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Abstract

Multiple lines of evidence support the pathogenic role of neuroinflammation in psychiatric illness. While systemic
autoimmune diseases are well-documented causes of neuropsychiatric disorders, synaptic autoimmune
encephalitides with psychotic symptoms often go under-recognized. Parallel to the link between psychiatric
symptoms and autoimmunity in autoimmune diseases, neuroimmunological abnormalities occur in classical
psychiatric disorders (for example, major depressive, bipolar, schizophrenia, and obsessive-compulsive disorders).
Investigations into the pathophysiology of these conditions traditionally stressed dysregulation of the glutamatergic
and monoaminergic systems, but the mechanisms causing these neurotransmitter abnormalities remained elusive.
We review the link between autoimmunity and neuropsychiatric disorders, and the human and experimental
evidence supporting the pathogenic role of neuroinflammation in selected classical psychiatric disorders.
Understanding how psychosocial, genetic, immunological and neurotransmitter systems interact can reveal
pathogenic clues and help target new preventive and symptomatic therapies.
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Review
Introduction
As biological abnormalities are increasingly identified
among patients with psychiatric disorders, the distinc-
tion between neurological and psychiatric illness fades.
In addition to systemic autoimmune diseases associ-
ated with psychiatric manifestations (for example,
lupus) [1], more recently, patients with acute isolated
psychosis were identified with synaptic autoimmune
encephalitides (Table 1) [2-6]. These patients are often
erroneously diagnosed with refractory primary psych-
otic disorders, delaying initiation of effective immune
therapy (Table 1). Additionally, growing evidence sup-
ports the pathogenic role of anti-neuronal antibodies
in neuropsychiatric disorders [7].
Separation of neurological and psychiatric disorders,

supported by Descartes’s conception of the ‘mind’ as an
ontologically distinct entity and by the reproducibility of
neuropathological abnormalities, dominated medicine in

the 19th and early 20th centuries [8]. Since then, an
expanding collection of reproducible biological causes,
from neurosyphilis, head trauma, stroke, tumor, demyelin-
ation and many others caused symptom complexes that
overlapped with classic psychiatric disorders [9-11]. More
recently, neuroinflammatory and immunological abnor-
malities have been documented in patients with classical
psychiatric disorders.
Peripheral immune modulators can induce psychiatric

symptoms in animal models and humans [12-19]. Healthy
animals injected with pro-inflammatory IL-1β and tumor
necrosis factor alpha (TNF-α) cytokines demonstrate ‘sick-
ness behavior’ associated with social withdrawal [12]. In
humans, injections of low-dose endotoxin deactivate the
ventral striatum, a region critical for reward processing,
producing anhedonia a debilitating depressive symptom
[14]. Approximately 45% of non-depressed hepatitis C and
cancer patients treated with IFN-α develop depressive
symptoms associated with increased serum IL-6 levels
[12,15,17,18].
Medical conditions associated with chronic inflamma-

tory and immunological abnormalities, including obes-
ity, diabetes, malignancies, rheumatoid arthritis, and
multiple sclerosis, are risk factors for depression
and bipolar disorder [10,12,13,15,17,18]. The positive
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correlation between these medical conditions and psy-
chiatric illness suggests the presence of a widespread
underlying inflammatory process affecting the brain
among other organs [10,19,20]. A 30-year population-
based study showed that having an autoimmune
disease or a prior hospitalization for serious infection
increased the risk of developing schizophrenia by 29%
and 60%, respectively [16]. Further, herpes simplex
virus, Toxoplasma gondii, cytomegalovirus, and influ-
enza during pregnancy increase the risk of developing
schizophrenia [16].
Peripheral cellular [21,22] (Table 2), and humoral im-

munological abnormalities [13,21-23] are more prevalent
in psychiatric patients relative to healthy controls. In both
pilot (n = 34 patients with major depressive disorder
(MDD), n = 43 healthy controls) and replication studies
(n = 36 MDD, n = 43 healthy controls), a serum assay
comprising nine serum biomarkers distinguished MDD
subjects from healthy controls with 91.7% sensitivity
and 81.3% specificity; significantly elevated biomarkers
for neuropsychiatric symptoms were the immunological
molecules alpha 1 antitrypsin, myeloperoxidase, and sol-
uble TNF-α receptor II [23].
We first review the association between autoimmunity

and neuropsychiatric disorders, including: 1) systemic
lupus erythematosus (SLE) as a prototype of systemic auto-
immune disease; 2) autoimmune encephalitides associated
with serum anti-synaptic and glutamic acid decarboxylase
(GAD) autoantibodies; and 3) pediatric neuropsychiatric
autoimmune disorders associated with streptococcal
infections (PANDAS) and pure obsessive-compulsive dis-
order (OCD) associated with anti-basal ganglia/thalamic
autoantibodies. We then discuss the role of innate inflam-
mation/autoimmunity in classical psychiatric disorders, in-
cluding MDD, bipolar disorder (BPD), schizophrenia,
and OCD.

Neuropsychiatric disorders associated with autoimmunity
Systemic lupus erythematosus
Between 25% to 75% of SLE patients have central nervous
system (CNS) involvement, with psychiatric symptoms
typically occurring within the first two years of disease on-
set. Psychiatric symptoms may include anxiety, mood and
psychotic disturbances [97]. Brain magnetic resonance
imaging (MRI) is normal in approximately 42% of neuro-
psychiatric SLE cases [97]. Microangiopathy and blood–
brain barrier (BBB) breakdown may permit entry of
autoantibodies into the brain [97]. These antibodies in-
clude anti-ribosomal P (positive in 90% of psychotic SLE
patients) [1], anti-endothelial cell, anti-ganglioside, anti-
dsDNA, anti-2A/2B subunits of N-methyl-D-aspartate re-
ceptors (NMDAR) and anti-phospholipid antibodies [97].
Pro-inflammatory cytokines—principally IL-6 [97], S100B

[97], intra-cellular adhesion molecule 1 [97] and matrix-
metalloproteinase-9 [98] are also elevated in SLE. Psychi-
atric manifestations of SLE, Sjögren’s disease, Susac’s
syndrome, CNS vasculitis, CNS Whipple’s disease, and
Behçet’s disease were recently reviewed [1].

Neuropsychiatric autoimmune encephalitides associated
with serum anti-synaptic and glutamic acid decarboxylase
autoantibodies
Autoimmune encephalitides are characterized by an acute
onset of temporal lobe seizures, psychiatric features, and
cognitive deficits [2,3,99-108]. The pathophysiology
is typically mediated by autoantibodies targeting synaptic
or intracellular autoantigens in association with a paraneo
plastic or nonparaneoplastic origin [3]. Anti-synaptic
autoantibodies target NR1 subunits of the NMDAR
[100,108,109], voltage-gated potassium channel (VGKC)
complexes (Kv1 subunit, leucine-rich glioma inactivated
(LGI1) and contactin associated protein 2 (CASPR2))
[101,102,106], GluR1 and GluR2 subunits of the amino-3-
hydroxy-5-methyl-l-4-isoxazolepropionic acid receptor
(AMPAR) [6,110,111] and B1 subunits of the γ-aminobu-
tyric acid B receptors (GABABR) [3,99,103]. Anti-intracel-
lular autoantibodies target onconeuronal and GAD-65
autoantigens [2,3].
The inflammation associated with anti-synaptic autoanti-

bodies, particularly NMDAR-autoantibodies, is typically
much milder than that associated with GAD-autoantibodies
or anti-neuronal autoantibodies related to systemic auto-
immune disorders or paraneoplastic syndromes [2,107].
Although neurological symptoms eventually emerge,

psychiatric manifestations, ranging from anxiety [2,3]
to psychosis mimicking schizophrenia [2-6], can initially
dominate or precede neurological features. Up to two-
thirds of patients with anti-NMDAR autoimmune en-
cephalitis, initially present to psychiatric services [5].
Anti-synaptic antibodies-mediated autoimmune enceph-
alitides must be considered in the differential of acute
psychosis [2-6]. Psychiatric presentations can include
normal brain MRI and cerebrospinal fluid (CSF) ana-
lysis, without encephalopathy or seizures [2,3,5,6,107].
We reported a case of seropositive GAD autoantibodies
associated with biopsy-proven neuroinflammation, des-
pite normal brain MRI and CSF analyses, where the pa-
tient presented with isolated psychosis diagnosed as
schizophrenia by Diagnostic and Statistical Manual of
Mental Disorders, 4th Edition (DSM-IV) criteria [2].
Further, seronegative autoimmune encephalitides can
also present with prominent neuropsychiatric distur-
bances, making diagnosis more elusive [107,112,113].
Psychiatric and neurological features associated with anti-
synaptic and GAD autoantibodies are summarized in
Table 1 [1-6,99-108,114].
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Serum anti-synaptic and GAD autoantibodies may
occur in patients with pure psychiatric disorders
[2,4,5,112,115-121]. In a prospective cohort of 29 sub-
jects who met the DSM-IV criteria for schizophrenia,
serum anti-NMDAR autoantibodies were found in
three subjects, and anti-VGKC-complex autoantibodies
were found in one subject [5]. Using more sensitive
techniques to detect immunoglobulin G (IgG) NR1 auto-
antibodies in 100 patients with definite schizophrenia, no
autoantibodies were identified [122]. However, this study
did not assess autoantibodies targeting the NR2 subunit of
NMDAR. Other studies reported significantly increased
odds of elevated (≥90th percentile non-psychiatric control
levels) NR2 antibody levels (odds ratio (OR) 2.78, 95%
confidence interval (CI) 1.26 to 6.14, P = 0.012) among in-
dividuals with acute mania (n = 43), but not in chronic
mania or schizophrenia [116].

