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Abstract

In the field of predictive, preventive and personalised medicine, researchers are keen to identify novel and reliable
ways to predict and diagnose disease, as well as to monitor patient response to therapeutic agents. In the last
decade alone, the sensitivity of profiling technologies has undergone huge improvements in detection sensitivity,
thus allowing quantification of minute samples, for example body fluids that were previously difficult to assay. As a
consequence, there has been a huge increase in tear fluid investigation, predominantly in the field of ocular surface
disease. As tears are a more accessible and less complex body fluid (than serum or plasma) and sampling is much
less invasive, research is starting to focus on how disease processes affect the proteomic, lipidomic and metabolomic
composition of the tear film. By determining compositional changes to tear profiles, crucial pathways in disease
progression may be identified, allowing for more predictive and personalised therapy of the individual.
This article will provide an overview of the various putative tear fluid biomarkers that have been identified to date,
ranging from ocular surface disease and retinopathies to cancer and multiple sclerosis. Putative tear fluid biomarkers of
ocular disorders, as well as the more recent field of systemic disease biomarkers, will be shown.
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Background
Recent developments in the accessibility and sensitivity of
proteomic assays have led to the examination of tear fluids
as a potential tissue source for biomarker analysis. Tear
sampling potentially provides a convenient, non-invasive
method of analysing an accessible body fluid for the inves-
tigation of biomarkers in predictive, preventive and perso-
nalised medicine (PPPM). This review gives an up-to-date
overview of how tear fluid analysis is being undertaken to
identify novel markers of both ocular and systemic disease.

Tear fluid analysis in ocular disease
Tears are a complex mixture of proteins, lipids, mucins,
water and salts, and a recent study has identified 1526

proteins via proteomics [1], making them less complex (as a
body fluid) than serum or plasma. Due to this less complex
nature, and also because at the ocular surface the tears rep-
resent the “proximal fluid”, the final output of the lacrimal
functional unit (LFU [2]), the study of their composition has
been proposed as an ideal source for discovering biomarkers
associated with the various components of the LFU [3], and
there has been increased interest in determining novel tear
biomarkers of ocular diseases, e.g. dry eye disease (DED),
vernal conjunctivitis, diabetic retinopathy, Graves’ ophthal-
mopathy, ocular tumours and glaucoma, to name a few [1,
4–8]. Moreover, tears are being investigated for the identifi-
cation of biomarkers of systemic disease.
A biomarker, as defined by the National Institute of

Health (NIH), is

A characteristic that is objectively measured and
evaluated as an indicator of normal biological
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processes, pathogenic processes, or pharmacologic
responses to therapeutic intervention [9].

While the US Food and Drug Administration (FDA)
describes a biomarker as

Any measurable diagnostic indicator that is used to
assess the risk or presence of disease [10].

In the field of PPPM, biomarkers are playing an increas-
ingly important role in the discovery and development of
new drugs and point-of-care devices design, as diagnostic
tools or for objective monitoring of treatment in clinical
trials. As described above, a specific disease biomarker is
defined as a measurable characteristic in a biological sys-
tem which changes due to disease, exposure to chemicals
or other factors. Both proteomic and genomic studies are
applied to the search for novel and specific biomarkers of
disease processes. Biomarkers are key indicators that can
provide vital information detecting risk of disease, disease
progression, disease activity, prediction of response to
therapies or adverse events and drug interactions or estab-
lishing baseline risk. A useful biomarker has to correlate
with clinical parameters, such as specific symptoms, clin-
ical signs and validated diagnostic tests. Also, whenever
possible, non-invasive samples should be used.
Therefore, the utility of biomarkers in personalised medi-

cine for both ocular and systemic disease is very pertinent
to the current interest in tear fluid proteomics. This review
will seek to provide a timely account of the ongoing global
search to identify relevant tear fluid biomarkers, including
the proteins of interest and the technologies employed.

Tear fluid analysis of diseases affecting the ocular surface
Dry eye disease
Dry eye disease (DED) is a multifactorial inflammatory
disorder of the LFU that is characterised by ocular
discomfort, visual disturbances, tear film instability,
increased tear osmolarity and inflammation [2, 11].
Research into tear biomarkers has been increasing in DED,
mainly due to the fact that in this multifactorial syndrome
there is a lack of concordance between clinical symptoms
and signs [12–15]. As a consequence, DED diagnosis has
been difficult and the development of new pharmacological
therapies is hampered by the lack of objective tests for re-
sponse outcomes in clinical trials [16–18]. For these rea-
sons, there is a growing interest in finding objective
biomarkers that could be used as diagnostic tools for DED,
or for objective monitoring of treatment in clinical trials.
A large number of tear fluid studies in DED have

therefore been performed in the last 5 years [19–22].
These studies comprise research into the different forms
of DED, including mild-moderate DED, evaporative
cases (including meibomian gland dysfunction (MGD))

or more severe hyposecretor forms of DED, e.g. Sjögren’s
syndrome (SS) and ocular graft versus host disease
(GVHD). As inflammation is a key component of DED,
numerous tear biomarker studies for this disease have
included the analysis of inflammatory molecules, such as
cytokines/chemokines, as well as other molecules, e.g.
growth factors, mucins, neuromediators and lipids.
Many of these studies have shown differences in several
tear molecules in DED patients compared to healthy
subjects, or among the different types of DED. A
number of reviews on the use of tears as a source of
biomarkers have been published to date, including for
non-ocular diseases [23–25] and in reviews specifically
dedicated to DED [26–29].

Current tear proteins under investigation as DED
biomarkers Various groups have performed tear proteo-
mics analysis in order to determine which proteins and/
or protein profiles are specifically related to DED. For
example, a proteomic approach to detect tear fluid DED
biomarkers was used by Aluru et al. [4] by means of 2D
electrophoresis and differential gel electrophoresis
(DIGE). The authors found lysozyme proline-rich
protein 4 (LPRR4) to be significantly down-regulated in
several types of DED. Based on its differential expression
and the correlation of LPRR4 tear levels with disease se-
verity, this protein has thus been proposed as a potential
biomarker of DED [4]. Other proteomic studies have
also reported protein profiles that are specifically related
to DED [30–35]. For example, in their study, Grus et al.
[30] defined a seven-peptide panel for DED. This panel
included calgranulin A/100A8, which was found to be
increased in DED patient tears, as well as LPRR3 and
LPRR4, nasopharyngeal carcinoma-associated PRP 4 and
α-1 antitrypsin. The latter four proteins were found to
be decreased in DED [30]. This panel had a 90 % sensi-
tivity and specificity when used together with an artifi-
cial neural network.
By using iTRAQ quantitative proteomics, coupled with

2D nano-LC-nano-ESI-MS/MS alongside a statistical
model, Zhou et al. [31] identified six up-regulated
proteins in tears from DED patients versus controls.
These included α-enolase, α-1 acid glycoprotein 1, S100
A8/calgranulin A, S100 A9/calgranulin B, S100 A4 and
S100 A11 (calgizzarin), as well as four down-regulated
proteins, including prolactin-inducible protein (PIP),
lipocalin-1 (LCN-1), lactoferrin and lysozyme [31]. With
a four-protein biomarker panel (including α-enolase, PIP,
LCN-1 and S100 A9/calgranulin B), this group obtained
a diagnostic accuracy for DED of a 96 % (91 % sensitivity
and 90 % specificity). Moreover, using iTRAQ technol-
ogy Tong et al. [32] found that S100 A8/calgranulin A
and S100 A9/calgranulin B correlated to MGD severity
and redness and that LCN-1 correlated with tearing in
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non-SS-DED. Several of these tear proteins have been
described as being involved in ocular surface defence,
with many of them (such as lysozyme, lactoferrin, LCN-
1 and defensins) being essential components of the
innate immune defence system. In fact, due to the fact
that many studies have shown that DED patients present
decreased levels, the measure of tear lysozyme and lacto-
ferrin was one of the first proposals of objective tests for
DED diagnosis [36–38].
In 2013, Boehm et al. [33] analysed tear protein

patterns of dry eye patients by including different
clinical phenotypes, e.g. aqueous-deficient dry eye,
(DRYaq), lipid-deficient dry eye (DRYlip) and a com-
bination of the two (DRYaqlip), in order to examine
their influence on tear film protein composition. By
means of a surface-enhanced laser desorption/ionisa-
tion-time-of-flight (SELDI-TOF)/matrix-assisted laser
desorption/ionisation-time-of-flight (MALDI-TOF)/TOF
mass spectrometry (MS)-based strategy to detect candi-
date biomarkers, followed by a discovery study (study 1)
and a validation study (study 2), their results showed that
tear LPRR4 was diminished in both DRYaq and DRYaqlip
patients, compared to healthy subjects. Moreover, mam-
maglobin B, lipophilin A, S100A8/calgranulin and beta-2
microglobulin (B2M) precursor were increased in this
subgroup. DRYlip patients revealed only slight tear protein
alterations and strongly deviated from the DRYaq or
DRYaqlip group [33]. By using this six-protein biomarker
set, they achieved a DED patient versus healthy subjects
discrimination sensitivity and specificity of almost 100 %
for the DRYaq and DRYaqlip patients (AUC value = 1).
Based on tear proteome and protein network analyses

