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1. Introduction

Root-finding of nonlinear equations of the form f(x) = 0 has been one of the most frequently occurring problems in scientific
work. In rare cases, it is possible to solve the governing equations exactly. In most cases, however, only approximate solutions
may resolve the real problems handling such as weather forecast, accurate positioning of satellite systems in the desired orbit,
measurement of earthquake magnitudes and other high-level engineering technologies. Among simple-zero finders, the most
widely accepted classical Newton’s method

 faw)
(%)’
solves f(x) = 0 without difficulty, provided that a good initial guess xg is chosen near the zero . Under the assumption that the

multiplicity m is known a priori, it is of considerable interest to design efficient methods for locating repeated zeros of f{x). For
the zero « with a given multiplicity of m > 1, modified Newton’s method [36,37] in the following form

f(xn)

fr(xn)’
is frequently used by many researchers. It is known that numerical scheme (1.2) is a second-order one-point optimal [25] method
on the basis of Kung-Traub’s conjecture [25] that any multipoint method [35] without memory can reach its convergence order of
at most 2"~ for r functional evaluations. Other higher-order multiple-zero finders can be found in papers [15,17-20,26,27,40,45].

Xni1 = Xn n=0,1,2,... (1.1)

Xnp1 =Xp— M

n=01,2,... (12)
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Given a known multiplicity of m > 1, we propose in this paper a family of new two-point sixth-order multiple-zero finders of
modified double-Newton type by adding the second step to (1.2) of the form:

B ()
Y= e G

Xni1 =Yn — Qp(Xn) -

(1.3)
fn)
om)’
where the desired form of the weight function Qs using only two-point functional information at x, and y, will be extensively
studied for maximal order of convergence in Section 2.

This paper is divided into six sections. Investigated in Section 2 is methodology and convergence analysis for newly proposed
multiple-zero finders. A main theorem is established to state convergence order of six as well as to derive asymptotic error
constants and error equations by use of a family of bivariate weight functions Qf dependent on two principal roots of function-to-
function and derivative-to-derivative ratios. In Section 3, special forms of weight functions are considered based on polynomials
and rational functions with labeled case numbers. Section 4 discusses the extraneous fixed points and related dynamics behind
the basins of attraction. Tabulated in Section 5 are computational results for a variety of numerical examples. Table 6 compares
the magnitudes of e, = x;, — @ among those of typically selected cases of the proposed methods. Dynamical properties of the
proposed methods along with their illustrative basins of attraction are displayed with detailed analyses and comments. Overall
conclusion as well as possible future work is briefly discussed at the end of the final section.

2. Methodology and convergence analysis

Let a function f : C — C have a repeated zero « with integer multiplicity m > 1 and be analytic [1] in a small neighborhood
of @. Then, given an initial guess x sufficiently close to o/, new iterative methods proposed in (1.3) to find an approximate zero «
of multiplicity m will take the specific form of:

f(xn)
Yn=Xp —m=— ,
f(xn) o 1)
Xnp1 =Yn — Qp(W,5) - f/(y’;) )
where
BICOIE
4= |:f(Xn)i| ' @2)
C[Fow ]
‘[ﬂuo] , (2.3)

and where Q; : C2 — C is holomorphic [21,39] in a neighborhood of (0, 0). Since u and s are respectively a one-to-m and a
one-to-(m-1) multiple-valued functions, we consider their pI‘lIlClpal analytic branches [1]. Hence, it is convenient to treat u
as a principal root given by u = exp[+ L1og( fg”))] with Log( f( fg(:;) for —m < Arg( jf,gz;) < m; this
convention of Arg(z) for z € C agrees with that of Log|z] command of Mathematica [44] to be employed later in numerical

1 )
experiments of Section 5. By means of further inspection of u, we find that u = );Eyng ™. expl Arg({rg(:; )] = O(ep). Similarly

= O(en)- In addition, we find that O( f(y“) ) = 0(e?).

/ _1_ /
we treats = | (|77 - PG

Definition 2.1 (Error equation, asymptotic error constant, order of convergence). Let {xg, X1, ..., Xn, ...} be a sequence converging
to « and ey = x; — o be the nth iterate error. If there exist real numbers p € R and b € R — {0} such that the following error
equation holds

ens1 = ben? +0(el™), (24)

m—1

then b or |b| is called the asymptotic error constant and p is called the order of convergence [42].

In this paper, we investigate the maximal convergence order of proposed methods (2.1). We here establish a main theorem
describing the convergence analysis regarding proposed methods (2.1) and find out how to construct the weight function Q;
for sextic-order convergence. Hence, it suffices to consider the weight function Qs with 0(Q;(u, s)) = 0(e?) due to the fact that
O(fus) = 0(ef).

Applying the Taylor’s series expansion of f about ¢, we get the following relations:

fom (a)

flxn) = en™[1 4 026, + 032 + 048] + Ose + Oges) + 0,5 + 0(el)], (2.5)
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o m+1 m+2 m+3 m+4
f(xn) = (f (1)), [1+ ——bhen + — =6l + — —bae; + — —0bse
m+5 m+6
+ r: Ose> + i 6e8 +O(e7):| (2.6)

where 6, = (m+'+k), % for k e N — {1}. For convenience, we denote e, by e without subscript n whenever required to do

so. Dividing (2.5) by (2.6), we have

f(xn) e 62 Ysed Yt  Ysel Yee .