PANDAS and pure obsessive-compulsive disorder associated
with anti-basal ganglia/thalamic autoantibodies
OCD often complicates neurological disorders involv-
ing the basal ganglia including Sydenham’s chorea,
Huntington’s disease and Parkinson’s disease. Anti-
basal ganglia antibodies are implicated in Sydenham’s
chorea [123]. PANDAS is characterized by acute exac-
erbations of OCD symptoms and/or motor/phonic tics
following a prodromal group A β-hemolytic strepto-
coccal infection. The pathophysiology is thought
to involve cross-reactivity between anti-streptococcal
antibodies and basal ganglia proteins [124]. The clin-
ical overlap between the PANDAS and pure OCD sug-
gests a common etiological mechanism [125].
Among a random cohort of 21 pure OCD patients, 91.3%

had CSF anti-basal ganglia (P <0.05) and anti-thalamic
autoantibodies (P <0.005) at 43 kDa [88], paralleling func-
tional abnormalities in the cortico-striatal-thalamo-cortico
circuitry of OCD subjects [84]. Another study documented
that 42% (n = 21) of OCD pediatric and adolescent subjects
had serum anti-basal ganglia autoantibodies at 40, 45, and
60 kDa compared to 2% to 10% of controls (P = 0.001) [7].
Anti–basal ganglia autoantibodies were detected in the sera
of 64% of PANDAS subjects (n = 14), compared to only 9%
(n = 2) of streptococcal-positive/OCD-negative controls
(P <0.001) [126]. One study found no difference between
the prevalence of anti-basal ganglia autoantibodies in OCD
(5.4%, n = 4) versus MDD controls (0%) [127]; however, a
limitation was the random use of rat cortex and bovine
basal ganglia and cortex that might have limited the identi-
fication of seropositive cases.
The basal ganglia autoantigens are aldolase C (40 kDa),

neuronal-specific/non-neuronal enolase (45 kDa doublet)
and pyruvate kinase M1 (60 kDa)—neuronal glycolytic
enzymes—involved in neurotransmission, neuronal metabolism

and cell signaling [128]. These enzymes exhibit sub-
stantial structural homology to streptococcal proteins
[129]. The latest study (96 OCD, 33 MDD, 17 schizo-
phrenia subjects) tested patient serum against pyruvate
kinase, aldolase C and enolase, specifically; a greater pro-
portion of OCD subjects were sero-positive relative to con-
trols (19.8% (n = 19) versus 4% [n = 2], P = 0.012) [130].
Yet, in the same study only one of 19 sero-positive OCD

subjects also had positive anti-streptolysin O antibody ti-
ters, suggesting that in pure OCD the anti-streptolysin O
antibody seronegativity does not exclude the presence of
anti-basal ganglia autoantibodies.
In pure OCD, sero-positivity for anti-basal ganglia/

thalamic antibodies is associated with increased levels of
CSF glycine (P = 0.03) [88], suggesting that these anti-
bodies contribute to hyperglutamatergia observed in OCD
[84,88,131]. The improvement of infection-provoked OCD
with immune therapies supports the pathogenicity of these
autoantibodies [132]. A large NIH trial assessing the effi-
cacy of intravenous immunoglobulin (IVIG) for children
with acute onset OCD and anti-streptococcal antibodies is
ongoing (ClinicalTrials.gov: NCT01281969). However, the
finding of slightly higher CSF glutamate levels in OCD pa-
tients with negative CSF anti-basal ganglia/thalamic anti-
bodies as compared to those with positive CSF antibodies
suggests that non-immunological mechanisms may play
role in OCD [84]. Other mechanisms, including cytokine-
mediated inflammation (Table 2), are also hypothesized.

Psychiatric disorders associated with innate inflammation
Disorders of innate inflammation/autoimmunity occur in
some patients with classical psychiatric disorders. We
discuss innate inflammation-related CNS abnormalities—
including glial pathology, elevated cytokines levels, cyclo-
oxygenase activation, glutamate dysregulation, increased
S100B levels, increased oxidative stress, and BBB dysfunc-
tion—in MDD, BPD, schizophrenia, and OCD. We also
describe how innate inflammation may be mechanistically
linked to the traditional monoaminergic and glutamatergic
abnormalities reported in these disorders (Figures 1 and 2).
The therapeutic role of antiinflammatory agents in psychi-
atric disorders is also reviewed.

Astroglial and oligodendroglial histopathology
Astroglia and oligodendroglia are essential to neural meta-
bolic homeostasis, behavior and higher cognitive functions
[54-56,133-136]. Normal quiescent astroglia provide energy
and trophic support to neurons, regulate synaptic neuro-
transmission (Figure 2), synaptogenesis, cerebral blood
flow, and maintain BBB integrity [134,136,137]. Mature
oligodendroglia provide energy and trophic support to neu-
rons and maintain BBB integrity, and regulate axonal repair
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Table 1 Clinical features of anti-synaptic and anti-glutamic acid decarboxylase autoimmune encephalitides

Clinical features NMDAR,
(NR1 subunit)

VGKC-complex
(Kv1 subunit, LGI1, CASPR2)

AMPAR
(GluR1, GluR2
subunits)

GABABR
(B1 subunit)

GAD (65 kDa)

Age (years) 18 to 50 Less than 50 Less than 50 60 to 70 Less than 50

Sex (% female) 75% 66% Greater than 50% 50% Less than 50%

Etiology

Paraneoplastic
(%, and commonly
occurring cancers)

9% to 56% have ovarian teratoma,
predominately females less than
18 years of age

10% to 30%; low titers; SCLC; thymoma;
CASPR2>>LGI-1

50% to 70%; SCLC,
breast carcinoma;
thymoma

50%; SCLC
thymoma

Rarely associated
with cancer

Nonparaneoplastic Approximately 50% 70%; high titers 30% to 50% 50% Frequent

Anatomical
subtype

Limbic
encephalitis

Less common Typical Typical Typical Typical

Panencephalitis Typical Rare (involving basal ganglia) Unclear Unclear Less common

CSF abnormal (%) 90% 40% 90% 80% 20%

Psychiatric
Features

Common and pronounced: Anxiety, agitation,
paranoid delusions, perceptual changes, erratic
behavior, speech changes, severe psychosis

Agitation, anxiety, panic-attacks, depression,
psychosis, hallucinations, delusions, delirium,
confabulation

Atypical psychosis,
which can be isolated

Paranoia, behavioral
changes

Depression, atypical
psychosis (case reports)

Neurological
Features

Early features: seizures, cognitive/memory
impairment; Late features: catatonia, orofacial and
limb dyskinesia, dystonia, autonomic dysfunction,
reduced level of consciousness, aphasia, central
hypoventilation

LGI1: limbic encephalitis (more common):
amnesia temporal lobe seizures, tonic seizures,
and hypernatremia. Extrapyramidal symptoms
(choreoathetosis) and extra-temporal
(faciobrachial dystonic) seizures (less common).
CASPR2: limbic encephalitis, Morvan's syndrome
(neuromyotonia, REM disorder, insomnia, and
autonomic dysfunction).

Memory impairment,
temporal lobe seizures

Prominent temporal lobe
seizures, memory
impairment, concomitant
glutamic acid decarboxylase
autoantibodies

Stiff-person syndrome,
cerebellar ataxia,
cognitive/memory
impairment, epilepsy
(often mesial temporal)

Response to
treatment

Highly responsive to immune therapy and
removal of ovarian teratoma

Highly responsive to immune therapy Moderately responsive
to immune therapy

Moderately responsive
to immune therapy

Often refractory to
immune therapy

Relapse risk 20% often with psychiatric signs; may indicate
tumor reoccurrence

Rarely relapses Tendency to relapse
(based on small case
series)

Tendency to relapse (based
on small case series)

Tendency to be chronic
and relapse

AMPAR, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)-propanoic acid receptor; CASPR-2, contactin associated protein 2; CNS, central nervous system; CSF, cerebrospinal fluid; GABABR, gamma aminobutyric acid B receptor;
GAD, glutamic acid decarboxylase; LGI-1, leucine-rich glioma inactivated-1; NMDAR, N-methyl-D-aspartate receptor; REM, rapid eye movements; SCLC small cell lung cancer; VGKC; voltage-gated potassium channel.
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and myelination of white matter tracts providing inter- and
intra-hemispheric connectivity [54-56]. Both astroglia and
oligodendroglia produce antiinflammatory cytokines that
can down-regulate harmful inflammation [52,55].
In MDD, astroglial loss is a consistent post-mortem

finding in functionally relevant areas, including the an-
terior cingulate cortex, prefrontal cortex, amygdala, and
white matter [35-38,42-46,55,138-147], with few excep-
tions [42,43]. Post-mortem studies revealed reduced glial
fibrillary acidic protein (GFAP)-positive astroglial density
primarily in the prefrontal cortex [37,38] and amygdala
[36]. A large proteomic analysis of frontal cortices from
depressed patients showed significant reductions in three
GFAP isoforms [39]. Although in one study that reported
no significant glial loss, subgroup analysis revealed a sig-
nificant decrease (75%) in GFAP-positive astroglial density
among study subjects younger than 45 years of age [35]. A
morphometric study similarly showed no changes in glial
density in late-life MDD brains [148]. We hypothesize that
the apparent absence of astroglial loss among older MDD
patients may reflect secondary astrogliosis [35] that is as-
sociated with older age [42,50] rather than a true negative.
Animal studies are consistent with human studies

showing astroglial loss in MDD. Wistar-Kyoto rats—
known to exhibit depressive-like behaviors—revealed
reduced astroglial density in the same areas as observed
in humans [40]. Administration of the astroglial-toxic
agent, L-alpha-aminoadipic acid, induces depressive-
like symptoms in rats, suggesting that astroglial loss is
pathogenic in MDD [41].
Post-mortem studies of MDD subjects documented re-

duced oligodendroglial density in the prefrontal cortex
and amygdala [54-57,66], which may correlate with brain
MRI focal white matter changes occasionally noted in
some MDD patients [57]. However, microvascular abnor-
malities may also contribute to these changes [57].
In BPD, some studies demonstrate significant glial loss

[138,143,149,150], while others do not [37,44-46]. These
inconsistent findings may result from lack of control for:
1) treatment with mood stabilizers, because post-hoc ana-
lysis reported by some studies showed significant reduc-
tion in glial loss only after controlling for treatment with
lithium and valproic acid [46]; 2) familial forms of BPD, as
glial loss is particularly prominent among BPD patients
with a strong family history [143]; and/or, 3) the predom-
inant state of depression versus mania, as glial loss
is frequent in MDD [35-38,42-46,55,138-147]. Whether
astroglia or oligodendroglia account for the majority of
glial loss is unclear; while proteomic analysis revealed a
significant decrease in one astroglial GFAP isoform [39],
several other post-mortem studies found either unchanged
[36,37] or reduced GFAP-positive astroglial expression in
the orbitrofrontal cortex [47], or reduced oligodendroglial
density [54-56,58,59].