for tear film characterisation in DED and MGD, Soria et
al. [34] have presented a pentamarker panel, including
S100A6, annexin A1, annexin A11, cystatin S (CST4)
and phospholipase A2-activating protein (PLAA), with
an area under the ROC curve of ≥97.7 % (sensitivity
≥94.3 %; specificity ≥97.6 %) for DED versus controls.
This panel also discriminated between the DED, MGD
and control individuals, with a global correct assignment
of 73.2 % between all groups. Versura et al. [35] have
also proposed another tear protein panel for its use for
DED diagnosis, based on the simultaneous measurement
of tear transferrin, LCN-1 and total protein; this panel
has a sensitivity of 96 % and a specificity of 98 %.
Proteomic studies in tears from dry eye patients,

specifically SS, have also been done. By using SELDI-
TOF-MS, Tomosugi et al. [39] found ten protein peaks
that could be used to discriminate SS patients from non-
SS-DED patients and controls. However, they did not
identify the particular proteins. Li et al. [40] also exam-
ined the tear film proteome of SS-DED patients com-
pared to non-SS patients with DED symptoms and to
normal healthy controls. A total of 435 proteins were

identified by 2D nano-LC-MS/MS, and among them, 56,
including defensin-1, clusterin and lactotransferrin, were
found to be unique to SS-DED patients [40]. Cathepsin
S activity measurement in tears has also been proposed
as a candidate biomarker for SS [41], as tear activity of
this protein was shown to be 4.1-fold higher in SS
patients than that in patients with other autoimmune
diseases, 2.1-fold higher than that in patients with non-
specific DED and 41.1-fold higher than that in healthy
subjects [41]. Anti-SS-A and anti-SS-B, as well as anti α-
fodrin antibodies, have also been determined in tear
fluids of patients with SS [42–44].
Other types of proteins have also been measured in

tears of DED patients. For instance, mucin (MUC)5AC
protein tear levels have been shown to be significantly
reduced in tears of patients with SS [45]. Guo et al. [21]
have measured tear malate dehydrogenase (MDH) 2 in
mild DED patients. They found that MDH2 activities in
the DED group were significantly increased compared to
that in tears from a control (healthy) group. This group
also found a significant negative correlation of tear
MDH2 with clinical parameters, such as tear production
and tear quality values, and a positive correlation with
soreness symptoms. Recently, a novel protein of the tear
film belonging to the family of surfactant proteins, the
palate lung nasal clone (PLUNC), has been found to be
increased in DED patient tears [46].
Neuromediators, such as substance P, calcitonin gene-

related peptide (CGRP), neuropeptide Y (NPY), vasoin-
testinal peptide (VIP) and nerve growth factor (NGF),
have also been determined in tears from DED patients
and correlated with clinical findings [47]. Specifically,
NGF tear levels were found to be significantly increased
in DED patients, whereas CGRP and NPY were signifi-
cantly decreased, compared to healthy subjects. Tear
NGF levels correlated directly, and CGRP and NPY
inversely, with DED severity. Also, in a recent study by
Chhadva et al. [48], serotonin tear concentration has
been correlated to facets of DED and has been found to
be significantly higher in those DED patients that
presented with both DED symptoms and aqueous tear
deficiency, compared to those patients with DED symp-
toms but normal tear production and those without
DED symptoms.

Tear cytokines and chemokines in DED As mentioned
above, DED is associated with immune and inflamma-
tory processes, so there are a great number of studies
particularly focused on the identification in tears of pro-
files of cytokines and chemokines in the different clinical
subgroups of patients with DED. The development of
multiplex assay technologies, such as cytometric bead
array (CBA), or XMAP technology, developed by the
Luminex Corporation (reviewed in [49]), has made it
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possible to measure multiple molecules in minute vol-
umes of samples, which has been useful when meas-
uring cytokines in tear samples. Prior to this
technological development, tear protein analysis was
limited by the sample amount requirement of other
analysis techniques.
Several inflammatory cytokines/chemokines (such as

IL-1, IL-6, TNF-α, metalloproteinase (MMP)-9, IL-17A,
IL-1RA, IL-8/CXCL8, IL-22, INF-γ, MIG/CXCL9, IP-10/
CXCL10, I-TAC/CXCL11, macrophage inflammatory
protein-1 alpha (MIP-1α/CCL3), MIP-1β/CCL4 and
RANTES/CCL5, among others) have been found to
be significantly increased in tears from DED patients
[19, 22, 50–63]. Whereas endothelial growth factor
(EGF) has been found to be significantly decreased
[51, 55, 64] in the more severe forms of DED. Other
studies have also shown differences in cytokine profiles
among the different types of DED forms, e.g. non-SS
versus SS-DED, and/or its severity. For example,
Boehm et al. [60] found that while the cytokine profile
in patients with aqueous-deficient dry eye and dry eye
patients with a combination of aqueous-deficient and
changes in their lipid layer were quite similar, the cyto-
kine profile of DED patients with only changes of the
lipid layer was similar to that of the healthy controls.
Furthermore, Tan et al. [62] found that IL-17 and IL-22
were significantly increased, not only in tears from
patients with DED (compared to healthy controls), but
also in SS patients, compared to non-SS-DED patients.
Another study [65] revealed that, besides IL-17A, tears
from SS-DED patients presented with increased levels
of IL-6, IL-10, IL-4, INF-γ and TNF-α, compared to
non-SS-DED and to controls. In another study, Lim et
al. [66] analysed IL-21 tear concentrations in primary
SS patients and found that its level was significantly in-
creased compared to healthy controls and that it also
correlated significantly with ocular surface stain score
and tear production (Schirmer’s I test) values in SS
patients. Moreover, correlations of inflammatory tear
molecule levels such as IL-6, IL-8/CXCL8, TNF-α, IL-
1Ra and I-TAC/CXCL11 (among others) with clinical
parameters and/or disease severity have been shown in
some of those studies, further corroborating the utility of
tear analysis for this disease [19, 20, 55, 59–61, 66–68].
Specifically, MMP-9 measurement in tears has already
been proposed as a sensitive method for DED severity
determination [56, 63], and a commercial point-of-
care device has already been developed (InflammaDry®,
RPD, USA [69]).
Tear cytokine and chemokine measurement has also

been performed in DED patients exposed to different
controlled environmental conditions within an environ-
mental chamber. For example, the studies carried out by
Dr. Calonge’s group [70–72] have shown that IL-6 and

MMP-9 tear levels increase in DED patients, while EGF
decreases after exposure to a controlled environment,
simulating an in-flight airplane cabin (23 °C, 5 % relative
humidity, localised air flow and 750 mb of barometric
pressure [70]. This research group has also reported [71]
that after a 2-h exposure to a controlled desiccating
environment (5 % relative humidity), control non-
symptomatic subjects had decreased EGF and increased
IL-6 tear levels. Moreover, MMP-9 tear levels were also
increased in both DED patients and non-symptomatic
controls. Besides, under similar desiccating conditions,
DED-SS patients showed not only IL-6 and MMP-9 tear
cytokine changes but also IL-1RA and IL-8/CXCL8 tear
increased levels [72].

Tear lipidome in DED Besides proteomic studies, the
tear fluid lipidome in DED patients has been evaluated,
in an attempt to determine the composition and nature
of tear lipids (secreted by the meibomian gland) and to
identify any alterations in those patients. Differences in
the meibomian fatty acid composition in patients with
MGD and aqueous-deficient DED were shown by Joffre
et al. [73]. Moreover, studies by Lam et al. [74, 75] ad-
dressed the meibum lipid composition in DED patients
and found several lipid species that were significantly in-
creased in this demographic, including sphingomyelin
and phosphatidyl species. They reported significant dif-
ferences in the tear levels of O-acyl-w-hydroxy-fatty acid
(OAHFA) species, depending on DED severity. In MGD
patients undergoing eyelid-warming treatment, Lam et
al. [75] found a reduction in tear fluid lysophospholipid
and polyunsaturated fatty acid (PUFA)-containing dia-
cylglyceride species, as well as an increase in some
PUFA-containing phospholipids and OAHFAs, upon
treatment. This group suggested that the lipidome
changes were related to reduced rates of ocular evap-
oration and an improvement in ocular symptoms of
patients [75].
Tears have also been used for the evaluation of lipid

oxidative stress status in SS patients. In a study by
Wakamatsu et al. [76], tear concentrations of hexanoyl-
lysine (HEL) in SS patients were found to correlate
significantly with ocular surface staining scores and
inflammatory cell density. More recently, Choi et al. [77]
evaluated the tear concentrations of HEL, 4-hydroxy-2-
nonenal (HNE) and malondialdehyde (MDA) in patients
with non-SS-DED and 33 control subjects and found
that their levels significantly correlated with clinical tests
for ocular surface health, e.g. TBUT, Schirmer’s test
score, tear clearance rate, keratoepitheliopathy score,
conjunctival goblet cell density and symptom score.