_e_ e  he  1sen 2.7
o) ~m tog t o s T e +0(e’), (2.7)
where Y3 = (1+m)03 —2mbs, Yy = —(1 + m)203 + m(4 + 3m)6,05 — 3m26,, Ys = (1+m)30; —2m(1 +m)(3 + 2m)9§93 +
2m?(3 +2m)0,04 + 2m? (2 + m)02 —2mbs) and Yg = —(1+m)*63 + m(1 + m)?(8 + 5m)03605 — m?(1 + m)(9 + 5m)656, +
m26,(— (2 +m)(6 + 5m)62 + m(8 + 5m)fs) +m3((12 + 5m)63604 — 5mb).

Thus, from relation (2.7), we obtain

2 Y3 y4 y5 YG
yn:a+%_i_£_i_%€+0(ev). (2.8)

f( )(Ol) 92 m om Y; (m—l)Y2 2Y492-i—2951 2

(m) e {1—9—2e+ 202

(m —1)(m - 2)Y3 + 6Y592 + 6Y30, (Y4 — mYy + (m + 1)93) o3
6m26;

f(J’n)_

1
24m39

+12Y26,(— (m — 1)(m — 2)Y4 + m(m 4+ 1)63)

+ 1202 ((m — 1)Y2 = 2Y50, — 2(m + 1)Y403 +2m6503)]e* + 0(e®)}. (2.9)

Expanding f'(yn) about the « leads us to the following relation:

2 [(m—1)(m = 2)(m — 3)(m — 3)Y;' + 24(m — 1)Y3Ys0;5

, F (@) Oy \m-1 5. (1-m)Y: (m—l)(m 2)YZ2 +260,((1 —m)Y4 + (1 +m)b3)
fm) = (m_l),( 2) e?m2{1 + -l e ;292 e?
(m—1)(m—2)(m —3)Y; — 66,((m — 1)(m — 2)Y3Ys — (m — 1)Y50, — m(m + 1)Y363) o3
B 6m36;

-I—#[(m
24m*6;

+12(m — 1)Y260,(— (m = 2)(m = 3)Y4 + m(m + 1)63)

+ 1202 ((m = 1)(m = 2)YZ = 2(m — 1)Ys0, — 2m(m 4 1)Y403 + 2m(m + 2)0:605)e* + 0(e>)}. (2.10)
By Taylor’s expansion or multinomial expansion, we get expressions u in (2.2) and s in (2.3) as follows:
O,  Ys+67 , 24 +60,(2¥3+(m+3)02 -2mbs) 5 W, ,  Ws
me Tz ¢t 2m3 Ctemi® T 2am
where W, = (2m? +3m+ 7)9%4 +302((m+5)Y; — 2m(m + 1)03) + 6(Ys — mY303) + 65( — 6Y4 + 6m26,), and Ws = (6m> +
11m? + 6m + 25)605 + 4603 (2m? + 3m + 13)Ys — 3m(m + 1)(2m + 1)03) + 24( — Yg + mYa03) + 24m?Y30, + 62( - 12(m +
5)Y, + 24m? (m + 1)0,) + 65[12(2Y2 + 2Y5 — 2m(m + 1)Y305 + m?(m + 1)62) — 24m36;].

926 (m—l)Y3+(m+1)9226 (92[2(m2—1)Y3+(m+1)(m2+3m 2)02 — 2m(m? + m — 2)6;] y4>e3

1)(m —=2)(m —3)(m — 4)Ys' +24(m — 1) (m — 2)Y3Y562

u= e’ + 0(e), (2.11)

S=me (m—1)m2
Ri Rs
6(m—13mi° T 24(m—1)4m>

where Ry = —6(m =135 — (m+ 1)22m3 + m? + 5m — 6)0; + 6(m — 1)2m(m + 2)Y365 + 3(m — 1) (m + D[(4 — 5m — m?)Y; +
2m2(m+2)63102 —6(m —1)2[m2(m+3)0; — (m+1)Y410,, and Rs = —-24(m—1)*Y5+ (m+1)22m —1)(—24+22m —
m2 + 4m3 + 3m42)95 +24(m - 1)3m(m + 2)Y465 + 63[4(m + 1)2(m — 1)(— 12 + 11m + m? + 2m>?)Y; — 12m(m — 1)(m + 2)( -
443m+3m? + 2m4)03] +24(m — 1)3m2(m + 3)Y304 + 62[-12(m — 1)2(m + 1) (— 4 + 5m + m?)Y, + 24(m — 1)2m3(m +
1)(m +3)04] + 65[24(m — 1))3(m + 1) (Y2 + Y5) — 24(m — 1)2m?(m + 1) (m + 2)Y365 + 12m3((m — 1) (m + 2))202 — 24(m —
1)3m3(m + 4)65].

2(m—1)2m3 m3

+ e’ +0(e°), (2.12)
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With the use of u and s in (2.11) and (2.12), expanding Taylor series of Qg s) about (0, 0) up to fourth-order terms we find:

Qf(u,s) = Qoo + Quott + Qaou? + Q30tt> + Quou* + Qo15 + Qo25? + Qo3s° + Qoas?

+ u(Qus + Qu28* + Qu38?) + U (Qus + Q225°) + Qau’ s + 0(e°). (213)
Hence by substituting (2.5)-(2.13) into the proposed method (2.1), we obtain the error equation as
X1 — O = Yni1 — o — Qp(u,s) - ;((yy”)) = Le? + L33 + Lye® + Lse® + Lge® + 0(e7), (214)
n

where L) = ('”_;1%)02 and the coefficients Li(3 < i < 6) generally depend on m, the parameters Qj(j,k=0,1...) and 0;(i =
1,2,...).Solving L, = 0 independently of 6; for Qyg, we get