In schizophrenia, astroglial loss is an inconsistent finding
[48,150]. While some studies showed no significant
astroglial loss [42,50,51], several others found reduced
astroglial density [37,38,43,44,48,49,151] and significant re-
ductions in two GFAP isoforms [39]. Inconsistent findings
may result from: 1) MDD comorbidity, which is often asso-
ciated with glial loss; 2) age variation, as older patients have
increased GFAP-positive astroglia [35,42,50]; 3) regional
[150] and cortical layer variability [48]; 4) treatment with
antipsychotic drugs, as experimental studies show both re-
duced [152] and increased [153] astroglial-density related
to chronic antipsychotic treatment [70]; and 5) disease
state (for example, suicidal versus non-suicidal behavior)
[154]. Post-mortem studies documented oligodendroglial
loss [54,56,60-65,148,155,156], particularly in the prefrontal
cortex, anterior cingulate cortex, and hippocampus [148].
Ultrastructural examination of the prefrontal region
showed abnormally myelinated fibers in both gray and
white matter; both age and duration of illness were posi-
tively correlated with the white matter abnormalities [157].
In contrast to neurodegenerative disorders that are

commonly associated with astroglial proliferation [136],
psychiatric disorders are instead associated with either
reduced or unchanged astroglial density [138]. The lack
of increased glial density in early-onset psychiatric disor-
ders [44,138] may reflect the slower rate of degenerative
progression in psychiatric illnesses [138].
We postulate that degenerative changes associated

with psychiatric disorders are subtler and not severe
enough to provoke astroglial intracellular transcription
factors that positively regulate astrogliosis, including sig-
nal transducer activator of transcription 3 and nuclear
factor kappa B (NF-κB) [136].
While the majority of post-mortem studies focused on

the alteration of glial density in MDD, BPD, and schizo-
phrenia, others described alteration of glial cell morph-
ology, with mixed findings. In MDD and BPD, glial size
is either increased or unchanged [55]. One study found
reduced glial size in BPD and schizophrenia but not in
MDD [43]. A post-mortem study of depressed patients
who committed suicide found increased astroglial size in
the anterior cingulate white matter but not in the cortex
[158]. One study in schizophrenic subjects found mark-
edly decreased astroglial size in layer V of the dorsolat-
eral prefrontal cortex, notwithstanding that astroglial
density is double that of controls in the same layer [48].
The mixed results may partially reflect earlier studies of
glial alterations in psychiatric illnesses that did not spe-
cify astroglia versus oligodendroglia [148].
Glial loss in psychiatric illnesses may contribute to

neuroinflammation through several mechanisms, in-
cluding abnormal cytokine levels (see Cytokine section),
dysregulated glutamate metabolism (see Glutamate
section), elevated S100B protein (see S100B section),
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and altered BBB function (see Blood brain barrier sec-
tion), resulting in impaired cognition and behavior
[44,45,54,133,159].

Microglial histopathology
Microglia are the resident immune cells of the CNS.
They provide ongoing immune surveillance and regulate
developmental synaptic pruning [160,161]. CNS injury
transforms ramified resting microglia into activated
elongated rod-shaped and macrophage-like phagocytic
amoeboid cells that proliferate and migrate towards the
site of injury along chemotactic gradients (that is, micro-
glial activation and proliferation (MAP)) [161]. Human
microglial cells express NMDARs that may mediate
MAP leading to neuronal injury [162].
In MDD, BPD and schizophrenia, the results of post-

mortem studies investigating the presence of MAP are
mixed. Post-mortem studies revealed elevated MAP in only
one out of five MDD subjects [67]. In some BPD disorder
patients, increased human leukocyte antigen-DR-positive
microglia displaying thickened processes were documented
in the frontal cortex [69]. In schizophrenia, while some
studies reported elevated MAP relative to controls, others
showed no difference between groups [22,67,70]. In a
post-mortem study assessing MAP in MDD and BPD;
quinolinic acid-positive microglial cell density was in-
creased in the subgenual anterior cingulate cortex and an-
terior midcingulate cortex of MDD and BPD patients who
committed suicide relative to controls [53]. Post-hoc ana-
lysis revealed this increased MAP was solely attributable to
MDD and not BPD, since the positive microglial immuno-
staining in MDD subjects was significantly greater than that
in the BPD subgroup in both the subgenual anterior cingu-
late and midcingulate cortices, and since the microglia
density was similar in both BPD and control groups [53]. A
study comparing all three disorders (nine MDD, five BPD,
fourteen schizophrenia, ten healthy controls) demonstrated
no significant difference in microglial density across the
four groups [68].
These mixed results may be attributed to variable

microglial immunological markers used among different
studies [70] and/or the failure to control for disease se-
verity [22,53,68]. Notably, three post-mortem studies of
MDD and schizophrenic subjects documented a strong
positive correlation between MAP and suicidality in the
anterior cingulate cortex and mediodorsal thalamus, in-
dependent of psychiatric diagnosis [22,53,68]. Thus,
MAP may be a state rather than a trait marker for MDD
and schizophrenia.
In OCD, animal models suggest that dysfunction and re-

duction of certain microglial phenotypes, such as those
expressing the Hoxb8 gene, which encodes homeobox tran-
scription factor, can cause OCD-like behavior [71,72].

Hoxb8 knockout mice exhibit excessive grooming behavior
and anxiety in association with reduced microglial density
[71,72]. This excessive grooming behavior resembles the
behavioral characteristics of human OCD. Hoxb8 injection
in adult Hoxb8 knockout mice reverses microglial loss and
restores normal behavior [71,72]. The role of these specific
microglial phenotypes in human OCD is unclear.
Experimental data suggest that MAP comprises dis-

tinctive harmful and neuroprotective phenotypes (Figure 2).
Harmful microglia do not express major histocompatibility
complex II (MHC-II) and, therefore, cannot act as antigen
presenting cells (APC) [163,164]; they promote deleterious
effects [17,69,165] through proinflammatory cytokine
production, nitric oxide synthase signaling [17,166], pro-
moting glial and BBB-pericyte/endothelial cyclooxygenase-
2 (COX-2) expression [167], inducing astroglial S100B
secretion (see S100B section), and microglial glutamate
release [17,136,168,169]. Harmful microglia also secrete
prostaglandin E-2 (PGE-2) that promotes proinflammatory
cytokines production, which in turn increases PGE-2 levels
in a feed-forward cycle [29]. Further, PGE-2 stimulates
COX-2 expression, which mediates the conversion of ara-
chidonic acid to PGE-2, setting up another feed-forward
cycle [29].
Neuroprotective microglia by contrast can: 1) express

MHC-II in vivo and in vitro [163,166] and act as cognate
APC (Figure 2) [163,164,166]; 2) facilitate healing and limit
neuronal injury by promoting secretion of antiinflammatory
cytokines [17], brain-derived neurotrophic factor [17],
and insulin-like growth factor-1 [166]; and 3) express exci-
tatory amino acid transporter-2 (EAAT2) that eliminates
excess extracellular glutamate [163,166], and promotes
neuroprotective T lymphocytic autoimmunity (Figure 2)
[163,164]. However, more studies are needed to confirm
the contributory role of neuroprotective microglia to
neuropsychiatric disorders in humans.
In vitro animal studies suggest that the ratio of harm-

ful versus neuroprotective microglia can be influenced
by the net effect of inflammatory counter-regulatory
mechanisms [15,74,164,166]. These mechanisms include
the number of neuroprotective CD4+CD25+FOXP3+ T
regulatory cells ((T regs) Figure 1) [15,74,164,166] and
brain cytokine levels; low IFN-γ levels may promote
neuroprotective microglia (Figure 2) [166], whereas high
levels can promote the harmful phenotype [166].

The role of cytokines
Proinflammatory cytokines include IL-1β, IL-2, IL-6,
TNF-α and IFN-γ. They are secreted primarily by micro-
glia, Th1 lymphocytes and M1 phenotype monocytes/
macrophages (Figure 1) [15,170]. They promote harmful
inflammation. Antiinflammatory cytokines include IL-4,
IL-5 and IL-10. They are primarily secreted by astroglia,
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Table 2 Summary of neuroinflammatory and immunological abnormalities observed in pure psychiatric disorders

Abnormalities Major depression Bipolar disorder Schizophrenia OCD

Genetics

Concordance 37% to 38% [24] 40% to 70% [25] 40% to 50% [26] 80% to 87% [27]

GWAS genes Tryptophan hydroxylase-1,
BDNF, 5-HTTLPR, PBRM1 [24]

Tryptophan hydroxylase-2, Voltage-gated Ca2+

channel α1C, PBRM1, D22S278, ANK3 [25]
GABAAR B2 subunit, COMT, Neuregulin-1,
DISC1 [26] HLA (B, C, DRA1, and DRB1;
antigen presentation, autoimmunity) [28]

EAAT3 (SLC1A1) [27]

Immunologic genes Proteasome β4 subunit (antigen processing)
[21], T-box 21 (T cell differentiation) [21],
IL-1 [29], TNF-.alpha; [29], G-765C (COX-2)
[30], BDNF [24]

BDNF gene [31]; consistent with
decreased serum BDNF levels

S100B [32,33]; consistent with
increased brain and CSF S100B levels

TNF-α [34]

Astroglia

Density Decreased (highly reproducible)
[35-41]; few exceptions [42,43]

Reduced or no change [37,44-46] Reduced or no change
[37-39,47-49] [42,50,51]

Insufficient data

TDO, KYNA . . . KYNA is increased [52,53] Both are increased [21,52] . . .

Oligodendroglia

Density Decreased [54-58] Decreased [54,56-65] Decreased [54-58,66] Insufficient data

Microglial activation

Trait and State
markers

Trait: no [53,67,68]; State (suicidal):
yes [22,68]

Mixed data [53,68,69] Trait: no [70]; State (suicidal):
yes [22,68]

Insufficient data; yet, Hoxb8
(−/−) mice exhibit OCD-like
behavior [71,72]

IDO, KMO Both are increased [29] . . . Both are decreased [21],[73] . . .