Tear metabolome in DED As shown earlier, numerous
proteins and lipids have been identified by means of
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proteomics and lipidomics of tears in DED. By contrast,
the number of identified metabolites is more limited and
there are few studies regarding analysis of tear metabo-
lites in DED. In a recent study by Galbis-Estrada et al.
[78], the metabolomic profile of reflex tears from DED
patients was analysed by nuclear magnetic resonance
(NMR) spectroscopy of hydrogen-1 nuclei; their results
showed that, when compared to tears from healthy
subjects, there were differences in tear composition of
cholesterol, N-acetylglucosamine, glutamate, creatine,
amino-n-butyrate, choline, acetylcholine, arginine, phos-
phoethanolamine, glucose and phenylalanine levels. In
another study from this group [79], they further studied
the metabolomic profile of basal tears from DED
patients and compared to healthy subjects, both before
and after oral nutraceutic supplementation (containing
antioxidants and essential PUFAs) after 3 months. Their
results showed that there were significant differences in
the tear metabolic profile of both groups under study,
both pre- and post- supplementation.

Tear fluid biomarkers of ocular GVHD-associated
DED Besides SS, another subtype of severe DED is that
present in patients that suffer from ocular GVHD.
GVHD is an immune-mediated inflammatory disease
that haematological stem cell-transplanted (HSCT)
patients may develop, in which host tissues are attacked
by immunocompetent cells from the donor [80]. Up to
60–90 % of patients have ocular involvement; in particu-
lar, chronic GVHD patients develop a very severe form
of dry eye. Signs and symptoms of ocular involvement
from chronic GVHD may mimic typical DED, but in
GVHD patients can lead to a serious abnormality of the
ocular surface, affecting patient’s quality of life and even-
tually leading to permanent visual loss. GVHD-DED is
mainly due to aqueous tear deficiency, Sjögren-like, and
histology shows inflammatory destruction of the con-
junctiva and lacrimal gland with fibrosis, resulting in
tear production deficiency [81].
Some studies have already shown that some cytokines

have significant different levels in tears of those ocular
GVHD patients when compared to healthy subjects or
to GVHD patients without ocular involvement. One of
those studies, Riemens et al. [82], demonstrated that IL-
6 and IFN-γ were significantly increased in tears from
ocular GVHD patients. While Sakimoto et al. [83] also
described that soluble TNF receptor 1 (sTNFR1) expres-
sion was significantly increased in tears from GVHD
patients. Recently, Jung et al. [84] also conducted a study
in which they studied tear concentration of an 8-
cytokine panel in chronic GVHD patients and compared
it to HSCT patients that did not develop GVHD. Their
results showed that IL-2, IL-10, IL-17A, INF-γ, IL-6 and
TNF-α were elevated in patients with GVHD compared

to transplanted patients without GVHD. Additionally,
they found that IL-10, IL-17A, IL-6 and TNF-α had sig-
nificant diagnostic abilities, as based on their calculated
odds ratio and AUC values. This group also showed that
those molecules, along with INF-γ and IL-2, presented
significant correlation with clinical parameters, particu-
larly with severity [84]. Cocho et al. [85] have also used
tear molecule levels to develop a predictive model, based
on a panel of tear cytokines in chronic ocular GVHD.
They found that, compared to healthy subjects, these pa-
tients had significantly decreased tear levels of EGF and
IP-10/CXCL10 and increased levels of IL-1RA, IL-8/
CXCL8 and IL-10. Significant correlations with clinical
features (including tear production and stability and
symptoms, hyperaemia and ocular surface integrity)
were also found for these molecules. A statistically gen-
erated IL-8/CXCL8 and IP-10/CXCL10 tear level-based
predictive model was found to have an AUC value of
0.9004, a sensitivity of 86.36 % and a specificity of
95.24 % [85].

Ocular allergies
Tear molecule analysis has also been addressed in cases
of ocular allergy. Several clinical subtypes, such allergic
conjunctivitis, giant papillary conjunctivitis (GPC, al-
though this remains controversial), vernal keratocon-
junctivitis (VKC) and atopic keratoconjunctivitis (AKC),
are considered allergy-related disorders [86]. As for the
case of DED, tear analysis in ocular allergy patients has
revealed significant correlations of several molecules
with clinical symptoms and signs, with specific molecule
profiles associated to the different clinical subtypes of
allergy. Some of these studies have already been
reviewed [26, 27, 87]. Many of the tear molecules ana-
lysed in ocular allergy are related to cytokines/chemo-
kines, as these molecules have been shown to play a
key role in allergy. Although, as in the case of DED,
there are also studies of some other proteins and
neuromediators.

Tear cytokines and chemokines in ocular allergy
Regarding tear cytokine/chemokine analysis in the differ-
ent subtypes of ocular allergy, one of the first studies ad-
dressing this was that of Uchio et al. [88]. Using ELISA
assays, this group analysed tear levels of Th-1-IFN-γ and
IL-2 and Th-2-IL-4 and IL-5 in VKC, AKC, allergic con-
junctivitis (AC) and normal subjects. They found that
tear IL-4 levels in AKC patients were significantly higher
than those in VKC, AC and controls and that IL-4 tear
levels differed significantly in patients with AKC with
proliferative lesions versus VKC patients. Also, tear IL-5
levels in patients with diseases associated with prolifera-
tive lesions were found to be higher than those in AC
and normal controls. Also in this year, Leonardi et al.
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[89] determined soluble leukocyte activation markers
(including neutrophil myeloperoxidase, eosinophil cat-
ionic protein (ECP), eosinophil neurotoxin and soluble
IL-2 receptor) and histamine, in tears from VKC, AKC,
seasonal AC and GPC. Later, this group analysed tear
eotaxin-1/CCL11 and eotaxin-2/CCL24 concentrations
in VKC and AKC patients (and normal subjects) and
found that eotaxin-2/CCL24 was significantly increased
in tears from allergic patients [90]. Tear levels of both
molecules correlated with the percentage of eosinophils
in the tear fluid. Another study by this group showed
significantly increased MMP-1 and MMP-9 in VKC
patients, compared to controls. Additionally, MMP-9
activity was found to be correlated with corneal involve-
ment and giant papillae formation [91]. MMP-9 tear
levels have also been found to be increased in AC
patients in a study by Acera et al. [54].
Taking advantage of the development of multiplex

cytokine analysis (CBA), Cook et al. [92] analysed tear
concentrations of IFN-γ, TNF-α, IL-2, IL-4, IL-5 and IL-
10, in both allergic and non-allergic patients. Their study
showed that tears from allergic patients presented with
decreased levels of IL-10 and also significant increased
ratios of TNF-α/INF-γ, IL-5/INF-γ and IL-5/IL-10, ver-
sus non-allergic subjects. This was one of the first stud-
ies that established the usefulness of the CBA technique
for cytokine tear analysis. Also by the CBA method,
research by Nivenius et al. [93] analysed the concentra-
tions of IFN-γ, TNF-α, IL-2, IL-4, IL-5 and IL-10 in tears
from AKC patients and found that they presented
significantly increased tear levels of these molecules.
While Leonardi et al. [94] investigated and compared
cytokine tear levels among different types of allergic sub-
types, including VKC, AKC, chronic and seasonal AC
(SAC), they found specific profiles of tear molecules that
were significantly increased in each one; IL-1β, IL-2, IL-
5, IL-6, IL-12, IL-13 and MCP-1/CCL2 tear levels were
found to be increased in all allergic patients groups
(compared to controls); IL-4, IFN-γ and IL-10 were
elevated in SAC and VKC, while eotaxin-1/CCL11 and
TNF-α were only increased in VKC patients group. They
also noted significant differences in the expression of IL-5,
RANTES/CCL5 and eotaxin-1/CCL11 in VKC patients,
compared to that in those with SAC.
By means of a 40-molecule array, Shoji et al. [95] dem-

onstrated that different cytokines were differentially
increased or decreased in tears (compared to controls),
depending on whether they were from VKC or GPC pa-
tients. Particularly, in VKC patients, eotaxin-1/CCL11,
IL-11, MCP-1/CCL2 and M-CSF increased to four times
the values in the control group, and eotaxin-2/CCL24,
IL-4, IL-6, IL-6sR, IL-7, MIP-1δ and TIMP-2 tear levels
were increased to eight times the control values. The in-
crease in tear IL-6sR was statistically significant in both

the VKC and GPC patients compared to that in the con-
trols, while that in eotaxin-2/CCL24 and that in TIMP-2
were significant only in the VKC group and only in the
GPC group, respectively, compared with that in the
controls. Whereas in tears from the GPC patients, IL-6,
M-CSF and MIG/CXCL9 increased to four times than
those in the control group, and eotaxin-2/CCL24, IL-
6sR, IL-11, MIP-1δ and TIMP-2 increased to eight times
the control values. These same authors also confirmed
in another study [96] that in these two groups, tear sIL-
6R levels were significantly increased and correlated to
clinical score of allergic inflammation of the ocular
surface in VKC patients and proposed the use of tear
sIL-6R as useful biomarker for patients with AC disease.
Another multiplex methodology used for the study of
tear molecule concentration is the use of membrane ar-
rays, a stationary phase protein analysis technique. With
an optimised protocol, Sack et al. [97] used this method
to study 16 inflammatory mediators (GM-CSF, IL-1α,
IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8/CXCL8, IL-
10, IL-12, IL-13, INF-γ, MCP-1/CCL2 and TNF-α) in
tears from allergic patients, in both open- and closed-
eye environments and showed detectable levels of most
of the protein panel in these patients, particularly the
found enhanced IL-2, IL-4, IL-5 and IFN-γ signals in
open eye samples and IL1-α and TNF-α in closed-eye
patients’ tear samples, versus controls, in which only IL-
8 was detectable.