Qoo = m. (2.15)
Substituting Qg = m into L3 = 0 and simplifying, we obtain “%%Qw)ezz = 0, from which
Qo1 = —Quo (2.16)
follows independently of 0,. Substituting Qyg = m, Qy; = —Qjp into Ly = 0 and simplifying yields:
m2+8—2Q10—m(1 -I—S)
- 63 =0, 217
(m—1)m* 2 (217)
from which
1
Qi = j(m— 1)(m-39) (218)

is found independently of 8,, with § = Qg + Q11 + Q29
Substituting Qpg = m, Qp; = —Q19. Q10 = %(m —1)(m - §) into Ls = 0 and simplifying yields:

_ m(3m?+6m —5) 4+ 8(Qo2 — Q) +8(m+1)? —4p(m — 1)94 (Bm+9)
= 4 _

L
> 4(m—-1)md 2m#

626, = 0, (219)

where

£ = Qo3 + Q12 + Q21 + Q30. (2.20)

We first let L = L519§l + L5292293. To make Ls = 0 independently of 6, and 03, we solve Ls; = 0 and Ls, = 0 simultaneously for
Q17 and Qgy. As a result, we get:

m—1 m-—1

Qn :_7,0( 5 ) —2(2m + Qo). %2:7,0( 2 ) +m + Q. (2.21)

Thus we compactly find Qg = —2(m — 1)m and Q¢ = 2(m — 1)m. Substituting Qqg, Qo1, Q10, Q11, Qg into Lg, we obtain
1

Lo =02 (4;1923 + 260205 + ﬁ@;), (2.22)

where
1 [ —8(Qiz+2Q21 +3Q30) + p(m* +2m+9) 70— 12Q

1= mG[ 4m—1) t3mo1z O (2.23)

and
1 |[m2+5m—-4 p
¢ __m4|:m—1 *m (224

with g = m® + 7m?* 4+ 2m3 — 17m? — mand t; = Qo4 + Q13 + Qa3 + Q31 + Quo.
The consequence of the analysis carried out thus far immediately leads us to the following theorem.

Theorem 2.1. Let m € N — {1} be given. Let f : C — C have a zero o of multiplicity m and be analytic in a small neighborhood

of a. Let 0; = (m_”}!ﬂ.)! . f(n;;nirglg"‘) for j e N—{1}. Let xy be an initial guess chosen in a sufficiently small neighborhood of «. Let
Qs : C2 — C be holomorphic in a neighborhood of (0, 0). Let Qij = ,,17 %Qf(u, $)|(u=0,s=0) for 1 < i, j < 4. Suppose that Qgg = m,

Qo1 = —2m(m — 1), Qo = m + Qa0 + ™51 (Qg3 + Quz + Qa1 + Q30). Qio = Qo1 and Qy = —(3m + Qo + Qz0) hold. Then itera-
tive methods (2.1) are of sextic-order and possess the following error equation:

1
enst = 03 (9163 + $a0203 + —504 )¢5 + O(e]). (225)

where ¢;(1 < i< 2)are givenin (2.23) and (2.24), respectively.
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3. Special cases of weight functions

Using relations (2.2), (2.3), (2.13), (2.15), (2.16), (2.18) and (2.21), the Taylor-polynomial form of Q{u, s) is easily given by

Qs(u,s) = m+2m(m — Du + Qaou® + Qsou® + Quou* — 2m(m — 1)s + s> [m+on + (m2— 1),0]

(m-1)

+ Qo35> + Qoas* + u[— {Z(Zm + Q) + p }s +Qp28% + Q13s3} +u(Qa15 + Q228%) + 1?Qss, (3.1)

where p is introduced in (2.20). Special cases of Qg(, s) are considered here. In each case, relevant coefficients are determined
based on relations (2.15), (2.16), (2.18) and (2.21).

Although a variety of forms of weight functions Qq{u, s) are available in view of bivariate Taylor-polynomial forms shown by
(3.1), we will limit ourselves to several cases of weight functions comprising low-order polynomials or simple rational functions.

Case 1: Second-order bivariate polynomial weight functions: Q13 = Q1 = Q30 =Qp3 =Qp4 =Q22 =Q13=031 =Qp=0,p =
Qo3 + Q12 + Q21 + Q30 = 0.
Q(u,s) = m+2m(m — 1) (u — ) + Qaou? — 25u(2m + Qap) + 5% (m + Q). (3.2)

Case 1A: When Qyp =0
Qs(u.s) =m[1+2(m—1)(u—s) —4us +5°]. (3.3)

Case 1B: When Qyg = —m
Qf(u,s) =m[1+2(m—1)(u—s) —u? - 2us]. (3.4)

Case 1C: When Qyg = —2m
Qf(u,s) =m[1+2(m—1)(u—s) — 2u* —s?]. (3.5)

Case 2: Second-order bivariate rational weight functions

bg + biu + by s + bsus
1+au+ays+asus’

Qs(u,s) = (3.6)

by+(4—by)m—4m?4+2m3

by+(2-by)m
m—1 ’ m(m-1)

where by = m, by = =2+ bﬁl —2m,a; = and a3 = %3 + 3 with by and b5 as free parameters.

Case 2A: When b3 = b, =0

m-+biu

u,s) = , 3.7
Qs (u.s) 1+au+a,s+ assu (37)
witha1:—W,M:%,az:Z(m—]),ag:&
Case 2B: When by = b3 =0
m + bys
u,s) = , 3.8
Qr(u,5) 1+aiu+ays+assu (38)
witha1=272m,b2=%,a2=2(27n27'f1+mz),a3=3.
Case 2C: Whenas; =b; =0
m+ bys + b su
Qf(u’ S) — L (3.9)

1+aqu+as’
witha1 =2(1 7m),a2 = 2(2—m27rfl+mz)’b2 = %,bg =-3m.

