ANNs
[50]. Their dataset consists of NSCLC patients' gene expression raw data
and clinical data obtained from the NCI caArray database [65]. After the
preprocessing steps in their approach, the authors selected themost in-
formative survival-associated gene signatures; LCK and ERBB2 genes,
which were then used for training the ANN network. Four clinical vari-
ables, namely sex, age, T_stage and N_stage were also considered as
input variables in the ANN model. They also performed several types
of ANN architectures in order to find the optimal one for the prediction
of cancer survival. An overall accuracy of 83% was provided regarding
the predictive performance of the classification scheme. Furthermore,
their results revealed that all patients were classified in different groups
regarding their treatment protocol while 50% of them had not survived.
The evaluation of the model outcomes was done based on the Kaplan–
Meier survival analysis. They estimated the survival of patients for the
training set, the test set and the validation set with p-value b 0.00001,
while they showed that the patients in the high-risk group exhibited a
lower median overall survival in comparison to low-risk patients. Com-
pared to other studies in the literature relevant to NSCLC survival pre-
diction, this work provided more stable results. However, existing
limitations of the current article are related to the fact that the impact
of other variables related to death (such as blood clots) is not consid-
ered, which may have led to misclassification results. Furthermore, the
authors claim that their model could not be applied to other cancer
types except NSCLC. This assumption is considered as amajor limitation
in studies that the predictive models may not generalize to different
cancer types.

5. Discussion

In the present review, themost recent works relevant to cancer pre-
diction/prognosis by means of ML techniques are presented. After a
brief description of the ML branch and the concepts of the data prepro-
cessing methods, the feature selection techniques and the classification
algorithms being used, we outlined three specific case studies regarding
the prediction of cancer susceptibility, cancer recurrence and cancer
survival based on popular ML tools. Obviously, there is a large amount
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of ML studies published in the last decade that provide accurate results
concerning the specific predictive cancer outcomes. However, the iden-
tification of potential drawbacks including the experimental design, the
collection of appropriate data samples and the validation of the classi-
fied results, is critical for the extraction of clinical decisions.

Moreover, it should be mentioned that in spite of the claims that
these ML classification techniques can result in adequate and effective
decisionmaking, very few have actually penetrated the clinical practice.
Recent advances in omics technologies paved the way to further im-
prove our understanding of a variety of diseases; however more accu-
rate validation results are needed before gene expression signatures
can be useful in the clinics.

A growing trend was noted in the studies published the last 2 years
that applied semi-supervised ML techniques for modeling cancer sur-
vival. This type of algorithms employs labeled and unlabeled data for
their predictions while it has been proven that they improved the esti-
mated performance compared to existing supervised techniques [26].
SSL can be though as a great alternative to the other two types of ML
methods (i.e. supervised learning and unsupervised learning) that use,
in general, only a few labeled samples.

One of the most common limitations noted in the studies surveyed
in this review is the small amount of data samples. A basic requirement
when using classification schemes for modeling a disease is the size of
the training datasets that needs to be sufficiently large. A relatively
large dataset allows the sufficient partitioning into training and testing
sets, thus leading to reasonable validation of the estimators. A small
sized training sample, compared to data dimensionality, can result in
misclassifications while the estimators may produce unstable and
biased models. It is obvious that a richer set of patients used for their
survival prediction can enhance the generalizability of the predictive
model.

Except the data size, the dataset quality as well as the careful feature
selection schemes are of great importance for effective ML and subse-
quently for accurate cancer predictions. Choosing the most informative
feature subset for training a model, by means of feature selection
methods, could result in robust models. Additionally, feature sets that
consist of histological or pathological assessments are characterized by
reproducible values. Due to the lack of static entities when dealing
with clinical variables it is important for a ML technique to be adjusted
to different feature sets over time.

It should be noted that almost all of the works presented here, per-
formed validation tests for estimating the performance of their learning
algorithms. They employed well-known evaluation techniques that
split the initial datasets into subsets. As mentioned above, in order to
obtain accurate results for their predictive models, the authors should
select large and independent features that could result in better valida-
tion. Internal and external validation was performed in these studies
that would enable the extraction of more accurate and reliable predic-
tions while it would minimize any bias [47].

A key point to several studies, regarding their promising results, was
the fact that several ML techniques were employed as an aim to find the
most optimal one [34]. Apart from this, the combination ofmultiple data
types that would be fed as input to the models is also a trend. Looking
back to the previous decade, only molecular and clinical information
was exploited for making predictions of cancer outcomes. With the
rapid development of HTTs, including genomic, proteomic and imaging
technologies, new types of input parameters have been collected. We
found that almost all the predictions was made by integrating either
genomic, clinical, histological, imaging, demographic, epidemiological
data and proteomic data or different combinations of these types
[24,26,48,50,53].

Additionally, there has been considerable activity regarding the inte-
gration of different types of data in the field of breast cancer [66,67]. In
the DREAM project [68], several attempts to combine clinical treatment
scores with signatures based on immunohistochemistry [69] as well as
expression-based signatures such as PAM50 [70] and Oncotype DX
[71] reveal the extensive work done for improving treatment based on
the incorporation of different features.

Among the most common applied ML algorithms relevant to the
prediction outcomes of cancer patients, we found that SVM and ANN
classifiers were widely used. As mentioned to our introductory section,
ANNs have been used extensively for nearly 30 years [30]. In addition,
SVMs constitute a more recent approach in the cancer prediction/
prognosis and have been used widely due to its accurate predictive
performance. However, the choice of the most appropriate algorithm
depends on many parameters including the types of data collected,
the size of the data samples, the time limitations as well as the type of
prediction outcomes.

Concerning the future of cancer modeling new methods should be
studied for overcoming the limitations discussed above. A better statis-
tical analysis of the heterogeneous datasets used would provide more
accurate results and would give reasoning to disease outcomes. Further
research is required based on the construction ofmore public databases
that would collect valid cancer dataset of all patients that have been
diagnosed with the disease. Their exploitation by the researchers
would facilitate their modeling studies resulting in more valid results
and integrated clinical decision making.

6. Conclusions

In this review, we discussed the concepts of ML while we outlined
their application in cancer prediction/prognosis. Most of the studies
that have been proposed the last years and focus on the development
of predictive models using supervised ML methods and classification
algorithms aiming to predict valid disease outcomes. Based on the anal-
ysis of their results, it is evident that the integration ofmultidimensional
heterogeneous data, combined with the application of different tech-
niques for feature selection and classification can provide promising
tools for inference in the cancer domain.
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