Other tear biomarkers of ocular allergies Studies have
been undertaken on tear molecules from ocular allergy
patients, such as histaminase, ECP and histamine. In
1995, these molecules were evaluated by ELISA and RIA
in VKC patients [98]. While Montan et al. [99] analysed
tear ECP levels of various groups of AC patients (VKC,
AKC, SAC and GPC) versus healthy subjects, they found
that subjects with AKC and VKC had significantly
higher tear ECP values than subjects with GPC and
SAC. Additionally, they found that there was a signifi-
cant correlation between ECP values and disease severity
in all disorders [99].
Other studies have addressed the tear analysis of some

other molecules in allergic tears such as haemopexin,
neuromediators and allergen-specific IgE antibodies
[8, 100–103]. Haemopexin tear levels were found to
be increased in VKC patients and significantly associ-
ated with disease severity [101]. In agreement with
those results by Pong et al. [101], Leonardi et al. [8]
—by means of iTRAQ quantitative proteomics ana-
lysis of VKC tear samples—found that levels of hae-
mopexin (and also serum albumin and transferrin)
were up to 100 times higher than the control tear
sample levels; those molecule tear levels also corre-
lated to severity of disease. Additionally, they found
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that haemopexin, transferrin, mammaglobin B and secre-
toglobin 1D were significantly overexpressed in VKC tear
samples, compared to the control ones [8].
Sacchetti et al. [102] showed that after conjunctival

allergen provocation test, tear levels of substance P,
CGRP and VIP neuromediators were significantly
increased in allergic patients compared to baseline. More
recently, in 2015, the group of Leonardi et al. [103] has
determined allergen-specific IgE antibodies in tears from
active VKC patients and age-matched healthy controls,
using a multiplex specific microarray technique for
direct measurement of IgE directed against 103 compo-
nents derived from 47 allergens.

Keratoconus
Keratoconus (KC) is the most common degenerative
corneal disease [104], whereby structural changes in the
cornea cause it to thin and bulge. KC is characterised by
a distinctive conical shaping of the cornea and results in
diminished vision and reduced quality of life. Despite
numerous efforts, no single biomarker for KC has been
discovered that allows early diagnosis of the condition.
Recently, however, Priyadarsini et al. [105] identified a
potentially novel tear fluid marker of KC and termed it
gross cystic disease fluid protein-15 (GCDFP-15) or PIP.
Another group demonstrated significant changes in the
following molecules: RANTES/CCL5, MMP-13, NGF
and IL-6 in tear fluids of patients with KC [106]. This
group also noted age-dependent associations between
IL-13, IL-8/CXCL8, RANTES/CCL5 and MMP-13 and
the topographical data. A study by You et al. [107], via
ELISA analysis of tear fluids from subjects with KC,
showed significantly reduced levels of the glycoprotein
secreted frizzled-related protein 1 (SFRP-1). Moreover,
tear fluid inflammatory protein expression has been
assessed in subjects with KC. Most recently, Shetty et al.
[108] noted high levels of MMP-9 and IL-6 in tear fluids
of KC patients. This group noted that MMP-9 levels
responded (were reduced) to cyclosporine A therapy,
thus indicating this protein as a potential target in
arresting KC progression. While Sorkhabi et al. [109]
identified significantly increased IL-6, IL-1β and IFN-γ
levels in KC tears than controls, of note was the fact that
this study showed significantly lower levels of the anti-
inflammatory mediator IL-10 in tears from KC patients.
Other research indicates roles for metabolites re-

lated to the urea cycle, TCA cycle and oxidative stress
in KC patients, as demonstrated by notable tear fluid
changes in proteins associated with these processes
[110]. Further evidence for a role in KC of oxidative
stress was also shown via lower levels of tear film
prolidase activity (PA) in a study of KC patients and
healthy subjects [111].

Keratopathy
Keratopathy is the term used to refer to any disease or
dysfunction of the cornea and can include bullous, band,
climatic droplet and neurotrophic keratopathies. Cli-
matic droplet keratopathy (CDK) is a degenerative dis-
ease of the cornea, which is characterised by progressive
opacity of the cornea’s anterior layers. Proteomics, such
as iTRAQ, have been used in numerous studies to define
the protein composition of tears from patients with this
disorder. For example, Lei et al. [112] used 2D nano-LC-
nano-ESI-MS/MS analysis to quantify N-linked glyco-
proteins in tears from patients with CDK, versus
controls. This group found that of the 19 novel N-linked
glycoproteins identified in tears, five were found to have
significant changes in N-glycosylation levels in CDK pa-
tients, compared to normal controls [112]. As N-linked
glycoproteins are found in body fluids, they are of
particular interest in the field of biomarkers and as po-
tential therapeutic targets. Despite this, very few studies
have undertaken tear fluid analysis for N-linked glyco-
proteins (reviewed in [113]), indicating these proteins
may be difficult to assess. Other potential tear fluid
biomarkers of CDK include cytokines, MMPs and gelati-
nases [114, 115]. MMPs have also been indicated in the
pathology of another form of keratopathy, diabetic kera-
topathy. Interest in this particular type of ocular surface
disease is on the increase, due to the global phenomenon
of rapidly rising rates of diabetes. For example, in a tear
study of paediatric patients with type 1 diabetes, re-
searchers reported significantly elevated levels of MMP-
9, TIMP-1 and TIMP-2, as well as of MMP-9/TIMP-1
and MMP-9/TIMP-2 ratios versus controls, using ELISA
and zymography [116]. Further, they noted a significant
correlation between each of MMP-2, MMP-9 and
TIMP-2 with Hba1c levels. The authors suggested
that the presence of these proteins indicated local tis-
sue remodelling and of local keratopathy disease pro-
gression, which may serve as early disease markers.
Matsumura et al. [117] investigated the tear fluid
levels of MMP-2, MMP-9 and MMP-10 in diabetic
patients, pre and post vitrectomy. Using multiplex
analysis, they showed significantly higher levels of
MMP-10 in the diabetic patients who subsequently
developed keratopathy post-surgery, indicating a role
for this MMP in mediating post-surgical corneal dis-
orders in diabetes. Tear fluid biomarkers of other
diabetes-related ocular disorders, including diabetic
retinopathy, will be discussed later.

Peripheral ulcerative keratitis
Peripheral ulcerative keratitis (PUK) is a chronic, pro-
gressive condition characterised by a crescent-shaped
corneal ulcer with epithelial defects adjacent to the
limbus [118]. PUK has been linked with various systemic
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autoimmune conditions, in particular rheumatoid arth-
ritis, Wegener granulomatosis, systemic lupus erythe-
matosus and polychondritis [119, 120]. Tear analysis
has been carried out on patients with PUK, investigat-
ing the concentrations of MMP-2 and MMP-9. These
MMPs have been shown to be elevated in those with
PUK [121, 122]. Both of these enzymes are involved in
the breakdown of collagen, and in PUK, this relates to
the destruction of the cellular structure in the corneal
stroma and subsequent corneal perforation. These
studies have also shown that the levels of MMP-2 and
MMP-9 are increased during active PUK and are
reduced during disease inactivity, indicating their in-
volvement in the disease process [121, 122].

Trachoma
Trachoma is an infection that is common in developing
countries in Africa, the Middle East and Asia and is the
most common infectious cause of blindness worldwide.
The infectious agent is a bacterium, Chlamydia tracho-
matis, which via trichiasis (ingrowing eyelashes), results
in repeated episodes of corneal and conjunctival scar-
ring. An estimated 8 million people are visually impaired
as a result of trachoma infection, and a further 84
million suffer from active infection globally (reviewed in
[123]). Trachoma is spread by direct contact with eye,
nose and throat secretions from affected individuals, or
via contact with contaminated clothing. Therefore, as a
major cause of preventable blindness worldwide, a
reliable test for C. trachomatis is necessary in both
controlling and eliminating this infection. Numerous
programmes have been undertaken, with the aim of re-
ducing both the infection and the clinical signs. There is
a long history of detecting immune responses to trach-
oma via immunoglobulin (Ig) in tears from patients
[124–127]. Immune responses have been measured via
tear IgG and IgA (against cHSP60, CT795 and CPAF
fusion proteins) using ELISA [128], who reported signifi-
cantly higher IgG antibody levels against cHSP60, CPAF
and CT795 in the inflammatory cases of trachoma,
versus controls. This group suggested that IgG levels to
CPAF may serve as a biomarker for patients at risk of
inflammatory trachoma. More recently Mowafy et al.
[129] utilised tear ELISA assays to detect IgG and IgM
of patients with trachoma.
Finally, in order to improve the understanding of

the pathology underlying trachoma infection, Satici et
al. [130] examined tear fluid cytokine expression.
They found a significant correlation between changes
in EGF, TGF-β1 and TNF-α levels and conjunctival
scar formation of trachoma patients, indicating a
potential role for these inflammatory mediators in
scar progression.