Quinolinic acid Increased [53] . . . . . . . . .

Lymphocytes

T cells, T regs,
B cells

T cells are decreased [15,74];
T regs are decreased [15,74]

T regs are increased [75] T cells are decreased [76]; ‘CD4+:
CD8+ ratio’ is decreased [76];
B cells are increased [21,76]

‘CD4+: CD8+ ratio’
is decreased
[77] (normalized
after SRI treatment)

EAAT

EAATs 1,2
(astroglial)

Both are decreased in the
DLPFC and ACC [78]

EAAT1 is increased, EAAT2
is decreased in PFC [79]

Both are increased in PFC [79-81],
and thalamus [82]

. . .

EAATs 3,4
(neuronal)

EAAT4 is decreased in
striatum [83]

Both are decreased in
striatum [79]

EAAT3 is decreased in striatum [83];
Both are increased in PFC [79-81]
and thalamus [82]

EAAT3 is decreased
in CSTC circuitry
[77,84]

Glutamate, GABA

Post-mortem
brain tissue

Glutamate and D-serine are
increased in the frontal cortex [85,86]

Glutamate and D-serine are
increased in DLPFC and
hippocampus [86]. Increased
glutamine in ACC/Parietal-OCC [78]

Glutamine synthetase is
increased [87]

. . .

CSF, serum Glutamate is increased in both;
serum levels normalized after 5-week

. . . . . . CSF glutamate is increased
[88]; normalized after one
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Table 2 Summary of neuroinflammatory and immunological abnormalities observed in pure psychiatric disorders (Continued)

antidepressant course [85,86];
GABA is decreased in both [85,86]

dose of ketamine
(NMDAR antagonist)

1H MRS Glutamate is increased [85,89] Decreased
glutamine synthetase, glutamine, and
GABA (ACC, PFC, DMPFC, VMPFC, amygdala,
hippocampi; normalized with ECT and
disease remission) [78]

GLX is increased in medial PFC
(ACC, DLPFC, parietal-OCC, OCC,
insula, hippocampus) [78,79];
independent of disease state.

Glutamate is decreased in medial
PFC (including ACC); Increased
glutamine synthetase, glutamine,
and ‘glutamine:glutamate ratio’
in PFC [90]

GLX is increased in left
caudate and OFC
(normalized after
successful SRI treatment);
GLX is decreased in
ACC [84]

Cytokines
(serum)

Phenotype Proinflammatory are increased [91] Proinflammatory are increased [92];
IL-1β, IL-1R, and IL-6 correlate with
post-mortem brain mRNA
expression [69]

Mixed data: antiinflammatory
and/or proinflammatory, are
increased [52,94,93]

Mixed data: TNF-α
is increased or decreased;
IL-6 is increased or no
change; IL-1β is
decreased [95]

Trait and State
markers

Trait markers: TNF-α, IL-6, and sIL-2R
are increased [91]State markers (suicidal):
TNF-α and IL-6 are increased, and IL-2
is decreased [96].

Depressive state: IL-6
Euthymic state: IL-4
Manic state: IL-2, IL-4,
IL-6 [92]

Trait makers: IFN-γ,
TNF-α, IL-12, sIL-2R, IL-1RA,
sIL-2R [93] State markers: IL-1β,
IL-6, TGF-β [93]

Trait markers: mixed data
LPS-induced:
TNF-α and IL-6 are
decreased [95]

5-HTTLPR, serotonin-transporter-linked polymorphic region; ANK3, ankyrin-3; ACC, anterior cingulate cortex; BDNF, brain-derived neurotrophic factor, BPD, bipolar disorder; COMT, catechol-O-methyl transferase; COX-2,
cyclooxygenase 2; CSF, cerebrospinal fluid, CSTC, cortico-striatal-thalamic-cortico; DLPFC, dorsolateral prefrontal cortex; DMPFC, dorsomedial prefrontal cortex; EAAT, excitatory amino acid transporter: (EAATs 1 and 2 are
expressed by astroglia, EAAT3 is expressed intracellularly in the post-synaptic neurons, and EAAT4 is expressed by Purkinje cells and frontal neurons); GABA, gamma aminobutyric acid; GLX 1H MRS: (detectable
glutamate, glutamine, gamma aminobutyric acid composite); GWAS, genome-wide association study (single nucleotide polymorphisms identified across the entire genome of those with a given disorder (fourth row);
includes immunologic genetic abnormalities (fifth row) whenever applicable); 1H MRS, proton magnetic resonance spectroscopy; HLA, human leukocyte antigen; IDO, indoleamine-2,3-oxygenase; IFN-γ, interferon
gamma; IL, interleukin, IL-1RA; interleukin 1 receptor antagonist; KMO, kynurenine monooxygenase; KYNA, kynurenic acid; MDD, major depressive disorder; OCC, occipital cortex; OCD, obsessive-compulsive disorder;
OFC, orbitofrontal cortex; PBRM1, protein polybromo-1; PFC, prefrontal cortex; SRI, serotonin reuptake inhibitor; T regs, CD4+CD25+FOXP3+ T regulatory cells; TDO, tryptophan-2,3-dioxygenase, TGF-β, transforming
growth factor beta; TNF-α, tumor necrosis factor alpha; VMPFC, ventromedial prefrontal cortex.

N
ajjar

et
al.Journalof

N
euroinflam

m
ation

2013,10:43
Page

8
of

24
http://w

w
w
.jneuroinflam

m
ation.com

/content/10/1/43



Th2 lymphocytes, T regs and M2 phenotype monocytes/
macrophages [15,52,74]. They can limit harmful inflamma-
tion [15,74] by converting the proinflammatory M1-pheno-
type into the beneficial antiinflammatory M2-phenotype
[15], and potentially by promoting the neuroprotective
microglial phenotype [15,17,74,163,166]. The role of proin-
flammatory/antiinflammatory cytokines in psychiatric dis-
orders is supported by several lines of evidence (Figure 1,
Table 2) [15,17,29,52,74].
In MDD, the most recent meta-analysis (29 studies,

822 MDD, 726 healthy controls) of serum proinflamma-
tory cytokines confirmed that soluble IL-2 receptor, IL-6
and TNF-α levels are increased in MDD (trait markers)
[91], while, IL-1β, IL-2, IL-4, IL-8 and IL-10, are not
statistically different from controls [91]. In a primary
cytokine study comparing MDD subgroups (47 suicidal-
MDD, 17 non-suicidal MDD, 16 health controls),
both sera IL-6 and TNF-α were significantly higher,
while IL-2 levels were significantly lower in MDD sub-
jects who committed suicide relative to both other
groups [96]. This finding suggests that IL-6 and TNF-α
are also state markers of MDD [96]. The decrease of
serum IL-2 levels associated with acute suicidal behav-
ior may reflect increased binding to its upregulated re-
ceptor in the brain; parallel to the aforementioned
meta-analysis showing increased soluble IL-2 receptor
in MDD [91]. Studies investigating the clinical signifi-
cance of cytokines in MDD showed that serum cytokine
levels are elevated during acute depressive episodes
[171,172] and normalized following successful, but not
failed, treatment with antidepressants [17] and electro-
convulsive therapy [29]; these findings suggest a pos-
sible pathogenic role for cytokines.
In BPD, serum cytokine alterations were summarized in

a recent review; TNF-α, IL-6 and IL-8 are elevated during
manic and depressive phases, whereas IL-2, IL-4 and IL-6
are elevated during mania [92]. Other studies showed that
sera IL-1β and IL-1 receptor levels are not statistically dif-
ferent from healthy controls [92], although tissue studies
documented increased levels of IL-1β and IL-1 receptor in
the BPD frontal cortex [69].
In schizophrenia, results from studies investigating cyto-

kine abnormalities are conflicting (Table 2). While some
studies found both decreased serum proinflammatory (IL-2,
IFN-γ) and increased serum and CSF antiinflammatory
cytokines (IL-10) [52], others found elevated serum pro-
and antiinflammatory cytokines, with a proinflammatory
type dominance [22,173,174]. One cytokine meta-analysis
(62 studies, 2,298 schizophrenia, 858 healthy controls)
showed increased levels of IL-1R antagonist, sIL-2R and
IL-6 [174]. However, this study did not account for the
use of antipsychotics, which is thought to enhance
proinflammatory cytokine production [52]. A more recent
cytokine meta-analysis (40 studies, 2,572 schizophrenics,

4,401 controls) that accounted for antipsychotics, found
that TNF-α, IFN-γ, IL-12 and sIL-2R are consistently ele-
vated in chronic schizophrenia independent of disease ac-
tivity (trait markers), while IL-1β, IL-6 and transforming
growth factor beta positively correlate with disease activity
(state markers)[173]. Cell cultures of peripheral blood
mononuclear cells (PBMC) obtained from schizophrenic
patients produced higher levels of IL-8 and IL-1β spontan-
eously as well as after stimulation by LPS, suggesting a
role for activated monocytes/macrophages in schizophre-
nia pathology [175].
In OCD, results from a random survey of sera and CSF

cytokines, and LPS-stimulated PBMC studies, are inconsist-
ent [93-95,176-179]. There is a correlation between OCD
and a functional polymorphism in the promoter region of
the TNF-α gene [34], although low-powered studies did not
confirm this association [180]. Therefore, the mixed results
from studies documenting either increased or decreased
TNF-α cytokine levels [93,176-178] may reflect their vari-
able inclusion of the subset of OCD subjects with this par-
ticular polymorphism in their cohorts.