Case 3: Weight function as a sum of two univariate functions

Qs(u,s) = Gs(u) +Ks(s), (3.10)
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where Gg, Ky : C — C are analytic in a neighborhood of the origin and satisfy the following relations.

4(K; + m)

Gy = —Ky +m, G4 :Zm(m—l),Gz=—K2—3m,G3=—K3+ 1

K =-2m(m—1),

(1)(0) K(])(
with G; = —,KJ»_ forO<i,j<4.

Case 3A: (Sum of two second-order univariate polynomials )
Qp(u,s) =m[1+2(m—1)(u—s) —2u” -], (3.11)
which is identical with Case 1C.

Case 3B: (Sum of two first-order univariate rational functions )
do + dlu o +11S

Q(u, ) = 1+cu 1+gs’ (312)
with ¢ = ﬁ’ d; 4(m O +2m(m —1). 19 =m —do. 11 = fd"*mf(mnf ]1)6"”7) q= 4(m 1y and d as a free parameter.
Case 3C:

Qs(u,s) = %c?uu 1r+]sqs, (313)
with ¢ = 4(m771) dy = m(snf(;lfln;ﬂs), rn=-2m(m-1)andq= m.
Case 3D:

g it mens
withc = ; 1),d1_2m(m—1) = %andq:m.

We can find that Case 3D yields the same Qg s) as that of Case 3C via direct computation of the given coefficients.

Case 4: Weight function as a product of two univariate functions
Qs(u,s) = Gy(u) x Ke(s), (3.15)
where G¢, Ky : C — C are analytic in a neighborhood of the origin and satisfy the following relations.

m
GO = E,
2m(m—1)
G = TR
= - m[=K; + Ko(4m* —8m + 1)]
2 = 12 .
Cr = m[K3(1 —m) — 4K,m(m — 2) + 2Ky (4m* — 16m> 4+ 17m? — 2m — 1)]
3T (m—1)KZ '
Ky = —2(m — 1)Ko,
(1) 0 K(J)
with G; = f()Kj_ ()for0<1]<4

Case 4A: (Product of two univariate rational functions)
m+aju+au®  do+dis

u,s) = , 3.16
Q(u.9) 1+ biu + byu? * 1+cs (3.16)
. _ _ _ by —2¢1—2+c2—2m(by—4+c1+c2)+(by—4+m2c; (6+¢))—2¢cm3
withdy =1,di =c¢; —2(m—1),a; =2m- 1 ) @0m= 1)11 a8 ,
_ 2(m—1)c; (2+by)+3b, —4m?+8m-5 (m=1)%(by+c2)—4cym(m—1) (m—2)+4m* —16m>+17m? —2m-1
ay =m-: 2(m—1)c; —4m>+8m—1 and by =2- (m=1)(2(m—1)c; —4m2+8m—1)
Case 4B: (Product of two second-order univariate polynomials )
m+au  1+dgs
u,s) = ——— , 317
Qr(u,5) T+bu “1+cs (3.17)
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where ) — UUZE) ot ¢, — Ot andd, ——Otneth
Case 4C:
Q(u.s) = 1 +’Z:1(41—1E2u2 *q +1£15’ (3.18)
where a, = 208 G 313 AGHEnS) g and ¢, = 2(m 1)
Case 4D:
Q(u.s) = m 1+dss (3.19)

1+ byu + byu? x 1+¢s’

where by = —2(m—1),by = 142X, ¢; = 725 and d; = ‘2(2_2+f1’"2)ﬂ with A = /(m—1)2 4+ 2.

In the next section, we will discuss the extraneous fixed points [24,43] of Q; and relevant dynamics associated with their
basins of attraction. The dynamics behind basins of attraction was initiated by Stewart [41] and followed by works of Amat et al.
[2-5], Scott et al. [38], Chun et al. [10], Chun and Neta [11], Chicharro et al. [8], Cordero et al. [16], Neta et al. [30], [33], Argyros
and Magrefian [7], Magrefian [29], Magrefian et al. [28], Andreu et al. [6] and Chun et al. [12]. The only papers comparing basins
of attraction for methods to obtain multiple roots are due to Neta et al. [31], Neta and Chun [32,34], and Chun and Neta [13,14].

4. Extraneous fixed points

In general, multipoint iterative methods [22,23] finding a zero « of a nonlinear equation f(x) = 0 can be written as
Xny1 =Rp(xn), n=0,1,..., (4.1)

where a fixed point & of Ry is . The iteration function Ry, however, might possess other fixed points & # «. Such fixed points are
called the extraneous fixed points of the iteration function Ry. Extraneous fixed points may form attractive, indifferent or repulsive
cycles as well as other periodic orbits to display chaotic dynamics of the basin of attraction under investigation.

Investigation of such dynamics clearly motivates our current analysis, which enables us to write the proposed method (2.1)
in the following form:

f(xn)
f'(xn)
where Hy(xn) = m + S,ﬁ‘% -Qy(u, s) can be regarded as a weight function of the classical Newton’s method. It is obvious that e is
a fixed point of Ry. The points & # « for which Hy(§) = 0 are extraneous fixed points of R;.

We limit ourselves to paying a special attention to several cases 1C, 2A, 3C, 4C in order to explore further properties of
extraneous fixed points and relevant dynamics associated with their basins of attraction. By closely following the works of Chun
et al. [9,13,34] and Neta et al. [30,33,34], we construct Hy(xp) = m + 5,5‘1—':'1 -Qy(u,s) in (4.2). We then apply a polynomial f(z) =
(Z2Z-1)Mto Hy(xn) and construct a weight function H(z), with a change of a variable { = Z2, in the form of

@)

D(¢)’
where A is a constant which may be dependent on m but independent of the extraneous fixed points of H; F(¢ ) and D(¢ ) have no
common factors; F(¢ ) may indeed contain the extraneous fixed points H. Thus the extraneous fixed points & of H can be found
from zeros ¢ of F(¢ ) viarelation & = ¢ 7. Note that Fis a finite sum of rational powers in £. It must be emphasized that any general
algebraic ways of zero-finding of F(¢ ) seem to be infeasible. By a suitable change of variables for the terms with rational powers,
F(¢) can be transformed into a multivariate polynomial, which can be solved with known polynomial root-finding methods.
Constant .4 and functions F(¢ ), D(¢) of H(z) are explicitly displayed for cases 1C, 2A, 3C, 4C in Table 1.