Tear fluid analysis for other ocular disorders
Thyroid-associated orbitopathy
Thyroid-associated orbitopathy (TAO) is an auto-
immune disease resulting from thyroid dysfunction.
TAO is characterised by enlarged extraocular muscles
and increased fatty and connective tissue, resulting in
protruding eyes, restricted ocular motility and, in severe
cases, visual field loss. In recent years, proteomic ana-
lysis of tear fluids from patients with TAO has been
undertaken in order to better determine disease activity
and to stratify patients accordingly. These studies have
yielded some interesting data on potential biomarkers of
the condition. For example, using CBA, Ujhelyi et al.
[131] reported significantly increased levels of tear fluid
IL-1β, IL-6, IL-13, IL-17A, IL-18, TNF-α and RANTES/
CCL5 in TAO patients versus controls. Of interest, IL-6
was increased 2.5-fold, suggesting this cytokine may
serve as a specific marker of disease activity in TAO
patients. In another tear cytokine study, Cai et al. [132]
reported differing levels of the cytokine IL-7, depending
on disease activity states, with the highest IL-7 levels
observed in patients with inactive TAO. A later study of
patients with active or inactive TAO was performed by
Huang et al. [133], and tear fluids were assessed for the
cytokines IL-1β, IL-6, IL-7, IL-17A, IFN-γ and TNF-α.
They reported that IL-1β was significantly higher in ac-
tive TAO than inactive disease and controls, while IL-6
and IL-17A were significantly higher in both active and
inactive TAO than controls. IL-7 levels were highest
overall in inactive TAO among the three groups.
Concentration of TNF-α was significantly higher in both
active and inactive TAO than for controls [133].
Taken together, these studies indicate a vital role

for inflammatory mediators in TAO disease progres-
sion and may serve as future diagnostic and/or thera-
peutic targets for this condition.

Aniridia
Aniridia is a rare congenital condition (linked to the
PAX6 gene on chromosome 11), whereby the iris is
missing or incomplete, and it usually affects both eyes.
To date, very few studies have profiled tear fluid proteins
in these patients. Recent work by Ihnatko et al. [134]
used 2D electrophoresis and liquid chromatography-
tandem mass spectrometry (LC-MS/MS) to compare
tear proteins in aniridia and control subjects. The
authors noted seven differentially expressed proteins in
aniridia patients and control subjects, including α-
enolase, peroxiredoxin 6, CST4, gelsolin, apolipoprotein
A-1, zinc-α2-glycoprotein and lactoferrin. Of these, the
former five proteins were more highly expressed in
healthy subjects, while the latter two proteins were
higher in tears of aniridia patients, and western blot data
showed increased tear vascular endothelial growth factor
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(VEGF) levels in those with aniridia [134]. Further, a
recent study by Peral et al. [135] sought to ascertain the
tear levels of diadenosine polyphosphates (Ap4A and
Ap5A), which have been identified previously as poten-
tial dry eye biomarkers, in subjects with aniridia (who
also have a propensity to dry eye). In their study of 15
aniridia patients and 40 controls, the authors observed
increased levels in aniridia patients (than for controls),
which correlated with patient age and corneal disorder
progression [135]. Although the research into tear fluid
proteomics is still at an early stage in this patient demo-
graphic, further biomarker studies are likely to shed light
on this condition and may potentially identify thera-
peutic targets in treating ocular surface complications
of this disease.

Glaucoma
Glaucoma is an internal ocular condition that usually af-
fects both eyes in which the aqueous humour builds up,
causing an increase in intra-ocular pressure. Around
10 % of UK blindness registrations are attributable to
glaucoma, and its overall prevalence is approximately
around 2 % of people over 40. Moreover, the prevalence
of glaucoma is higher in people of black African or black
Caribbean descent and those with a family history of
glaucoma (reviewed in [136]). Globally, it has been
estimated that by 2020, at least 53 million people will be
affected by glaucoma [137] and this disease remains the
primary cause of irreversible visual impairment.
The main forms of glaucoma include primary open-

angle glaucoma (POAG, the most common form),
primary angle-closure glaucoma, secondary glaucoma
and developmental (or congenital) glaucoma. Due to the
devastating effects that untreated glaucoma may have on
vision in the working age population, it is imperative
that (for improved PPPM) robust biomarkers are identi-
fied for drug development and measuring disease pro-
gression in this condition [138]. Using ELISA,
Ghaffariyeh et al. [139] assessed brain-derived neuro-
trophic factor (BDNF) in the tear fluids of normal-
tension glaucoma (NTG) patients. They found this pro-
tein to be substantially reduced in tears of NTG patients
versus healthy controls. Pieragostino et al. [140] exam-
ined the tears of patients with medically controlled
POAG and pseudoexfoliative (secondary) glaucoma,
using SDS-PAGE and MALDI-TOF MS. This group
demonstrated differing levels of Igs, PIP, lysozyme C,
LCN-1 and protein S100, between the two disease sub-
types, suggesting different inflammatory pathways
underlying the pathologies. This work was followed by
the same group observing tear fluid proteomics in
treatment-naïve POAG subjects, and they reported up-
regulation of 25 proteins in POAG subjects (versus con-
trol), 16 of which were inflammatory response mediators

[141]. The authors suggested that as a large component
of the tear proteins were directly related to inflammatory
pathways, these may serve as future biomarkers and/or
therapeutic targets of POAG.
In addition, Liu et al. [142] assessed tear fluid

MUC5AC by ELISA in 25 POAG patients (versus con-
trols) and reported a reduction following short-term
glaucoma medication. By comparison, Roedl et al. [143]
found significantly higher levels of tear fluid homocyst-
eine (Hcy, a homologue of the amino acid cysteine) in
36 POAG patients versus controls. This group noted
that POAG patients with DED had significantly higher
tear fluid levels than POAG patients without DED, indi-
cating that Hcy may serve as a marker for increased risk
of both POAG and dry eye in glaucoma patients.
Table 1 summarises the putative biomarkers in tears

for ocular diseases.

Tear fluid analysis in systemic diseases
Until recently, little research had been performed on
investigating tear fluids for potential biomarkers of
systemic diseases, some of which present with ocular
surface complications, e.g. diabetes, cystic fibrosis and
systemic sclerosis. However, with the improved sensitiv-
ity in proteomic detection of low-abundance proteins
and the increased interest in retrieval of tissue samples
non-invasively for enhanced disease detection, this is
likely to change rapidly [23, 25].

Systemic diseases with ocular complications
Diabetic retinopathy
Diabetes mellitus (DM) is a complex metabolic disease,
affecting approximately 347 million people globally
[144]. DM is known to cause severe retinal disease,
such as diabetic retinopathy (DR), which is one of the
leading causes of blindness in the working age popula-
tion. For example, approximately 5 % of the 37 million
people suffering from blindness are due to DR. Thus,
the predicted global epidemic of DM is likely to result
in increasing numbers of patients with associated
retinal disease.
Early diagnosis and intervention is crucial in slowing

the progression of DR, hence the urgent need for
biomarkers to better determine the clinical course. To
date, in the UK the presence of DR is determined by
clinical evaluation, using retinal screening (reviewed in
[145]). The UK is a world leader in diabetic retinal
screening, and this programme is highly effective in
recognising DR for subsequent monitoring and therapy
[146]. Currently, however, no diagnostic test exists for
identifying early presentation of DR disease. A non-
invasive method of diagnosing early-stage DR would be
invaluable in terms of patient treatment and prevention
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Table 1 Current putative biomarkers in tears for ocular diseases

Disease Type of
molecule

Molecules References

DED Proteins Lysozyme, lactoferrin Mackie and Seal (1986) [36], Boersma and
van Bijsterveld (1987) [37], Goren and Goren (1988) [38]

LPRR4 Grus et al. (2005) [30], Aluru et al. (2012) [4],
Boehm et al. (2013) [33]

Calgranulin A/S100 A8 Grus et al. (2005) [30], Zhou et al. (2009) [31],
Tong et al. (2011) [32], Boehm (2013) [33]

LPRR3, nasopharyngeal carcinoma-associated PRP 4,
α-1 antitrypsin α-enolase, α-1 acid glycoprotein 1

Grus et al. (2005) [30]

S100 A4, S100 A11 (calgizzarin) Zhou et al. (2009) [31]

S100 A9/calgranulin B Zhou et al. (2009) [31], Tong et al. (2011) [32]

LCN-1 Tong et al. (2011) [32]

Mammaglobin B, lipophilin A, B2M Boehm (2013) [33]

S100A6, annexin A1 annexin A11, CST4, PLAA Soria et al. (2013) [34]

Transferrin, LCN-1 Versura et al. (2013) [35]

Defensin-1, clusterin, lactotransferrin Li et al. (2014) [40]

Cathepsin S Hamm-Alvarez et al. (2014) [41]

Anti-SS-A, anti-SS-B, anti-α-fodrin antibodies Toker et al. (2004) [42], Zandbelt et al. (2009) [43],
Yavuz et al. (2006) [44]

Malate dehydrogenase (MDH) 2 Guo et al. (2014) [21]