Cytokine response polarization in major depression and
schizophrenia
Cytokine response phenotypes are classified as either
proinflammatory Th1 (IL-2, IFN-γ) or antiinflammatory
Th2 (IL-4, IL-5, IL-10) according to the immune functions
they regulate. While Th1 cytokines regulate cell-mediated
immunity directed against intra-cellular antigens, Th2 cyto-
kines regulate humoral immunity directed against extra-
cellular antigens [29,52]. Th1 cytokines are produced by
Th1 lymphocytes and M1 monocytes whereas Th2 cyto-
kines are produced by Th2 lymphocytes and M2 mono-
cytes [29,52]. In the brain, microglia predominantly secrete
Th1 cytokines, whereas astroglia predominately secrete
Th2 cytokines [29,52]. The reciprocal ratio of Th1:Th2 cy-
tokines, henceforth ‘Th1-Th2 seesaw’, is influenced by the
proportion of activated microglia (excess Th1) to astroglia
(excess Th2) and the interplay between activated T cells
and excessive CNS glutamate levels that we hypothesized
to favor Th1 response (Figure 2) [29,163,166].
The Th1-Th2 seesaw imbalance can influence trypto-

phan metabolism by altering its enzymes [21,52] thereby
shifting tryptophan catabolism towards kynurenine (KYN)
and KYN catabolism towards either of its two down-
stream metabolites; microglia quinolinic acid that is Th1
response-mediated or astroglial kynurenic acid (KYNA)
(Figure 1) that is Th2 response-mediated [21,29,170].
Tryptophan metabolism enzymes affected by Th1-Th2

seesaw include (Figure 1): indoleamine 2,3-dioxygenase
(IDO) expressed by microglia and astroglia, the rate-
limiting enzymes that mediate the conversion of trypto-
phan to KYN and serotonin to 5-hydroxyindoleacetic acid
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[21,29]. Kynurenine 3-monooxygenase (KMO), solely
expressed by microglia, is the rate-limiting enzyme that
converts KYN to 3-hydroxykynurenine (3-OH-KYN),
which is further metabolized to quinolinic acid [21,29].
Tryptophan-2,3-dioxygenase (TDO), expressed solely
by astroglia, is the rate-limiting enzyme that converts

tryptophan to KYN [21,29]. Kynurenine aminotransferase
(KAT), expressed primarily in astroglial processes, is the
rate-limiting enzyme that mediates the conversion of KYN
to KYNA [21,29].
Th1 cytokines activate microglial IDO and KMO,

shifting microglial KYN catabolism towards quinolinic

Figure 1 Influence of the ‘Th1-Th2 cytokine seesaw’ generated by glial cells and T lymphocytes on tryptophan/kynurenine
metabolism-mediated serotonergic and glutamatergic abnormalities in major depressive disorder and schizophrenia. Influence of the
’Th1-Th2 seesaw’ generated by glial cells and T lymphocytes (first of three bracketed sections) on the enzymes controlling tryptophan/kynurenine
metabolism (second of three bracketed sections) leading to serotonergic and glutamatergic abnormalities in major depressive disorder and
schizophrenia (third of three bracketed sections). Microglial and astroglial IDO is the rate-limiting enzyme catalyzing the conversion of tryptophan
to KYN and serotonin to 5HTT. KMO, which is solely expressed by microglia, is the rate-limiting enzyme catalyzing the conversion of KYN to
3-OH-KYN. TDO, which is solely expressed by astroglia, is the rate-limiting enzyme catalyzing the conversion of tryptophan to KYN. KAT, expressed
primarily in astroglial processes, is the rate-limiting enzyme catalyzing the conversion of KYN to KYNA. The microglial enzymes IDO and KMO are
upregulated by Th1 cytokines and downregulated by Th2 cytokines. An imbalance of the ‘Th1-Th2 seesaw’ shifts kynurenine catabolism either towards
microglial quinolinic acid (NMDA agonist) as in major depressive disorder, or towards astroglial kynurenic acid (NMDA antagonist) as in schizophrenia.
5HIAA, 5-Hydroxyindoleacetic acid; α7nAchR, alpha 7 nicotinic acetylcholine receptors; BBB, blood–brain barrier; IDO, indoleamine-2,3-dioxygenase; IL,
interleukin; IFN-γ, interferon gamma; KAT, kynurenine aminotransferase; KMO, kynurenine 3-monooxygenase; KYN, kynurenine; KYNA, kynurenic acid;
NMDAR, N-methyl-D-aspartate receptor; TNF-α, tumor necrosis factor alpha; T regs, CD4+CD25+FOXP3+ T regulatory cells; TDO, tryptophan-2,3-
dioxygenase; Th, T-helper.
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acid (NMDAR agonist) synthesis, while Th2 cytokines in-
activate microglial IDO and KMO, shifting astroglial KYN
catabolism towards TDO- and KAT-mediated KYNA
(NMDAR antagonist) synthesis (Figure 1) [21,29].
Th1 and Th2 predominant immunophenotypes have

been proposed for MDD and schizophrenia, respectively,
based on peripheral, rather than CNS, cytokines patterns
[52,173]. We believe that peripheral cytokines patterns are
unreliable surrogate markers of those in the CNS. Indeed,
peripheral cytokine levels can be influenced by many
extra-CNS variables, which are not consistently controlled
for in several of the peripheral cytokines studies, including:
1) age, body mass index, psychotropic medications, smok-
ing, stress and circadian fluctuations; 2) the influence of

disease activity/state on the production of selected cyto-
kines synthesis [95,173]; and 3) the effects of psychotropic
agents on cytokines production [52]. The short half-lives
and the rapid turnover of serum cytokines [181] (for ex-
ample, 18 minutes for TNF-α [182] versus 60 minutes for
IL-10 [183]), may further limit the reliability of interpreting
their levels measured from random sera sampling.
In MDD, there is a consensus that a proinflammatory

Th1 immunophenotype response predominates (Table 2)
[17,29]. High levels of quinolinic acid in post-mortem
MDD brains [53], suggest the presence of an upregulated
Th1 response (Figure 1) [21,29]. Elevated CNS quinolinic
acid can promote calcium influx mediated apoptosis of hu-
man astroglia [184], which hypothetically may blunt the

Figure 2 Hypothesis of MDD: excess CNS glutamate may contribute to excess Th1- response promoting neuroprotective microglia.
Peripheral resting T lymphocytes constitutively express mGluR5. Activated T lymphocytes, but not resting T lymphocytes, can cross the BBB. In the
animal models, the interaction between TCR of activated T lymphocytes and their cognate antigen presenting cells downregulates mGluR5 and
induces mGluR1 expressions. Experimental data suggest that excess glutamate can bind to lymphocytic mGluR1 receptors, promoting production
of Th1 cytokines. Hypothesis: In some MDD patients, parallel to experimental data, binding of excess CNS glutamate to induced lymphocytic
mGluR1 receptors may contribute to an excess Th1 response, including IFN-γ. We further hypothesize that IFN-γ in a small quantity, similar to its
in vitro effects on microglia, may induce microglial expression of MHC-II and EAAT-2, allowing microglia to serve as cognate antigen presenting
cells and to provide glutamate reuptake function, thereby transforming harmful microglia into neuroprotective phenotype that participate in
eliminating excess extracellular glutamate and reducing its excitotoxicity. Therefore, we hypothesize that excess Th1 response in some MDD
patients is a double-edged sword; promoting harmful inflammation and serving as a beneficial counter-regulatory mechanism that may limit
excess glutamate-related neuroexcitotoxicity? AMPA, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)-propanoic acid; APC, antigen presenting cell; BBB,
blood–brain barrier; CNS, central nervous system, EAAT, excitatory amino acid transporter; IDO, indoleamine-2,3-dioxygenase; IFN-γ, interferon
gamma; IL, interleukin; KMO, kynurenine 3-monooxygenase; mGluR1/5, metabotropic glutamate receptors 1 and 5; MHC II, major
histocompatibility complex class 2; NMDA, N-methyl-D-aspartate; NO, nitric oxide; NR1, glycine site; QA, quinolinic acid; TCR, T-cell receptor;
Th, T-helper; TNF-α, tumor necrosis factor alpha.
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astroglia-derived Th2 response [29], tipping Th1 versus
Th2 seesaw balance in favor of the microglial Th1 response.
CNS hyposerotonergia [29] adds further support to an
excess Th1 response, which is shown to reduce CNS sero-
tonin synthesis [185] and to increase its degradation
(Figure 1) [21,29].
CNS hyperglutamatergia may also contribute to an

excess Th1 response in the brain (Figure 2). An in vitro
study suggests that the peripheral resting T lymphocytes
constitutively express metabotropic glutamate receptor
5 (mGluR5) [164], whose binding to glutamate inhibits
lymphocytic IL-6 release, thereby downregulating auto-
reactive T-effector cell proliferation [164]. Activated T
lymphocytes, but not resting T lymphocytes, can cross
the BBB [37].
Experimental data suggest that the interaction between

T cell receptors of activated T lymphocytes and their cog-
nate antigen presenting cells can downregulate mGluR5
and induce mGluR1 expressions [164]. In animal models,
binding of excess glutamate to lymphocytic mGluR1 re-
ceptors promotes production of Th1 cytokines, including
IFN-γ [164].
We hypothesize that in some MDD patients, parallel to

experimental data [164], the binding of excess CNS glutam-
ate to induced lymphocytic mGluR1 receptors may contrib-
ute to an excess Th1 response, including IFN-γ (Figure 2).
We speculate that IFN-γ in a small quantity, similar to its
in vitro effects on microglia [166], may induce microglial
expression of MHC-II and EAAT2 [163,166], allowing
microglia to serve as cognate antigen presenting cells and
to provide glutamate reuptake function [163,164,166],
thereby transforming harmful microglia into neuroprotect-
ive phenotype [163,166] that participate in eliminating
excess extracellular glutamate [163,164,166]. Therefore, we
also hypothesize that excess Th1 response in subgroups
of MDD patients is a double-edged sword, promoting
harmful inflammation and serving as a beneficial counter-
regulatory mechanism that may limit excess glutamate-
related neuroexcitotoxicity (Figure 2).
In schizophrenia, while some peripheral cytokine

studies suggest the predominance of an antiinflammatory
Th2 immunophenotype/response [52], others refute this
[173,174]. However, we agree with the authors who hy-
pothesized that the Th2 response is the dominant pheno-
type in schizophrenia [52]. Elevated brain, CSF, and serum
levels of KYNA [21,52] suggest downregulation of micro-
glial IDO and KMO, which is a function of Th2 response
that shifts astroglial KYN catabolism towards KYNA syn-
thesis (Figure 1) [21,52]. Reduced KMO activity and KMO
mRNA expression in post-mortem schizophrenic brains
[73] is consistent with excess Th2 response (Figure 1).
Increased prevalence of Th2-mediated humoral immunity
abnormalities in subgroups of schizophrenia patients—as
evidenced by increased B cell counts [21,76], increased

production of autoantibodies including antiviral antibodies
[76] and increased immunoglobulin E [52]—adds further
support to the Th2 response dominance hypothesis.