It is our main interest to investigate the complex dynamics of the iterative map R, of the form

p(zn)
p'(zn)
in connection with the basins of attraction for a variety of polynomials p(z,) and a weight function H(z, ). Indeed, R,(z) represents
the classical Newton’s method with weight function H(z) and may possess its fixed points as zeros of p(z) or extraneous fixed
points associated with H(z). As a result, basins of attraction for the fixed points or the extraneous fixed points as well as their
attracting periodic orbits may make an impact on the complicated and chaotic complex dynamics whose visual description for
various polynomials will be shown in the latter part of Section 5.

At this point, we now wish to describe the dynamical behavior of (4.4) for selected cases for values of m € {2, 3, 4, 5}. Table 2
lists corresponding extraneous fixed points & of H for values of 2 < m < 5. All the fixed points £ of H in each case show their
stability in Table 3.

In the latter part of Section 5, we will explore complex dynamics associated with the basins of attraction for iterative maps
(4.4) when applied to various polynomials.

Xns1 = Rp(xn) = xn — Hy(xn), (42)

H(z) =A (4.3)

Zny1 = Rp(zn) =2Zn — H(zy), (4.4)
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Table 1
A, F(¢) and D(¢) for typical cases.
Case A i) D(¢)
1€ m 2FEL - (-2 + DA 2R+
2A mo (4 Dy + &7y ‘ (C4+31)[M1+§%IL3] :
3¢ 1 Ep-@-DE+ DT, [277 (m = 1) + (= DE +1) 7 ]ps
a m m-DE-DEHDTe HFo,  RFLE 4 (m- D - DE + Doy

3m-2

where t; =1+ (4m—7)¢ + (19— 8m)Z2 + (19 +4m) 3, t, = 27+ (m — 1) 71 + (£ — 1)(¢ + 1) 7,
=M= -DEC+ D)7 [-3+@m=5)¢], pp=2%T[1-4m+2m? +2(—=2+m)¢ +(—-5+
10m — 2m2)¢2], s =277 [m(m —2) — (2 —4m+m2)¢], py =277 (m—1)[1 — 16m + 8m2 — 2(23 —
24m 4+ 8m?)¢ + (=19 +32m +8m?)¢?], py = 48m? — 96m + 55 — 2(64m> — 144m? 4 104m — 31)¢ +
(128m3 — 336m? + 240m — 53)¢2, p3 =2(C +1)( =7+ (16m —9)¢), o1 = (£ + 1) (v + L vy + v202),
0y =277 [V + {3 + 204 + £305], v = —(m — 1)(2m — 1)(2m — 3), vy = 2(4m3 — 28m? + 43m — 27),
vy = —61 + 165m — 148m? + 60m?>, v3 =1 —45m + 80m? — 60m> + 16m*, vy =—163 +371m —
356m? + 164m> — 32m*, vs = 16m* + 28m> — 120m? + 165m — 65.

Table 2
Extraneous fixed points & = ¢'/2 for selected cases with 2 < m < 5.
Case m & no. of &
2 + 0.516521i, +£0.392347 + 0.594746i, +0.500255 + 0.141729i 10
1C 3 +0.373652 + 0.698108i, £0.449253 + 0.157328i 8
4 +0.372206 + 0.726675i, +0.431928 + 0.163164i 8
5 + 0.371518 + 0.7395651i, +:0.423776 + 0.165934i 8
2 +0.293287 + 0.699989i, +0.596503 + 0.107471i 8
2A 3 +0.252854 + 0.782644i, +0.545882 + 0.144661i 8
4 +0.237208 + 0.812658i, +0.524521 + 0.158536i 8
5 +0.228688 + 0.828309i, +0.512699 + 0.165833i 8
2 + 0.345662 + 0.609862i, +0.552447 + 0.0751945i 8
3C 3 +0.352025 + 0.681211i, +-0.488042 + 0.117962i 8
4 + 0.356666 + 0.709113i, +:0.462851 =+ 0.134584i 8
5 + 0.359362 =+ 0.723901i, +:0.449299 + 0.143406i 8
2 +0.286835 + 0.655947i, +£0.240302i, +0.620034, +0.650152 10
4c 3 + 0.736042, +0.248379 + 0.666306i, +0.552873 8
4 +0.787799, +£0.240897 + 0.652507i, +£0.531382 8
5 +0.823542, +0.240365 =+ 0.64212i, +£0.519868 8
Table 3
Absolute values of multipliers of the extraneous fixed points for selected cases with2 <m < 5.
Case  m [Ry(§)l no.of &
2 1.0000000000000007, 1.0000000000000002, 1.0000000000000002, 1.0000000000000036, 1.0000000000000036 10
1C 3 1.0000000000000189, 1.0000000000000189, 1.0000000000000049, 1.0000000000000049 8
4 1.000000000000824, 1.000000000000824, 1.000000000000039, 1.000000000000039 8
5 1.0000000000592706, 1.0000000000592706, 0.9999999999996363, 0.9999999999996363 8
2 0.9999999999999998, 0.9999999999999998, 0.9999999999999936, 0.9999999999999936 8
2A 3 1.000000000000002, 1.000000000000002, 0.9999999999999697, 0.9999999999999697 8
4 1.0000000000000044, 1.0000000000000044, 1.000000000000013, 1.000000000000013 8
5 0.9999999999999274, 0.9999999999999274, 0.9999999999999896, 0.9999999999999896 8
2 1.0000000000000004, 1.0000000000000004, 0.9999999999999969, 0.9999999999999969 8
3C 3 1.0000000000000038, 1.0000000000000038, 0.9999999999999628, 0.9999999999999628 8
4 0.9999999999999313, 0.9999999999999313, 1.0000000000000049, 1.0000000000000049 8
5 0.9999999999999976, 0.9999999999999976, 0.9999999999998596, 0.9999999999998596 8
2 1.0, 1.0, 1.0000000000001026, 0.9999999999999983, 0.9999999999999909 10
4C 3 1.0000000000003915, 1.0000000000000002, 1.0000000000000002, 1.0000000000000133 8
4 0.9999999999384795, 0.9999999999999797, 0.9999999999999797, 1.000000000000486 8
5 0.9999999973848279, 0.9999999999999746, 0.9999999999999746, 0.9999999999941207 8