Palate lung nasal clone—PLUNC Schicht et al. (2015) [46]

Mucins (MUC)5AC Argüeso et al. (2002) [45]

Neuromediators NGF, CGRP, NPY Lambiase et al. (2011) [47]

Serotonin Chhadva et al. (2015) [48]

Cytokines/
chemokines

IL-1 Pflugfelder et al. (1999) [51], Solomon et al. (2001) [52],
Boehm et al. (2011) [60], Van der Meid et al. (2012) [68],
Na et al. (2012) [20]

IL-2, IL-5 Massingale et al. (2009) [58]

IL-6 Tishler et al. (1998) [50], Yoon et al. (2007) [53], Lam et al.
(2009) [55], Massingale et al. (2009) [58], Boehm et al.
(2011) [60], Na et al. (2012) [20], Van der Meid et al. (2012) [68],
Lee et al. (2013) [65], Tesón et al. (2013) [70],
López-Miguel et al. (2016) [72]

IL-8/CXCL8 Lam et al. (2009) [55], Massingale et al. (2009) [58], Boehm et al.
(2011) [60], Van der Meid et al. (2012) [68], Huang et al. (2012)
[61], López-Miguel et al. (2016) [72]

IL-10 Massingale et al. (2009) [58], Lee et al. (2013) [65]

IL-12 Lam et al. (2009) [55], Na et al. (2012) [20]

IL-16, IL-33, GCSF, MCP1/CCL2, MIP1d (CCL15),
ENA-78/CXCL5, sILR1, sIL-6R, sgp. sEGFR, sTNFR

Na et al. (2012) [20]

IL-17A De Paiva et al. (2009) [57], Na et al. (2012) [20], Lee et al.
(2013) [65], Tan et al. (2014) [62]

IL-21 Lim et al. (2009) [66]

IL-22 Tan et al. (2014) [62]

IL-1RA Enriquez-de-Salamanca et al. (2010) [19], Huang et al. (2012) [61],
López-Miguel et al. (2016) [72]

CXCL9/MIG, CXCL11/I-TAC Yoon et al. (2010) [59]

CXCL10/IP-10 Enriquez-de-Salamanca et al. (2010) [19], Yoon et al. (2010) [59]

MIP-1β/CCL4 Choi et al. (2012) [22]

RANTES/CCL5 Lam et al. (2009) [55], Choi et al. (2012) [22]
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Table 1 Current putative biomarkers in tears for ocular diseases (Continued)

EGF Pflugfelder et al. (1999) [51], Ohashi et al. (2003) [64],
Lam et al. (2009) [55], Enriquez-de-Salamanca et al. (2010) [19],
Tesón et al. (2013) [70], López-Miguel et al. (2016) [72]

TNF-α Yoon et al. (2007) [53], Lam et al. (2009) [55], Massingale et al.
(2009) [58], Boehm et al. (2011) [60], Van der Meid et al. (2012)
[68], Lee et al. (2013) [65]

INF-γ Massingale et al. (2009) [58], Boehm et al. (2011) [60],
Lee et al. (2013) [65]

MMP-9 Acera et al. (2008) [54], Chotikavanich et al. (2009) [56],
Van der Meid et al. (2012) [68], Aragona et al. (2015) [63],
Tesón et al. (2013) [70], López-Miguel et al. (2014) [71],
López-Miguel et al. (2016) [72]

MIP1-α/CCL3 Lam et al. (2009) [55], Choi et al. (2012) [22]

VEGF Enriquez-de-Salamanca et al. (2010) [19]

Fractalkine Enriquez-de-Salamanca et al. (2010) [19], Na et al. (2012) [20]

Lipids OAHFA, lysophospholipids, PUFA-containing
diacylglyceride species

Lam et al. (2011) [74], Lam et al. (2014) [75]

HEL Wakamatsu et al. (2013) [76]

HNE, MDA Choi et al. (2016) [77]

Metabolites Cholesterol, N-acetylglucosamine, glutamate,
creatine, amino-n-butyrate, choline, acetylcholine,
arginine, phosphoethanolamine, glucose,
phenylalanine

Galbis-Estrada et al. (2014) [77]

Ocular
GVHD

Cytokines/
chemokines

IL-6, INF-γ Riemens et al. (2012) [82]

Soluble TNF receptor 1 (sTNFR1), IL-2,
IL-10, IL-17A, TNF-α

Sakimoto et al. (2014) [83], Jung et al. (2015) [84]

EGF, IL-1RA, IL-8/CXCL8, IP10/CXCL10 Cocho et al. (2016) [85]

Ocular
allergya

Cytokines/
chemokines

IL-1α, IL-1β Leonardi et al. (2006) [94], Sack et al. (2007) [97]

IL-2 Nivenius et al. (2004) [93], Leonardi et al. (2006) [94],
Sack et al. (2007) [97]

IL-6, IL-12, IL-13, eotaxin-1/CCL11,
RANTES/CCL5, MCP-1/CCL2

Leonardi et al. (2006) [94]

IL-4 Uchio et al. (2000) [88], Nivenius et al. (2004) [93],
Leonardi et al. (2006) [94], Sack et al. (2007) [97]

IL-5 Uchio et al. (2000) [88], Nivenius et al. (2004) [93],
Leonardi et al. (2006) [94], Sack et al. (2007) [97]

IL-10 Nivenius et al. (2004) [93], Leonardi et al. (2006) [94]

sIL-6R Shoji et al. (2006) [95], Shoji et al. (2006) [96]

Eotaxin-2/CCL24 Shoji et al. (2006) [95], Leonardi et al. (2003) [90]

TNF-α, IFN-γ Nivenius et al. (2004) [93], Leonardi et al. (2006) [94],
Sack et al. (2007) [97]

TNF-α/IFN-γ, IL-5/IFN-γ, IL-5/IL-10 Cook et al. (2001) [87]

Other proteins Neutrophil myeloperoxidase, ECP, eosinophil
neurotoxin, sIL-2 receptor, histamine

Leonardi et al. (2003) [89], Abelson et al. (1995) [98],
Montan et al. (1996) [99]

MMP-1
MMP-9
TIMP-2

Leonardi et al. (2003) [91]
Leonardi et al. (2003) [91], Acera et al. (2008) [54]
Shoji et al. (2006) [95]

Haemopexin,
Substance P, CGRP, VIP
Transferrin, mammaglobin B,
secretoglobin 1D
IgE abs

Pong et al. (2010) [100], Pong et al. (2011) [101],
Leonardi et al. (2014) [8]
Sacchetti et al. (2011) [102]
Leonardi et al. (2014) [8]
Leonardi et al. (2015) [103]
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of further retinal and microvasculature damage, ideally
prior to clinical presentation.
To date, most studies of DR biomarkers have so far

concentrated on assessing aqueous humour markers,
including inflammatory cytokines and chemokines
[147–149], while others have examined the vitreous
[150], or the plasma [151]. Although useful, these
studies mainly involve invasive tissue sampling proce-
dures of internal ocular fluids.
In recent years, however, tear fluids have been investi-

gated for the presence of markers for DR. For example,
Park et al. [152] investigated tear fluid (and serum) levels
of NGF in patients with DR (via ELISA) and noted
significantly higher levels in both fluids, versus non-
diabetic controls. Furthermore, they reported that levels
of NGF correlated with blood glucose levels, duration of
DM, HbA1c and diabetic nephropathy, thus indicating
NGF’s potential utility as a biomarker. In 2012, Csősz et
al. [153] identified six potential candidate biomarkers,
including LCN-1, lactotransferrin, lysozyme C, lacritin,
lipophilin A and immunoglobulin lambda chain (via
nano-HPLC-coupled ESI-MS/MS mass spectrometry) in
tears from patients with DR. In the same year, using a
combined proteomic analysis approach, Kim et al. [154]
identified a number of proteins that were differentially

expressed between diabetic groups (with and without
DR), versus healthy subjects. Of these proteins, LCN-1,
heat shock protein 27 (HSP 27) and B2M were shown to
be significantly altered (up- and down-regulated) in the
two DM groups, compared with healthy controls. The
changes observed in LCN-1, HSP27 and B2M for
diabetic patients (with and without evidence of DR) may
thus serve as future early diagnostic tools (and/or thera-
peutic targets) for early-stage DR. While more recently,
a tear fluid study by Costagliola et al. [155] reported
significantly increased levels of the cytokine tumour
necrosis factor alpha (TNF-α) in diabetic patients with
DR. Moreover, TNF-α levels were strongly associated
with severity of DR. Another recent study by Torok et
al. [156] undertook proteomic analysis of tear fluids (via
nano-HPLC-coupled ESI-MS/MS mass spectrometry)
from 52 diabetic patients, of whom 39 had DR. By com-
bining separate but complimentary techniques (prote-
omic data with retinal imaging of microaneurysms), this
group sought to increase both the sensitivity and the
specificity values of photographic screening methods.
The ultimate goal is the creation of a less expensive,
more user-friendly and more accessible method for clin-
ical DR screening. Although the study showed that the
system is not yet fully optimised, they concluded that

Table 1 Current putative biomarkers in tears for ocular diseases (Continued)