Neuroinflammation and CNS glutamate dysregulation
Glutamate mediates cognition and behavior [186]. Syn-
aptic glutamate levels are regulated by high-affinity
sodium-dependent glial and neuronal EAATs, namely,
the XAG- system responsible for glutamate reuptake/
aspartate release [137,164] and the sodium-independent
astroglial glutamate/cystine antiporter system (Xc-) re-
sponsible for glutamate release/cystine reuptake [164].
Astroglial EAAT1 and EAAT2 provide more than 90%
of glutamate re-uptake [79].
Neuroinflammation can alter glutamate metabolism

and the function of its transporters [15,29,187,188], produ-
cing cognitive, behavioral, and psychiatric impairments
[15,21,29,79,186,188,189]. Abnormalities of EAATs func-
tion/expression and glutamate metabolism in MDD, BPD,
schizophrenia, and OCD are summarized in Table 2.
In MDD, there is evidence for cortical hyperglutamatergia

(Table 2). Cortical glutamate levels correlated positively
with the severity of depressive symptoms, and a five-week
course of antidepressants decreased serum glutamate con-
centrations [85,86]. A single dose of ketamine, a potent
NMDAR antagonist, can reverse refractory MDD for a
week [17,21,29,85]. Excess CNS glutamate levels can induce
neurotoxicity-mediated inflammation [163,164,188], includ-
ing a proinflammatory Th1 response (Figure 2) [164].
Limited in vitro evidence suggests that inflammation/

proinflammatory cytokines can increase CNS glutamate
levels [188] in a feed-forward cycle through several poten-
tial mechanisms: 1) proinflammatory cytokines can inhibit
[15,17,168] and reverse [45,137] astroglial EAAT-mediated
glutamate reuptake function; 2) proinflammatory cyto-
kines can enhance microglial quinolinic acid synthesis
[53], which has been experimentally shown to promote
synaptosomal glutamate release [15,17,29,190]; 3) increased
COX-2/PGE-2 and TNF-α levels can induce calcium influx
[137], which, based on in vitro data, may increase astroglial
glutamate and D-serine release [191]; and 4) activated
microglia can express excess Xc- antiporter systems that
mediate glutamate release [164,192].
In schizophrenia, prefrontal cortical hypoglutamatergia

[87,90,193,194] (Table 2) and reduced NMDAR functionality
are found [5]. Recent H1 magnetic resonance spectroscopy
(MRS) meta-analysis (28 studies, 647 schizophrenia, 608
control) confirmed decreased glutamate and increased glu-
tamine levels in the medial frontal cortex [90]. The contribu-
tory role of inflammation to hypoglutamatergia is not
proven. Elevated KYNA synthesis in schizophrenia brains
[21,52], typically a function of Th2 response (Figure 1), can
inhibit NR1 subunit of NMDAR and alpha 7 nicotinic
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acetylcholine receptor (α7nAchR) [195], leading to decreased
NMDAR function and reduced α7nAchR-mediated glutam-
ate release [195].
In BPD and OCD, data suggest CNS cortical hyper-

glutamatergia in both disorders (Table 2) [78,84,88,131].
The contribution of inflammation (BPD and OCD) and
autoantibodies (OCD)[7,77,84,88,130] to increased CNS
glutamate levels requires further investigation.

The role of S100B
S100B is a 10 kDa calcium-binding protein produced
by astroglia, oligodendroglia, and choroid plexus epen-
dymal cells [196]. It mediates its effects on the surround-
ing neurons and glia via the receptor for advanced
glycation end-product [196]. Nanomolar extracellular
S100B levels provide beneficial neurotrophic effects, limit
stress-related neuronal injury, inhibit microglial TNF-α re-
lease, and increase astroglial glutamate reuptake [196].
Micromolar S100B concentrations, predominantly pro-
duced by activated astroglia and lymphocytes [196,197],
have harmful effects transduced by receptor for advanced
glycation end product that include neuronal apoptosis,
production of COX-2/PGE-2, IL-1β and inducible nitric
oxide species, and upregulation of monocytic/microglial
TNF-α secretion [21,196,198].
Serum and, particularly, CSF and brain tissue S100B

levels are indicators of glial (predominantly astroglial)
activation [199]. In MDD and psychosis, serum S100B
levels positively correlate with the severity of suicidality,
independent of psychiatric diagnosis [200]. Post-mortem
analysis of S100B showed decreased levels in the dorso-
lateral prefrontal cortex of MDD and BPD, and in-
creased levels in the parietal cortex of BPD [196].
Meta-analysis (193 mood disorder, 132 healthy con-

trols) confirmed elevated serum and CSF S100B levels in
mood disorders, particularly during acute depressive epi-
sodes and mania [201].
In schizophrenia, brain, CSF and serum S100B levels are

elevated [199,202]. Meta-analysis (12 studies, 380 schizo-
phrenia, 358 healthy controls) confirmed elevated serum
S100B levels in schizophrenia [203]. In post-mortem
brains of schizophrenia subjects, S100B-immunoreactive
astroglia are found in areas implicated in schizophrenia, in-
cluding anterior cingulate cortex, dorsolateral prefrontal
cortex, orbitofrontal cortex and hippocampi [154]. Elevated
S100B levels correlate with paranoid [154] and negativistic
psychosis [204], impaired cognition, poor therapeutic re-
sponse and duration of illness [202]. Genetic polymor-
phisms in S100B [32] and receptor for advanced glycation
end-product genes in schizophrenia cohorts (Table 2)
[32,33,205] suggest these abnormalities are likely primary/
pathogenic rather than secondary/biomarkers. Indeed, the
decrease in serum S100B levels following treatment with
antidepressants [201] and antipsychotics [196] suggests

some clinical relevance of S100B to the pathophysiology of
psychiatric disorders.

Neuroinflammation and increased oxidative stress
Oxidative stress is a condition in which an excess of oxi-
dants damages or modifies biological macromolecules
such as lipids, proteins and DNA [206-209]. This excess
results from increased oxidant production, decreased
oxidant elimination, defective antioxidant defenses, or
some combination thereof [206-209]. The brain is par-
ticularly vulnerable to oxidative stress due to: 1) elevated
amounts of peroxidizable polyunsaturated fatty acids;
2) relatively high content of trace minerals that induce
lipid peroxidation and oxygen radicals (for example,
iron, copper); 3) high oxygen utilization; and 3) limited
anti-oxidation mechanisms [206,207].
Excess oxidative stress can occur in MDD [206], BPD

[206,207], schizophrenia [207,209], and OCD [206,208].
Peripheral markers of oxidative disturbances include
increased lipid peroxidation products (for example,
malondialdehyde and 4-hydroxy-2-nonenal), increased
nitric oxide (NO) metabolites, decreased antioxidants
(for example, glutathione) and altered antioxidant en-
zyme levels [206,207].
In MDD, increased superoxide radical anion production

correlates with increased oxidation-mediated neutrophil
apoptosis [206]. Serum levels of antioxidant enzymes (for
example, superoxide dismutase-1) are elevated during acute
depressive episodes and normalize after selective serotonin
reuptake inhibitors (SSRIs) treatment [206]. This suggests
that in MDD, serum antioxidant enzyme levels are a state
marker, which may reflect a compensatory mechanism that
counteracts acute increases in oxidative stress. [206].
In schizophrenia by contrast, CSF soluble superoxide
dismutase-1 levels are substantially decreased in early-onset
schizophrenic patients relative to chronic schizophrenic pa-
tients and healthy controls. This suggests that reduced
brain antioxidant enzyme levels may contribute to oxidative
damage in acute schizophrenia [210], though larger studies
are needed to confirm this finding.
Several additional experimental and human studies ex-

amined in more detail the mechanisms underlying the
pathophysiology of increased oxidative stress in psychi-
atric disorders [206-262]. In animal models of depres-
sion, brain levels of glutathione are reduced while lipid
peroxidation and NO levels are increased [206,262].
Postmortem studies show reduced brain levels of total

glutathione in MDD, BPD [206] and schizophrenic sub-
jects [206,207]. Fibroblasts cultured from MDD patients
show increased oxidative stress independent of glutathi-
one levels [262], arguing against a primary role of gluta-
thione depletion as the major mechanism of oxidative
stress in depression.
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Microglial activation may increase oxidative stress
through its production of proinflammatory cytokines and
NO [206-209]. Proinflammatory cytokines and high NO
levels may promote reactive oxygen species (ROS) forma-
tion, which in turn accelerates lipid peroxidation, damaging
membrane phospholipids and their membrane-bound
monoamine neurotransmitter receptors and depleting en-
dogenous antioxidants. Increased ROS products can en-
hance microglial activation and increase proinflammatory
production via stimulating NF-κB [208], which in turn
perpetuates oxidative injury [208], creating the potential
for a pathological positive feedback loop in some psychi-
atric disorders [206-209]. Although neuroinflammation
can increase brain glutamate levels [85,86], the role of
glutamatergic hyperactivity as a cause of oxidative stress
remains unsubstantiated [207].
Mitochondrial dysfunction may contribute to increased

oxidative stress in MDD, BPD and schizophrenia [206].
Postmortem studies in these disorders reveal abnormal-
ities in mitochondrial DNA, consistent with the high
prevalence of psychiatric disturbances in primary mito-
chondrial disorders [206]. In vitro animal studies show
that proinflammatory cytokines, such as TNF-α, can re-
duce mitochondrial density and impair mitochondrial oxi-
dative metabolism [211,212], leading to increased ROS
production [206,213]. These experimental findings may
imply mechanistic links among neuroinflammation, mito-
chondrial dysfunction and oxidative stress [206,213],
meriting further investigation of these intersecting patho-
genic pathways in human psychiatric disorders.
The vulnerability of neural tissue to oxidative damage

varies among different psychiatric disorders based on the
neuroanatomical, neurochemical and molecular pathways
involved in the specific disorder [207]. Treatment effects
may also be critical, as preliminary evidence suggests that
antipsychotics, SSRIs and mood stabilizers possess antioxi-
dant properties [206,207,262]. The therapeutic role of ad-
juvant antioxidants (for example, vitamins C and E) in
psychiatric disorder remains to be substantiated by high-
powered randomized clinical trials. N-acetylcysteine shows
the most promising results to-date, with several random-
ized placebo-controlled trials demonstrating its efficacy in
MDD, BPD and schizophrenia [207].

