
Available online at www.sciencedirect.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
International Journal of Approximate Reasoning
48 (2008) 263–274

www.elsevier.com/locate/ijar
Prioritized aggregation operators

Ronald R. Yager

Machine Intelligence Institute, Iona College, New Rochelle, NY 10801, United States

Received 23 August 2007; accepted 29 August 2007
Available online 12 September 2007
Abstract

We consider criteria aggregation problems where there exists a prioritization relationship over the criteria. We suggest
that prioritization between criteria can be modeled by making the weights associated with a criteria dependent upon the
satisfaction of the higher priority criteria. We consider a number of aggregation operators in which there exists a priori-
tization relationship between the arguments. We first introduce a prioritized scoring operator and a closely related prior-
itized averaging operator. We next introduce a prioritized ‘‘anding” and then a prioritized ‘‘oring” operator.
� 2007 Elsevier Inc. All rights reserved.
1. Introduction

Many applications involve the selection or ordering of a group of alternatives based upon their satisfaction
to a collection of criteria. Typical examples of this are information retrieval, multi-criteria decision making
and database retrieval. Search engines such as Google require the solution of this type of problem. Central
to the solution of these problems is the task of aggregation [1].

In these problems we have a collection of criteria C = {C1, . . . ,Cn} and a set of alternatives X =
{x1, . . . ,xm}. We further have a measure of the satisfaction of criteria Ci by each alternative, Ci (x) 2 [0,1].
One commonly used approach is to calculate for each alternative x a score C(x) as an aggregation of the Ci(x)
0888-6

doi:10.

E-m
CðxÞ ¼ F ðC1ðxÞ; . . . ;CnðxÞÞ

and then order the alternatives using these scores. The form for F depends upon the users desired imperative
for performing this aggregation. In addition in many types of applications one associates importance weights
with the criteria [2–7]. A commonly used form for F is a weighted average of the Ci(x). In this case we calculate
CðxÞ ¼
Xn

i¼1

wiCiðxÞ;
where the weights satisfy wi 2 [0, 1] and
Pn

i¼1wi ¼ 1.
13X/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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It is easy to see that this type of aggregation is monotonic in the sense that C(x) does not decrease if any of
the Ci(x) increases. It is also bounded, Mini[Ci(x)] 6 C(x) 6Maxi[Ci(x)]. It is also idempotent, if all Ci(x) = a

then C(x) = a. Because of these properties this is an averaging operator. Closely related to this what we shall
call a scoring (or more precisely a weighted scoring) operator. The difference between a scoring operator and a
averaging operator is that the scoring operator does not require that

Pn
i¼1wi ¼ 1. We note that while a scoring

operator is monotonic it is not necessarily bounded nor idempotent. Essentially a averaging operator is a spe-
cial case of scoring operator. Both these operators can be used in the alternative selection problem.

Central to this types of aggregation operators is the ability to trade off between criteria. In particular W k
Wi is

the relation between criteria Ci and Ck. In this type of aggregation we can compensate for a decrease of D in
satisfaction to criteria Ci by gain W k

Wi D in satisfaction to criteria Ck.
In many real applications we do not want to allow this kind of compensation between criteria. Consider the

situation in which we are selecting a bicycle for our child based upon the criteria of safety and cost. In this
situation we may not allow a benefit with respect to cost to compensate for a loss in safety. Here we have
a kind of prioritization of the criteria. Safety has a higher priority. Consider a problem of document retrieval
in which we are looking for documents about the American revolution and prefer if they are from an academic
website and written after 2003. In this case the condition of it being about the American revolution has a pri-
ority, if it is not about this topic we are not interested. In organizational decision making criteria desired by
superiors generally have a higher priority then those of their subordinates.

In this work we shall suggest aggregation operators that allows for the inclusion of priority between the
criteria. Central to our approach will be the modeling of priority by using a kind of importance weight in
which the importance of a lower priority criteria will be based on its satisfaction to the higher priority criteria
[8]. As we shall see this result in a situation in which importance weights will not be the same across the
alternatives.

2. Prioritized scoring and averaging operators

In the following we assume that we have a collection of criteria partitioned into q distinct categories,
H1,H2, . . . ,Hq such that Hi ¼ fCi1; Ci2; . . . ; Cinig, Here Cij are the criteria in category Hi. We assume a prior-
itization between these categories
H 1 > H 2 > � � � > H q:
The criteria in the class Hi have a higher priority than those in Hk if i < k. The total set of criteria is
C ¼ [q

i¼1H i. We assume n ¼
Pq

i¼1ni the total number of criteria.
In Fig. 1 we show the positioning of the criteria.
We assume that for any alternative x 2 X we have for each criteria Cij, a value Cij(x) 2 [0, 1] indicating its

satisfaction to criteria Cij.
In the following we introduce an aggregation operator F: [0,1]n ? [0, 1] such that F ðða11; . . . ; a1n1

Þ; . . . ;

ðaq1; . . . ; aqnq
ÞÞ ¼

Pq
i¼1

Pni
j¼1wijaij

� �
. We shall refer to as the prioritized scoring (PS) operator. This aggrega-

tion operator allows us to calculate C(x) for any alternative as !

CðxÞ ¼ F ðCijðxÞÞ ¼

Xq

i¼1

Xni

j¼1

wijCijðxÞ :
Here the weights will also be a function of x and will be used to reflect the priority relationship. In order to
obtain the weights for a given alternative x we proceed as follows.