KC GCDFP-15/PIP
RANTES/CCL5, MMP-13, NGF, IL-6
MMP-9, IL-6
IL-6, IL-1β and IFN-γ
SFRP-1
Prolidase

Priyadarsini et al. (2014) [105]
Kolozsvári et al. (2014) [106]
Shetty et al. (2015) [108]
Sorkhabi et al. (2015) [109]
You et al. (2013) [107]
Göncü et al. (2015) [111]

Keratopathy N-linked glycoproteins, cytokines, gelatinases
and MMP-2, -9, -10 and TIMP-2

Lei et al. (2009) [112], Holopainen et al. (2011) [114],
Holopainen et al. (2012) [115], Symeonidis et al. (2013) [116],
Matsumura et al. (2015) [117]

PUK MMP-2, MMP-9 Geerling et al. (1999) [121], Smith et al. (1999) [122]

Trachoma Immunoglobulins, IgG against cHSP60,
CPAF and CT795
EGF, TGF-β1 and TNF-α

Nema et al. (1977) [124], Sen et al. (1977) [125],
Darougar et al. (1978) [126], Mahmoud et al. (1994) [127],
Skwor et al. (2010) [128], Mowafy et al. (2014) [129]
Satici et al. (2003) [130]

TAO IL-1β, IL-6, IL-13, IL-17A, IL-18, TNF-α,
RANTES/CCL5
IL-7

Ujhelyi et al. (2012) [131], Huang et al. (2014) [133]
Cai et al. (2013) [132]

Aniridia Zinc-α2-glycoprotein, lactoferrin,
VEGF
Ap4A and Ap5A

Ihnatko et al. (2013) [134]
Peral et al. (2015) [135]

Glaucoma BDNF
Immunoglobulins, PIP, lysozyme C, LCN-1,
protein S100, lactotransferrin, PRP4, PIP,
zinc-alpha-2-glycoprotein, polymeric
immunoglobulin receptor, cystatin S,
Ig kappa chain C region, Ig alpha-2
chain C region, immunoglobulin J chain,
Ig alpha-1 chain
MUC5AC
Hcy

Ghaffariyeh et al. (2009) [139]
Pieragostino et al. (2012) [140], Pieragostino et al. (2013) [141]
Liu et al. (2010) [142]
Roedl et al. (2010) [143]

aThe molecules included in this section are those described, regardless of the type of allergy (VKC, AKC, AC, SAC and GPC)
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ongoing developments in this area suggest its future po-
tential in DR screening.
More recently, research by Nguyen-Khuong et al.

[157] sought to compare the glycomic profiles of tears
from diabetic patients (with and without DR, n = 5 each
group), versus healthy subjects (n = 5), using liquid
chromatography (LC)-ESI-IT-MS and tandem mass
spectrometry. The authors reported marked conserva-
tion of the glycan structures in tear proteins, as well as
changes in the glycomic N-linked profile, the latter of
which coincided with the onset of diabetes and DR
onset. However, this was restricted to the relatively low-
abundance (<5 %) glycans. Five low-abundance N-
glycans and one O-glycan were significantly altered in
patients with DM or DR, versus healthy controls. It
should be noted that the authors could not confirm if
these changes were linked to specific proteins. This
group suggested that marked conservation of the glycan
structures of tear proteins between individuals and
disease-related changes in low abundance N-glycans
may be useful in future tear fluid-based diagnosis of
DM progression [157].

Systemic sclerosis
Systemic sclerosis (SyS, or scleroderma) is a rare con-
nective tissue disease which is characterised by progres-
sive sclerosis of soft tissues, e.g. thickening of the skin
via collagen accumulation, and injuries to small arteries
(vasculitis). In severe cases, this will present as vasculitic
lesions of the skin, joints, intestines and other major or-
gans, nutrient malabsorption, arthritis, scleroderma and
kidney dysfunction. In the eye, SyS commonly presents
as dry eye, due to fibrosis of the lacrimal gland, as well
as conjunctival telangiectasia and filamentous keratitis
[158]. Despite these ocular manifestations, only two
studies have investigated tear fluid proteomics in SyS to
date [159, 160]. In the first instance, Rentka et al. [159]
assessed tear fluid levels of the pro-angiogenic protein,
VEGF, in 43 SyS patients and 27 healthy controls. This
study demonstrated a reduced average VEGF expression
in SyS patients (4.9 pg/L) versus healthy controls
(6.15 pg/L), which was not significant. Moreover, the
authors concluded that this difference in VEGF levels
(20 %) could be due to the decreased tear secretion of
SyS patients, indicating that currently VEGF may not
serve as a biomarker of the disorder. A further study by
this group used proteomics to assessing levels of
cytokines via multiplex arrays and CBA [160]. Of the
102 tear fluid cytokines analysed by cytokine array, 9
cytokines were reported to be significantly increased in
SyS patients. These were complement factor D (CFD),
chitinase-3-like protein 1 (CHI3L1), C-reactive protein
(CRP), EGF, interferon-c-inducible protein-10 (IP-10
or CXCL-10), MCP-1, MIG, MMP-9 and vitamin D-

binding protein (VDBP). Following this, the sensitive
technique of multiplex arrays was used to assay 4
molecules in tears of the 9 SyS patients and 12
controls. The authors demonstrated significantly in-
creased levels of CRP, IP-10 and MCP-1 in tears from
SyS patients, versus controls. While CFD tear levels
were reduced in SyS patients, these were not found
to be statistically significant [160]. This data suggests
a role for these specific cytokines in SyS, which may
serve both as therapeutic targets and aiding clinical
decision-making when recommending artificial tear
formulations. It may be argued that as tear fluids
represent the local milieu of the eye’s surface, they
are a better source of tissue for investigating ocular
surface pathologies.

Cystic fibrosis
Cystic fibrosis (CF) is a serious genetic disease affecting
the exocrine glands, which is characterised by abnormal
secretions, leading to mucus build in the lungs, pancreas
and intestine, as well as the sweat glands, and affects
male fertility. As one of the most common chronic lung
diseases in children and young adults, mucus accumula-
tion in CF causes serious lung infections and digestion
problems and is a life-threatening disorder. As CF affects
the secretory epithelial cells, dry eye is one of the ocular
manifestations of this disease. Although the number of
tear fluid proteomic analyses has thus far been limited,
several articles have investigated the role of cytokines in
ocular surface dysfunction of CF patients. For example,
the first study to assay tear fluid cytokines was by
Mrugacz et al. [161]. This group performed ELISAs to
determine IL-8 and IFN-γ levels in tears of patients with
CF, alongside ocular surface health assessments. The
authors reported significantly higher levels of both cyto-
kines in this patient demographic, versus controls. Inter-
estingly, IL-8 and IFN-γ levels correlated significantly
with the clinical severity of CF [161], indicating import-
ant roles for these cytokines in both progression of ocu-
lar surface inflammation and CF pathology in patients.
Thus, IL-8 and IFN-γ may be putative biomarkers for
determining dry eye and CF clinical status. Subsequent
ELISA studies by this group have reported significantly
increased tear fluid levels of the chemokines MIP-1α
[162] and MIP-1β [163] in patients with CF, versus
healthy subjects. Moreover, in the former study [162]
they noted a negative correlation between the CF clinical
severity and tear MIP-1α levels, as well as a positive cor-
relation between the MIP-1α and dry eye in CF patients.
Their most recent research [163] showed significantly
elevated MIP-1β levels in CF patients, of whom those
with dry eye syndrome demonstrated significantly raised
MIP-1β levels than for CF patients without dry eye.
Taken together, these studies indicate that, similarly to
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tear fluid chemokine/cytokine expression studies in dry
eye, these two groups of inflammatory mediators have
a role in ocular surface inflammatory response and
progression in CF.

Tear fluid analysis of systemic diseases without ocular
complications
Cancer
Various articles have reported on the potential of PPPM
in addressing the major disease such as cancer and their
potential for improved treatment through early detection
and more targeted therapies [164, 165].
In the last decade alone, several articles have assessed

tear fluids from cancer patients, with a view to finding a
non-invasive method of determining markers for this
disease. For example, one of the earliest studies was by
Evans et al. [166] who investigated tear fluid levels of
lacryglobin in breast cancer patients. Lacryglobin is a
protein with high homology to mammaglobin A, one of
a group of proteins secreted by the lacrimal and salivary
glands, uterus and breast that are increased in patients
with breast cancer [167]. In their novel study, Evans et
al. [166] used 1D and 2D electrophoresis of tear samples
from patients with various cancers, in order to deter-
mine the usefulness of tear fluid screening. They re-
ported that tear fluid lacryglobin was present primarily
in patients with colon (100 %) or prostate cancer
(100 %), followed by cancers of the breast (88 %), lung
(83 %) and ovary (33 %). Three (60 %) of the control
subjects showed lacryglobin presence, and, of note, two
of these subjects had a family history of breast and
prostate cancer [166]. This early report thus indicated
the potential of tear fluid lacryglobin as a non-invasive
biomarker of cancer.
As the second most common cause of cancer mortality