Blood–brain barrier dysfunction
The BBB secures the brain’s immune-privileged status by
restricting the entry of peripheral inflammatory media-
tors, including cytokines and antibodies that can impair
neurotransmission [214,215]. The hypothesis of BBB
breakdown and its role in some psychiatric patients
[60,214,216,217] is consistent with the increased preva-
lence of psychiatric comorbidity in diseases associated
with its dysfunction, including SLE [97], stroke [11],

epilepsy [218] and autoimmune encephalitides (Table 1).
An elevated ‘CSF:serum albumin ratio’ in patients with
MDD and schizophrenia suggests increased BBB perme-
ability [214].
In one study (63 psychiatric subjects, 4,100 controls),

CSF abnormalities indicative of BBB-damage were de-
tected in 41% of psychiatric subjects (14 MDD and BPD,
14 schizophrenia), including intrathecal synthesis of IgG,
IgM, and/or IgA, mild CSF pleocytosis (5 to 8 cells per
mm3) and the presence of up to four IgG oligoclonal
bands [216]. One post-mortem ultrastructural study in
schizophrenia revealed BBB ultrasructural abnormalities
in the prefrontal and visual cortices, which included vacu-
olar degeneration of endothelial cells, astroglial-end-foot-
processes, and thickening and irregularity of the basal
lamina [60]. However, in this study, the authors did not
comment on the potential contribution of postmortem
changes to their findings. Another study investigating
transcriptomics of BBB endothelial cells in schizophrenic
brains identified significant differences among genes influ-
encing immunological function, which were not detected
in controls [217].
Oxidation-mediated endothelial dysfunction may con-

tribute to the pathophysiology of BBB dysfunction in psy-
chiatric disorders. Indirect evidence from clinical and
experimental studies in depression [219] and, to a lesser
extent, in schizophrenia [220] suggests that increased oxi-
dation may contribute to endothelial dysfunction. Endo-
thelial dysfunction may represent a shared mechanism
accounting for the known association between depression
and cardiovascular disease [219,221], which may be related
to decreased levels of vasodilator NO [221-223]. Experi-
mental studies suggest that reduced endothelial NO levels
are mechanistically linked to the uncoupling of endothelial
nitric oxide synthase (eNOS) from its essential co-factor
tetrahydrobiopterin (BH4), shifting its substrate from L-
arginine to oxygen [224-226]. Uncoupled eNOS promotes
synthesis of ROS (for example, superoxide) and reactive
nitrogen species (RNS) (for example, peroxynitrite; a prod-
uct of the interaction of superoxide with NO) [227] rather
than NO, leading to oxidation-mediated endothelial dys-
function [224-226].
Animal data showed that SSRIs could restore deficient

endothelial NO levels [219], suggesting that anti-oxidative
mechanisms may contribute to their antidepressant ef-
fects. In humans, L-methylfolate may potentiate anti-
depressant effects of SSRIs [228], putatively by increasing
levels of BH4, which is an essential cofactor for eNOS re-
coupling-mediated anti-oxidation [229], as well as for the
rate-limiting enzymes of monoamine (that is, serotonin,
norepinephrine, dopamine) synthesis [228].
Taken together, both the recent work emphasizing the

role of uncoupled eNOS-induced oxidative stress in the
pathogenesis of vascular diseases [230,231] and the
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epidemiological studies establishing depression as an in-
dependent risk factor for vascular pathologies, such as
stroke and heart disease [219,221], add further support
to the clinical relevance of uncoupled eNOS-mediated
endothelial oxidative damage in depression. Despite
abundant evidence for cytokine abnormalities in human
psychiatric illnesses and the experimental data showing
that proinflammatory cytokines can reduce eNOS ex-
pression [212] and increase BBB permeability [215], hu-
man evidence that directly links excess proinflammatory
cytokines to eNOS dysfunction and/or BBB impairment
is lacking.

Imaging and treating inflammation in psychiatric illness
Imaging neuroinflammation in situ
Clinically, neuroinflammation imaging may prove to be
crucial for identifying the subgroup of psychiatric patients
with neuroinflammation who would be most likely to
respond favorably to immunomodulatory therapies. Add-
itionally, such imaging may allow clinicians to monitor
neuroinflammation-related disease activity and its response
to immune therapy in psychiatric patients. Imaging inflam-
mation in the human brain has traditionally depended
upon MRI or CT visualization of extravagated intravenous
contrast agents, indicating localized breakdown of the
BBB. Gadolinium-enhanced MRI occasionally demon-
strates such breakdown in the limbic regions associated
with emotional processing in patients with psychiatric dis-
orders attributable to paraneoplastic or other encephaliti-
des [107,109,113]. To our knowledge, however, abnormal
enhancement has never been demonstrated in any clas-
sical psychiatric disorder [21,214,232], despite functional
[214,216] and ultrastructural BBB abnormalities [60].
Whether or not subtler neuroinflammation can be vi-

sualized in vivo in classical psychiatric disorders remains
unknown. One promising technique is positron emission
tomography (PET) using radiotracers, such as C11-
PK11195, which bind to the translocator protein, previ-
ously known as the peripheral benzodiazepine receptor,
expressed by activated microglia [233,234].
Using this method, patients with schizophrenia were

shown to have greater microglial activation throughout
the cortex [235] and in the hippocampus during acute
psychosis [236]. One study (14 schizophrenia, 14 con-
trols) found no significant difference between [11C]
DAA1106 binding in schizophrenia versus controls, but
a direct correlation between [11C] DAA1106 binding
and the severity of positive symptoms and illness dur-
ation in schizophrenia [236].
Investigators from our institution utilized C11-PK11195

PET to demonstrate bi-hippocampal inflammation in a pa-
tient with neuropsychiatric dysfunction, including psychotic
MDD, epilepsy, and anterograde amnesia, associated with
anti-GAD antibodies [237]. However, PK11195 PET has

low signal-to-noise properties and requires an on-site
cyclotron.
Accordingly, research is being devoted to developing

improved translocator protein ligands for PETand SPECT.
Future high-powered post-mortem brain tissues studies
utilizing protein quantification aimed at elucidating
metabolic and inflammatory pathways, CNS cytokines
and their binding receptors, in psychiatric disorders are
needed to advance our understanding of the autoimmune
pathophysiology.

Role of antiinflammatory drugs in psychiatric disorders
Several human and animal studies suggest that certain
antiinflammatory drugs may play an important adjunctive
role in the treatment of psychiatric disorders (Table 3).
Common drugs are cyclooxygenase inhibitors (Table 3)
[238-245], minocycline (Table 3) [240-245], omega-3 fatty
acids [246,247], and neurosteroids [248].
Several human studies showed that COX-2 inhibitors

could ameliorate psychiatric symptoms of MDD, BPD,
schizophrenia and OCD (Table 3) [248]. By contrast, ad-
junctive treatment with non-selective COX-inhibitors
(that is, non-steroidal antiinflammatory drugs (NSAIDs))
may reduce the efficacy of SSRIs [249,250]; two large tri-
als reported that exposure to NSAIDs (but not to either
selective COX-2 inhibitors or salicylates) was associated
with a significant worsening of depression among a sub-
set of study participants [249,250].
In the first trial, involving 1,258 depressed patients

treated with citalopram for 12 weeks, the rate of remission
was significantly lower among those who had taken
NSAIDs at least once relative to those who had not (45%
versus 55%, OR 0.64, P = 0.0002) [249]. The other trial, in-
volving 1,545 MDD subjects, showed the rate of treatment-
resistant depression was significantly higher among those
taking NSAIDs (OR 1.55, 95% CI 1.21 to 2.00) [231]. The
worsening of depression in the NSAID groups may not be
mechanistically linked to NSAID therapy but instead re-
lated to co-existing chronic medical conditions [10,12-18]
that necessitate long-term NSAIDs and which are known
to be independently associated with increased risk of
treatment-resistant depression [249,251]. Future studies in-
vestigating the impact of NSAIDs on depression and re-
sponse to antidepressants in humans are needed.
In other experimental studies utilizing acute-stress para-

digms to induce a depression-like state in mice, citalopram
increased TNF-α, IFN-γ, and p11 (molecular factor linked
to depressive behavior in animals) in the frontal cortex,
while the NSAID ibuprofen decreased these molecules;
NSAIDs also attenuated the antidepressant effects of SSRIs
but not other antidepressants [249]. These findings suggest
that proinflammatory cytokines may paradoxically exert
antidepressant effects despite overwhelming evidence from
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human studies to the contrary (as reviewed above), which
can be attenuated by NSAIDs [249]. At least two consider-
ations may account for this apparent paradox: 1) under
some experimental conditions, proinflammatory cytokines
have been associated with a neuroprotective role, [251; (for

example, IFN-γ in low levels can induce neuroprotective
microglia (Figure 2) [163,166,251]); and 2) whether these
responses observed in the context of an acute stress para-
digm in an animal model are applicable to endogenous
MDD in humans remains unclear [251].

Table 3 Selected studies assessing the efficacy of antiinflammatory agents among patients with unipolar and bipolar
depression, schizophrenia, and obsessive-compulsive disorder

Study Study
design

Group comparison Number
of subjects

Functional outcome

COX-2 inhibitors

Müller et al. 2006 [238] RCT Celecoxib (200 mg bid) +
reboxetine versus
placebo + reboxetine

40 MDD (acute) Significantly greater decrease in depressive
symptoms in the treatment group (P = 0.035)

Akhondzadeh et al. 2009
[239]

RCT Celecoxib (200 mg bid) +
fluoxetine versus
placebo + fluoxetine

40 MDD Significant improvement of depressive symptoms
(P <0.001), and a greater percentage of responders
(90% versus 50%, P = 0.01) and remission (35% versus 5%,
P = 0.04) in the treatment group

Medlewicz et al. 2006
[240]

Open-
label

Acetylsalicylic acid
(160 mg qd) + SRI

24 MDD and BPD 52.4% responder rate, significant improvement
within one week (P <0.0001) following treatment;
sustained at four weeks

ClinicalTrials.gov
NCT00510822 completed,
pending results

RCT Cimicoxib (50 mg bid) +
sertraline versus
placebo + sertraline

169 MDD Primary outcome measure is mean change in
Hamilton Depression Rating Scale from baseline
to six-week endpoint

Nery et al. 2008 [263] RCT Celecoxib versus placebo 28 BPD (depressive
and mixed states)

No significant differences in depressive
or manic symptoms.