5. Numerical experiments and complex dynamics

We first begin this section with computational aspects of proposed methods (2.1) for a variety of test functions in comparison
with typically selected cases. Later on in the latter part of this section, we will explore the complex dynamics behind the basins
of attraction of iterative maps (4.4) for iterative maps of the selected cases.

A variety of numerical experiments have been carried out with Mathematica programming to confirm the developed theory.
Throughout these experiments, we have maintained 100 digits of minimum number of precision, via Mathematica command
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Table 4
Additional test functions f;(x), zeros « and initial guesses xo.
i filx) o m X
1 X2[x° —log(1+x2)? 0 6 —-0.01
2 [x* —sinx — 3]? ~ 1.97932014655621 2 2.0
3 [2x—7m +cosxlog (x* +1)]* z 4 1.53
4 [2x3 + e 4 sinx — 2[7 ~ 0.916952932621001 7 0.73
5  [x-— \/§x3jcosz% + 7 - 443l -2)t 2 _ 5 187
6 exp[pit -1 144/ 2 052+0.85ii=+-1
7 [xlogx — Vx+x*]* 1 4 1.05

Here logz(z € C)represents a principal analytic branch with — & < Im(logz) < 7.

$ MinPrecision = 100, to achieve the specified accuracy. In case that « is not exact, it is replaced by a more accurate value which
has more number of significant digits than the assigned $ MinPrecision = 100.

Definition 5.1 (Computational convergence order). Assume that theoretical asymptotic error constant 7 = limy_, « I e‘en1||ﬂ and
n—

convergence order p > 1 are known. Define p, = W as the computational convergence order. Note that limp_. « pn = p.
0

Remark 5.1. Note that p, requires knowledge at two points x,, x,_1, while the usual COC(computational order of convergence)

1 — — . . .
08 (bn X1/ a1 02D _qoeg require knowledge at four points x,, x,_1, X;_2, X;_3. Hence p, can be handled with a less number
log (xn_1=Xp_21/IXn_2~Xn_31)

of working precision digits than the usual COC whose number of working precision digits is at least p times as large as that of p,.

Computed values of x, are accurate up to $ MinPrecision significant digits. If @ has the same accuracy of $ MinPrecision as that
of xn, then ep, = X, — & would be nearly zero and hence computing |e,|/e?| would unfavorably break down. To clearly observe
the convergence behavior, we desire « to have more significant digits that are ® digits higher than $ MinPrecision. To supply such
«, a set of following Mathematica commands are used:

sol = FindRoot| f(x), {x, Xo}, PrecisionGoal — ® + $MinPrecision,

WorkingPrecision — 2 s« $MinPrecision];

o =sol[[1,2]]
In this experiment, we assign ® = 16. As a result, the numbers of significant digits of x; and « are found to be 100 and 116,
respectively. Nonetheless, the limited paper space allows us to list both of them only up to 15 significant digits. We set the error
bound € to § x 10-80 satisfying |x; — o] < €.

[terative methods (2.1) with cases 1C, 2A, 3C, 4C were respectively identified by W1C, W2A, W3C, W4C, being W-prefixed.
Methods W1C, W2A, W3C, W4C have been successfully applied to the test functions F; — F; below:

WIC : Fi(x) = [cos (Z¥) +x2 — ], m =5, ~ —2.03472489627913
W2A:E(x) =[cos(x* —1) —xlog(x* — )+ 1PPx*-1-m),m=3, a =1+,
W3C: E(x) = [sin”! (x— 1) + e — 33, m = 3, ~ 1.04148187058433,

WA4C : F;(x) = (9 — 2x — 2x* + cos2x) (5 — x — x4 — sin®X), m = 2, o ~ 1.29173329244360,

where logz(z € C) represents a principal analytic branch such that — 7 < Im(logz) <7

As seen in Table 5, they clearly confirmed sextic-order convergence. The values of computational asymptotic error constant
agree up to 7 significant digits with 7. It appears that the computational convergence order well approaches 6.

Table 4 shows additional test functions to further confirm the convergence behavior of proposed scheme (2.1).

In Table 6, we compare numerical errors |x, —«| of proposed methods W1C, W2A, W3C, WA4C. The least errors within
the prescribed error bound are highlighted in bold face. Within two iterations, in view of strict comparison, Method W1C
shows slightly better convergence for f1, f>, f3, f5, fs, f7, while method W2A for f4. By inspecting the asymptotic error constant

n(6;, m, Q) = “’z‘nﬂ;l";‘ when p is known, we find that the local convergence is dependent on the function f{x), an initial value xg,
the multiplicity m, the zero « itself and the weight function Qy. Accordingly, for a given set of test functions, one method is hardly
expected to always show better performance than the others.