in women, breast cancer has been of particular interest
with regard to identifying early diagnostic markers, as
early diagnosis is crucial in reducing mortality [168].
Despite the existence of serum markers such as CEA,
CA15-3 and CA27.29 for monitoring metastatic disease
[169], no definitive biomarkers are available for the early
detection of breast cancer in patients with smaller le-
sions. Therefore, two studies [170, 171] of tear fluid pro-
teins from patients with breast cancer were undertaken
in order to identify novel early-stage biomarkers of the
disease. Using surface-enhanced laser desorption/ionisa-
tion-time-of-flight mass spectroscopy (SELDI-TOF-MS),
they reported significant differences in tear (and blood)
proteins between breast cancer patients and healthy,
age-matched controls, showing 90 % specificity and sen-
sitivity [170]. This group’s follow-up SELDI-TOF-MS
study of tear fluid protein profiles from 50 breast cancer
patients demonstrated significant differences in a panel
of 20 biomarkers (versus healthy controls), with an

overall specificity and sensitivity of 70 % [171]. Taken
together, their data indicates that, as well as being
highly accessible and easily retrieved, tear fluid samples
are less complex (protein content-wise), thus making
them ideal tissue samples for biomarker identification
of breast cancer, via SELDI-TOF-MS. Finally, Böhm et
al. [172] used MALDI-TOF-TOF analysis of tears from
breast cancer patients and showed a distinctive differ-
ence in 20 biomarkers, versus healthy controls. As the
principal cause of death in women globally [173], it is
imperative that robust biomarkers for early detection of
breast cancer are identified, ideally in an easily
accessible body fluid. The above studies indicate the
usefulness of tear fluid protein profiling in achieving
this goal.

Neurological disorders
Multiple sclerosis Multiple sclerosis (MS) is the most
common neurological disorder of early adult life in the
UK [174] and results from chronic demyelination of the
central nervous system (CNS). Diagnosis usually
involves several tests, including magnetic resonance im-
aging (MRI), and a final confirmation may take years to
achieve. Although published literature in the field has
been limited to date, tear analysis was first suggested
for the diagnosis of MS as far back as the mid-1980s
[175, 176]. Since then, various groups have performed
tear studies in order to better determine biomarkers of
the disease. As mentioned earlier, several tests are used
to confirm an MS diagnosis. The most consistent
biomarker of MS to date has been the presence of IgG
oligoclonal bands in cerebrospinal fluid (CSF), which
was reviewed in 2006 [177]. Yet, retrieval of CSF via
lumbar puncture is a highly invasive procedure for
patients, involving a non-insignificant degree of dis-
comfort. Hence, there is a necessity for an earlier, and
less invasive, diagnosis of this debilitating disorder.
Early work by Coyle et al. [176] was the first study that
used isoelectric focusing (IEF) to identify oligoclonal
bands of IgG in tears, showing their presence in 67 %
of the MS patients tested (14/21). By contrast, however,
Mavra et al. [178] performed IEF and reported no IgG
bands for patients with either MS or optic neuritis,
while 16/20 patients with either infections of the CNS
or the presence of systemic immune disorders did
present with these bands. Similarly, Martino et al. [179]
utilised IEF of tears to identify differential oligoclonal
bands, as an alternative to lumbar punctures. Small
increases of total IgG, IgM and IgA levels were noted
in tears from patients with MS and other neurological
disorders, versus controls. Yet only one MS patient
showed unique bands in tears, which were not observed
in the paired CSF and serum. This group thus postu-
lated that the main polyclonal Ig in MS was IgG.
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Latterly, Devos et al. [180] indicated that the specificity
and sensitivity of oligoclonal bands of IgG in tears from
MS patients was similar to that of CSF and far less in-
vasive. This group indicated that tear fluid should
therefore be investigated as a valuable biological mater-
ial for biomarker measurements of MS. Taken together,
the literature so far on oligoclonal bands in tear fluids
appears to be contentious. Not least, following work by
Lebrun et al. [181] who recently showed oligoclonal
bands in radiologically isolated syndrome (RIS), this
newly identified entity defines patients who have white
matter lesions, without clinically defined symptoms of
MS. Therefore, whether oligoclonal bands are more
indicative of this MS-type disorder remains to be seen
and warrants further investigation.
Aside from oligoclonal bands, recent proteomic ana-

lysis by Salvisberg et al. [182] has investigated other tear
fluid protein markers of MS. This group performed
three independent quantitative (tandem mass tag)
experiments on tears from patients with MS versus
healthy controls. Of the 185 tear fluid proteins identi-
fied, 42 were differentially expressed. Of these, α-1-
antichymotrypsin was the only molecule to be significantly
elevated across all three experiments (p < 0.05). The
authors concluded that raised tear fluid levels of this acute
inflammatory protein could serve as a future MS
biomarker, which could replace traditional lumbar punc-
tures. Salvisberg’s study is the most recent wholescale
proteomic tear fluid analysis in MS, showing much more
research is necessary for this particular condition before a
definitive biomarker is confirmed.

Parkinson’s disease Parkinson’s disease (PD) is a
progressive, degenerative neurological condition of the
CNS that predominantly affects the motor system. It is
the second most common neurodegenerative disease
after Alzheimer’s disease [183] and affects approximately
1.2 million people in Europe. As with other systemic
diseases, research into tear fluid biomarkers is at a very
early stage. Most PD tear fluid studies have involved
assessing the quality and stability of the tear film in
these patients [184]. Yet in 2013, a multiplex array study
of tear fluids from 18 patients with PD versus 17 healthy
controls compared tear TNF-α levels alongside clinical
characteristics [185]. This group noted significantly
higher levels of TNF-α in patients with PD than for
controls (p = 0.02), despite these levels not being linked
to PD duration or severity. The authors concluded that
tear fluid analysis was a suitable methodology for
investigating biomarkers and that TNF-α may be a
marker of neurological inflammation in PD patients [185].
Following this work, Börger et al. [186] recently

proposed the usefulness of tears as a source of PD
biomarkers. The authors are currently performing a

“monocentric, prospective, diagnostic trial” in which
they are retrieving tear fluids from PD patients, as well
as from atypical Parkinsonian syndromes, and healthy
controls. In addition to completing clinical characterisa-
tion, all tissue samples (tear fluid, CSF and blood) will
be analysed via LC ESI-MS and the authors hope this
prospective study will provide an understanding of
proteomic alterations in PD and thus identify novel
prospective biomarkers of the condition [186].
Table 2 summarises the putative biomarkers in

tears for systemic diseases.

Conclusions
It can be seen that the field of tear fluid analysis for
earlier diagnosis of ocular and systemic disease is under-
going a sea change. Technological advances, as well as
increased scientific and clinical interest in the non-
invasive methods of sampling from patients, have all
served to make the field of tear fluid analysis an attract-
ive option for disease diagnosis and monitoring. Promis-
ing results have been shown in those studies reviewed
here (see Tables 1 and 2 for summaries of putative tear
fluid biomarkers to date). Further developments in the
fields of proteomic, lipidomic and metabolomic detec-
tion may serve to improve personalised medicine of
patients in the near future. Of particular interest is the

Table 2 Putative tear fluid biomarkers of systemic diseases

Disease Molecules References

Cancer Lacryglobin
Sulf-1, cystatin SA, 5-AMP-
activated protein kinase
subunit γ-3, triosephosphate
isomerase, microtubule-
associated tumour suppressor 1,
keratin (type I) putative LCN-1
like protein, malate dehydro
genase, Ig α-2 chain c region,
Ig heavy chain VIII region
(BRO% WEA), protein S100-A4,
keratin (type II), pericentrin,
complement C1q subcomponent
subunit C

Evans et al. (2001) [166]
Böhm et al. (2012) [172]

DR NGF, LCN-1, lactotransferrin,
lysozyme C, lacritin, lipophilin A,
Ig lambda chain

LCN-1, HSP27, B2M
TNF-α
N- and O-linked glycans

Park et al. (2008) [152]
Csősz et al. (2012) [153]
Kim et al. (2012) [154]
Costagliola et al. (2015) [155]
Nguyen-Khuong et al.
(2015) [157]

MS
PD

IgG
α-Antichymotrypsin
TNF-α

Coyle et al. (1987) [176],
Martino et al. (1993) [179],
Devos et al. (2001) [180]
Salvisberg et al. (2014) [182]
Çomoğlu et al. (2013) [185]

SyS CFD, CHI3L1, CRP, EGF, IP-10,
MCP-1, MIG, MMP-9, VDBP

Rentka et al. (2015, 2016)
[159, 160]

CF IL-8, IFN-γ
MIP-1α, MIP-1β

Mrugacz et al.
(2006, 2007, 2010) [161–163]
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recent strategic document, the “EPMA White paper
2012” [187] which discusses the paradigm shift from
reactive to PPPM. This change in responses to treating
disease is crucial for the development of innovative
medical fields such as biomarker research, as well as in
the personalised clinical application of therapies. It is
anticipated that, ultimately, this change in diagnosis and
therapy will help in the future design and development
of new, more selective and effective therapies for each
individual patient. Standardisation of tear fluid retrieval,
processing and storage are, however, necessary before
these developments can be fully recognised and imple-
mented in patient care. Also, establishment of the
“normal” molecule concentration value range in healthy
subjects, taking into consideration both age and gender,
will be necessary.
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