Müller et al. 2002 [242] RCT Celecoxib (400 mg qd) +
risperidone versus
placebo + risperidone

50 (acute
schizophrenia)

Significant improvement of positive and negative
symptoms (P = 0.05), as well as cognition
(P <0.06) in treatment group at five weeks

Müller et al. 2010 [244] RCT Celecoxib + amisulpride
versus placebo +
amisulpride

49 schizophrenia
(first-episode)

Significant improvement of positive and
negative symptoms in celecoxib plus amisulpride
group relative to amisulpride alone (P <0.001) at
six-weeks

Sayyah et al. 2011 [245] RCT Celecoxib (200 mg bid) +
fluoxetine versus
placebo + fluoxetine

50 OCD Significantly greater reduction in YBOCS scores
in the celecoxib treatment group at two weeks
(P = 0.007) and at the eight week end-point (P = 0.037)

Minocycline

Levine et al. 1996 [264] Case
report

Minocycline (150 mg qd)
started 20 years after
disease onset

1 BPD Marked decrease in depressive symptoms
(HAM-D score went from 25 to 8) within
one week following treatment, sustained at
two weeks.

Levkovitz et al. 2009 [265] RCT Minocycline (200 mg qd)
versus placebo

21 schizophrenia
(early and acute-
phase)

Significant improvement of negative symptoms and
cognitive dysfunction in treatment group (P <0.01)

ClinicalTrials.gov
NCT01433055 recruiting,
estimated completion 7/15

RCT Minocycline (100 mg bid) +
clozapine versus
placebo + clozapine

60 schizophrenia
(refractory to ≥2
antipsychotics)

Primary outcome is the improvement in positive
symptoms as measured by the four-item
sub-factor of the Brief Psychiatric Rating Scale.

Miyaoka et al. 2007 [266] Case
series

Minocycline (150 mg qd) +
stable antipsychotic
regiment

2 schizophrenia Complete resolution of positive and negative symptoms
with minocycline, sustained for one to two years.
Symptom exacerbation occurred one-week following
minocycline discontinuation (in both cases). In one
patient, the complete resolution of symptoms occurred
at age 61, which was 41 years after disease onset.

Miyaoka et al. 2008 [267] Open-
label

Minocycline (150 mg tid) 22 schizophrenia Significant improvement of positive and
negative symptoms at four to eight weeks (P = 0.0001)

Rodriguez et al. 2010 [268] Open-
label

Minocycline (100 mg bid) 9 OCD 22% had a 40% to 46% YBOCS reduction at 12 weeks; the
group as a whole did not have a significant
change in YBOCS score.

ASA, acetylsalicylic acid; BPD, bipolar disorder; COX-2, cycloxygenase-2; HAM-D: Hamilton Depression Rating Scale; MDD, major depressive disorder; OCD, obsessive-
compulsive disorder; SRI, serotonin reuptake inhibitor; RCT, randomized controlled trial; YBOCS: Yale-Brown Obsessive-Compulsive Scale.
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The therapeutic effects of COX-2 inhibitors in psychi-
atric disorders may involve modulation of biosynthesis of
COX-2-derived prostaglandins, including proinflammatory
PGE2 and antiinflammatory 15-deoxy-Δ12,14-PGJ2 (15d-
PGJ2) [252,253]. COX-2 inhibitors can reduce PGE2-
mediated inflammation, which may contribute to the
pathophysiology of psychiatric disorders [252,253]. They
may also alter the levels 15d-PGJ2, and the activity of its
nuclear receptor peroxisome proliferator-activated nuclear
receptor gamma (PPAR-γ) [252,253].
Several studies suggest that 15d-PGJ2 and its nuclear

receptor PPAR-γ can serve as biological markers for
schizophrenia [253]. In schizophrenic patients, serum
PGE2 levels are increased, whereas serum levels of 15d-
PGJ2 are decreased, as is the expression of its nuclear re-
ceptor PPAR-γ in PBMC [252]. While COX-2 inhibitors
may limit the potentially beneficial antiinflammatory ef-
fects of the COX-2–dependent ‘15d-PGJ2/PPAR-γ path-
way’, they may advantageously reduce its harmful effects,
including 1) the increased risk for myocardial infarction
and certain infections (for example, cytomegalovirus and
Toxoplasma gondii) in schizophrenic patients [254] and
2) its pro-apoptotic effects observed in human and ani-
mal cancer tissue [255]. Other potential mechanisms of
COX-2 inhibitors therapeutic effects may involve their
ability to reduce proinflammatory cytokine levels [163],
limit quinolinic acid excitotoxicity (as in MDD) and de-
crease KYNA levels (as in schizophrenia) [128].
Minocycline can be effective in psychiatric disorders

(Table 3) [248]. In vitro data suggest that minocycline in-
hibits MAP, cytokine secretion, ‘COX-2/PGE-2 expression,’
and inducible nitric oxide synthase [256]. Minocycline
may also counteract dysregulated glutamatergic and dopa-
minergic neurotransmission [256].
Omega-3 fatty acid effectiveness in psychiatric disorders

is unclear [248]. In a 2011 meta-analysis of 15 randomized-
controlled trials (916 MDD), omega-3 supplements
containing eicosapentaenoic acid ≥60% (dose range 200 to
2,200 mg/d in excess of the docosahexaenoic acid dose) sig-
nificantly decreased depressive symptoms as an adjunctive
therapy to SRIs (P <0.001) [246]. A subsequent meta-
analysis, however, concluded that there is no significant
benefit of omega-3 fatty acids in depression and that the
purported efficacy is merely a result of publication bias
[247]. A 2012 meta-analysis of 5 randomized-controlled tri-
als including 291 BPD participants found that depressive,
but not manic, symptoms were significantly improved
among those randomized to omega-3 fatty acids relative to
those taking placebo (Hedges g 0.34, P = 0.025) [257]. In a
randomized controlled trial of schizophrenic subjects
followed up to 12 months, both positive and negative
symptom scores were significantly decreased among the 66
participants randomized to long-chain omega-3 (1.2 g/day
for 12 weeks; P = 0.02 and 0.01, respectively) [258]; the

authors concluded that omega-3 augmentation during the
early course of schizophrenia can also prevent relapses and
disease progression [258].
A 2012 meta-analysis of seven randomized-controlled

trials assessing omega-3 augmentation in 168 schizo-
phrenic patients found no benefit of treatment [259].
The authors of this meta-analysis specifically stated that
no conclusion could be drawn regarding the relapse pre-
vention or disease progression endpoints [259]. Experi-
mental data suggest that eicosapentaenoic acid and
docosahexaenoic acid mediate their antiinflammatory ef-
fects by promoting synthesis of resolvins and protectins,
which can inhibit leukocyte infiltration and reduce cyto-
kine production [248].
Neurosteroids, including pregnenolone and its down-

stream metabolite allopregnanolone, may have a beneficial
role in some psychiatric disorders [248,260]. In MDD, sev-
eral studies found decreased plasma/CSF allopregnanolone
levels correlating with symptom severity, which normalized
after successful treatment with certain antidepressants (for
example, SSRIs), and electroconvulsive therapy [261]. In
schizophrenia, brain pregnenolone levels can be altered
[248] and serum allopregnanolone levels may increase after
some antipsychotic drugs (for example, clozapine and
olanzapine) [260]. In three randomized-controlled trials
(100 schizophrenia (pooled); treatment duration, approxi-
mately nine weeks) positive, negative, and cognitive
symptoms, as well as extrapyramidal side effects of antipsy-
chotics were significantly improved in one or more trials
among those randomized to pregnenolone relative to those
receiving placebo [248]. In one trial, the improvement was
sustained with long-term pregnenolone treatment [248].
Pregnenolone can regulate cognition and behavior by
potentiating the function of NMDA and GABAA receptors
[248]. Furthermore, allopregnanolone may exert neuropro-
tective and antiinflammatory effects [248]. More RCT stud-
ies are needed to confirm the beneficial role of neuroactive
steroids in early-onset psychiatric disorders in humans.
We are awaiting the results of several ongoing clin-

ical trials investigating the therapeutic effects of other
anti-inflammatory agents, including salicylate, an in-
hibitor of NF-κB (NCT01182727); acetylsalicylic acid
(NCT01320982); pravastatin (NCT1082588); and dex-
tromethorphan, a non-competitive NMDAR antagon-
ist that can limit inflammation-induced dopaminergic
neuronal injury (NCT01189006).

Future treatment strategies
Although current immune therapies (for example, IVIG,
plasmapheresis, corticosteroids and immunosuppressive
agents) are often effective for treating autoimmune en-
cephalitides wherein inflammation is acute, intense and
predominately of adaptive origin, their efficacy in classical
psychiatric disorders wherein inflammation is chronic,
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much milder, and predominately of innate origin, is lim-
ited [2]. Development of novel therapeutics should aim
at reversing glial loss [46,138], down-regulating harmful
MAP, while optimizing endogenous neuroprotective T
regs and beneficial MAP, rather than indiscriminately sup-
pressing inflammation as occurs with current immuno-
suppressive agents. Additionally, development of potent
co-adjuvant antioxidants that would reverse oxidative in-
jury in psychiatric disorders is needed.

Conclusions
Autoimmunity can cause a host of neuropsychiatric dis-
orders that may initially present with isolated psychiatric
symptoms. Innate inflammation/autoimmunity may be
relevant to the pathogenesis of psychiatric symptoms in
a subset of patients with classical psychiatric disorders.
Innate inflammation may be mechanistically linked to
the traditional monoaminergic and glutamatergic abnor-
malities and increased oxidative injury reported in psy-
chiatric illnesses.
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