This paper proposes sextic-order multiple-zero finders with a bivariate weight function dependent on two principal roots
1

of [jf,gz;] ™ and [}C;gz; ] ﬁ. We find it very important to properly select initial values influencing the convergence behavior of
iterative methods. To ensure the convergence of iterative map (4.4) viewed as Newton’s method with a weight function H(z), it
requires good initial values close to zero «. It is, however, a difficult task to determine how close the initial values are to zero
o, since initial values are generally dependent upon computational precision, error bound and the given function f{x) under
consideration. One effective way of selecting stable initial values is to directly use visual basins of attraction. Since the area of
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Table 5
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Convergence for test functions F, (x) — F4(x) with methods W1C, W2A, W3C, W4C.

MT F n Xn |F(xn)| |xn — |€n/€§,1| n Pn
0 -21 0.00174325 0.0652751
1 —2.03472492017726 9.654 x 1036 4913 x 108 0.3089431095 0.4282207521  6.11963
WIiC F 2 —2.03472489627913 4.001 x 107228 5348 x 10743 0.4282207000 6.00000
3 —2.03472489627913 0.0 x 10497 0.0 x 10-%°
0 2.0 0.0140817 0.0350903
1 2.03509028144049  3.312 x 10720 2.389 x 108 26.31721953 38.01718897 6.10980
W2A F, 2 2.03509033057253  4.271 x 102> 7.977 x 1074 38.01716758 6.00000
3 2.03509033057253 0.0 x 1072% 0.0 x 10799
0 1.084 0.0335181 0.0425181
1 1.04148199694198 7.415 x 1019 1.263 x 1077 21.38733354 26.44207159 6.06718
wW3C F 2 1.04148187058433 4.582 x 10-118 1.076 x 1040 26.44205449 6.00000
3 1.04148187058433 0.0 x 10-2%8 0.0 x 107°
0 135 0.388805 0.0582667
1 1.29173359504765 9.435 x 10712 3.026 x 107 7.733068545 12.59469262 6.17159
wac F, 2 1.29173329244360 9.635 x 10-7° 9.670 x 1039 12.59465793 6.00000
3 1.29173329244360 0.0 x 10198 0.0 x 10-%°
MT = method.
Table 6
Comparison of |x, — «| for selected multiple-zero finders.
fixg;m Xy —a|  WIC W2A W3C w4c
f1,-0.01;6  |x —«of 1.24e-13*  1.29e-13 1.33e-13 4.61e-13
|x; —a|  4.93e-79 6.81e-79  8.35e-79  5.06e-75
£,2.0;2 |Xy —a|  5.75e-12 6.71e-12 7.01e-12 9.29e-12
|x; —a|  2.90e-69 8.68e-69  1.16e-68 8.52e-68
f3,1.53; 4 |x; —a|  6.49e-8 6.59e-8 7.48e-8 191e-7
X, —a|  1.51e-42 1.78e-42  4.15e-42  3.93e-39
f4,0.73;7 |x; —a|  3.12e-11 2.94e-11 3.47e-11 2.01e-10
|x; —a|  2.43e-62 1.63e-62  5.13e-62 1.30e-56
f5,1.87;5 |X — ] 2.29e-7 2.37e-7 241e-7 4.52e-7
|x; —a|  3.35e-41 4.39e-41 4.87e-41 5.45e-39
f6,0.52 |x; —a|  3.41e-10 1.02e-9 9.30e-10  1.20e-9
+0.85i; 2 |x; —a|  2.26e-57 4.61e-54  237e-54  145e-53
f7,1.05; 4 |% — ] 1.56e-8 1.64e-8 1.78e-8 4.42e-8
|x; —a|  2.15e-47 3.12e-47 5.46e-47  3.75e-44
1.24e — 13 denotes 1.24 x 10~3.
Table 7
Average number of iterations per point for each example (1-6).
Example GKN1C GKN2A GKN3C GKN4C
1m=2 18.0428 9.4718 10.7086 8.1742
2m=3 40.0000 15.1676 26.5189 7.7825
3m=3 - 17.4269 28.5655 9.9977
4m=4 - 20.5243 - 8.8558
5m=5 - 22.7542 - 13.1151
6m=>5 - 24.9346 - 14.9314
Average - 18.3799 - 10.4761

convergence can be seen on the basins of attraction, it would be reasonable to say that larger area of convergence indicates a

better method. Clearly a quantitative analysis is necessary for measuring the size of area of convergence.

To this end, we provide Table 7 featuring a statistical data describing the average number of iterations per point. In the
following 6 examples, we take a 6 by 6 square centered at the origin and containing all the zeros of the given functions. We
assume that all zeros are of the same multiplicity m. We then take 360,000 equally spaced points in the square as initial points
for the iterative methods. We color the point based on the root it converged to. This way we can find out if the method converged
within the maximum number of iteration allowed and if it converged to the root closer to the initial point.

We now are ready to discuss the complex dynamics of iterative map (4.4) applied to various polynomials. To continue our
discussion, let us first identify four members of iterative map (4.4) associated with Cases 1C, 2A, 3C, 4C by GKN1C, GKN2A,

GKN3C, GKN4C, respectively.



Y.H. Geum et al./ Applied Mathematics and Computation 270 (2015) 387-400 397

3 3 -3

3 2 1

-3 2 1 0 1 2 3 3 1 o 1 2 3 1 o 1 2

- |

Fig. 1. The leftmost for 1C, second for 2A, third for 3C and the rightmost for 4C for the roots of the polynomial (z2 — 1)2.
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Fig. 2. The leftmost for 1C, second for 2A, third for 3C and the rightmost for 4C for the roots of the polynomial (z3 + 4z% — 10)3.
Table 8

CPU time (in seconds) required for each example (1-6) using a
Dell Multiplex-990.

Example  GKN1C GKN2A GKN3C GKN4C

1m=2 1935.63 1086.62 1230.25 987.27
2m=3 13229.31 5423.05 9185.28 2914.50

3m=3 - 5537.33  9083.11 3275.10
4m=4 - 897937 - 3520.85
5m=>5 - 8766.24 - 5183.44
6m=>5 - 10636.10 - 6586.66
Average - 6738.12 - 3744.64
Table 9

Number of points requiring 40 iterations for each example
(1-6).

Example GKN1C GKN2A GKN3C GKN4C

Tm=2 1523 601 601 601
2m=3 361201 9 921 2
3m=3 - 4159 24154 1128
4m=4 - 4 - 0
5m=>5 - 73 - 7
6m=>5 - 7065 - 817
Average - 1985.17 - 425.83

Example 1. As a first example, we have taken a quadratic polynomial raised to the power of 2 with all real roots:

P@ = -1)>2 (5.1)

Clearly the roots are + 1 with multiplicity 2. Basins of attraction for iterative maps GKN1C, GKN2A, GKN3C, and GKN4C are
illustrated in Fig. 1. Each basin is painted in a different color. At a root its color is white, while getting darker for more iterations
required for convergence within the iteration limit. At black points, we recognize that the corresponding iterative maps did not
converge within the iteration limit of 40 currently prescribed in this experiment. Based on the displayed results in Fig. 1, we find
that it is clear that GKN1C was the worst and GKN2A and GKN4C are better.

If we look at the first row of Table 7, we find that these are the cases with the lowest number of iterations per point. GKN4C
took less CPU time (see Table 8) than all the other methods. In terms of the number of points requiring 40 iterations (see Table 9)
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Fig. 3. The leftmost for 2A, second for 3C and the rightmost for 4C for the roots of the polynomial (z°> — 1)3.
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Fig. 4. The left for 2A and the right for 4C for the roots of the polynomial (2> — z)*.

we find that GKN1C is the worst. GKN2A, GKN3C and GKN4C have the same number of points requiring 40 iterations and those
are the best cases.

Example 2. In our second example, we have taken a cubic polynomial raised to the power of 3:
p2(2) = (2% + 472> — 10)°. (5.2)

Basins of attraction for GKN1C, GKN2A, GKN3C, and GKN4C are illustrated in Fig. 2. The worst are GKN1C and GKN3C. The best
is GKN4C. This is also seen in Table 7. In terms of CPU time (see Table 8) again GKN4C is the fastest. The slowest are GKN1C
and GKN3C. The lowest number of points requiring 40 iterations (see Table 8) is for GKN4C followed by GKN2A. In the following
examples we will not show GKN1C because of its poor performance.

Example 3. As a third example, we have taken a quintic polynomial raised to the power of 3:
p3(@) = (2° - 1)°. (5.3)

Basins of attraction for GKN2A, GKN3C, and GKN4C are illustrated in Fig. 3. GKN3C is the worst as in the previous example and
we should exclude it from the other runs. The best is GKN4C. If we examine the average number of iterations per point (see
Table 7), we arrive at the same conclusion with GKN4C requiring about 10 iterations per point. On the other hand, the CPU time
for 4C was the smallest (3275 s) followed by GKN2A (5537 s) .

Example 4. As a fourth example, we have taken a different cubic polynomial raised to the power of 4:
pa(2) = (2 - 2)*. (54)
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Fig. 5. The left for 2A and the right for 4C for the roots of the polynomial (z2 — 1)°.
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Fig. 6. The left for 2A and the right for 4C for the roots of the polynomial (z* — 1)°.

Now all the roots are real. Basins of attraction for GKN2A, and GKN4C are illustrated in Fig. 4. Again GKN4C is best. Quantitatively,
we find that GKN4C requires an average of 8.8 iterations per point (see Table 7). GKN4C is the fastest as before (see Table 8) and
have no black points, as can be seen in Table 9.

Example 5. As a fifth example, we have taken a quadratic polynomial raised to the power of 5:

ps(2) = (22 —1)°. (5.5)
Basins of attraction for GKN2A and GKN4C are illustrated in Fig. 5. The conclusions are the same as in the previous example.
Example 6. As a last example, we have taken a quartic polynomial raised to the power of 5:

ps(2) = (#* - 1)°. (5.6)

Basins of attraction for GKN2A and GKN4C are illustrated in Fig. 6. It is clear that we have the same conclusions. The best is
GKN4C.
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In summary, we find that GKNA4C is faster, requires less iterations per point on average, and have much fewer points requiring
40 iterations (see the last row of Table 9).

We have shown a technique of improving convergence order of our family of proposed methods (2.1) with the introduction of
a bivariate weight function. One such technique is to express the weight function in terms of two functional ratios, one of which
is a function-to-function ratio and the other of which is a derivative-to-derivative ratio. To determine what type of initial values
of the proposed iterative methods chosen near the zero o must be given for their ensured convergence, we should carefully
investigate the dynamics behind the basins of attraction for extraneous fixed points of the corresponding iterative maps applied
to a well-known polynomial p(z) = (z2 — 1)™. In our future work developing a family of new higher-order multiple-zero finders,
it would be essential to improve our current approach with the use of principal analytic branches of two functional ratios in
selecting free parameters of the weight functions that enhance relevant basins of attraction for a wide class of polynomials.
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