For each priority category Hi we calculate
Si ¼Minj½CijðxÞ�:

Here Si is the value of the least satisfied criteria in category Hi under alternative x. Using this we will associate
with each criteria Cij a value uij. In particular for those criteria in category H1 we have u1j = 1. For those cri-
teria in category H2 we have u2j = S1. For those criteria in category H2 we have u3j = S1S2. For those criteria
in category H4 we have u4j = S1S2S3. More generally uij is the product of the least satisfied criteria in all cat-
egories with higher priority than Hi.



C11, C12, ...., C1n1

C 21, C22, ...., C2n2

Cq1, Cq2 , ...., Cqnq

.

.

.

.

.

.

Fig. 1. Prioritization of criteria.
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We can more succinctly and more generally express uij = Ti where
T i ¼
Yj

k¼1

Sk�1
with the understanding that S0 = 1 by default. We note that we can also express Ti as
T i ¼ Si�1T i�1:
This equation along with the fact that T1 = S0 = 1 gives a recursive definition at Ti.
We now see that for all Cij 2 Hi we have uij = Ti. Using this we obtain for each Cij a weight wij with respect

to alternative x such that wij = uij. We see that each wij 2 [0,1]. We further observe that Ti P Tk for i < k.
From this it follows that if i 6 j then wij P wke for all j and e.

Using these weights we then can get an aggregated score x under these prioritized criteria as
CðxÞ ¼
X

i;j

wijCijðxÞ ¼
X

i;j

T iCijðxÞ ¼
Xq

i¼1

T i

Xni

j¼1

CijðxÞ
 !

:

We note that this operator is monotonic, if Ckj(x) increases then C(x) cannot decrease. We see this as follows:
oCðxÞ

oCkjðxÞ ¼ T k þ
Pq

i¼kþ1
oT i

oCkjðxÞ
Pni

j¼1CijðxÞ
� �

. If Sk 6¼ Ckj(x) then oT i
oCkjðxÞ ¼ 0 for i P k + 1 and hence oCðxÞ

oCkjðxÞ ¼ T k P 0.

If Sk = Ckj(x) then for i P k + 1 we have oT i
oCkjðxÞ ¼

Qj�1
r¼1 to i�1

r 6¼k

Sr P 0 and hence again oCðxÞ
oCkjðxÞ P 0. Following is an

example using this PS operator.
Example: Consider the following prioritized collection of criteria:

H1 = {C11,C12},
H2 = {C21},
H3 = {C31,C32,C33},
H4 = {C41,C42}.

Assume for alternative x we have

C11(x) = 0.7, C12(x) = 1,
C21(x) = 0.9,
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C31(x) = 0.8, C32(x) = 1, C33(x) = 0.2,
C41(x) = 1, C42(x) = 0.9.

We first calculate

S1 = Min[C11(x), C12(x)] = 0.7,
S2 = Min[C21(x)] = 0.9,
S3 = Min[C31(x), C32(x),C33(x)] = 0.2,
S4 = Min[C41(x), C42(x)] = 0.9.

Using this we get

T1 = 1,
T2 = S1T1 = 0.7,
T3 = S2T2 = 0.63,
T4 = S3T3 = 0.12.

From this we obtain

u11 = u12 = T1 = 1,
u21 = T2 = 0.7,
u31 = u32 = u33 = T3 = 0.63,
u41 = u42 = T4 = 0.12.

In this case then we have

w11 = w12 = 1,
w21 = 0.7,
w31 = w32 = w33 = 0.63,
w41 = w42 = 0.12.

We now calculate CðxÞ ¼
P

ijwijCij ¼ 3:82.

We now look at some further properties of the proposed aggregation method. We recall Hi = {Cijjj = 1–ni}
where the criteria in category Hi have priority over those in Hk if iii < k. Again letting aij = Cij(x) we have
Si = Minj[aij] and So = 1 and T i ¼

Qj
k¼1Sk�1. Here with uij = Ti we use as our weights in this prioritized scoring

operator wij = uij = Ti and hence
CðxÞ ¼
Xq

i¼1

Xni

j¼1

wijaij

 !
¼
Xq

i¼1

T i

Xni

j¼1

aij

 !
:

Letting Ai ¼
Pni

j¼1aij we have CðxÞ ¼
Pq

i¼1T iAi.

We see that the weight associated with the elements in the ith category is Ti = Pk=1
iSk�1. Thus the criteria

in Hi contribute proportionally to the product of the satisfaction of the higher order criteria. Thus poor sat-
isfaction to any higher criteria reduces the ability for compensation by lower priority criteria. This is of course
the fundamental feature of the prioritization relationship.

We also observe that if there exists some category Hr such that Crj(x) = 0 for some criteria in Hr then Sr = 0
and Ti = 0 for i > r and hence CðxÞ ¼

Pr
i¼1T iAi.

Note: While in the preceding we assumed Cij(x) 2 [0, 1] this is not necessarily required. If we let Fij :
R! ½0; 1� be some function from the real numbers into the unit intervals such that Fij(Cij(x)) is some measure
of how satisfied we are with a score Cij(x) for criteria Cij then we allow the values of Cij(x) be any number if we
calculate
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Si ¼Minj½F ijðCijðxÞÞ�:

Here we just transfer the Cij(x) into numbers in the unit interval for calculating Si.

A natural question that arises is why have we chosen this scoring type operator rather then an averaging
operator which requires that the

P
ijwij ¼ 1. We see this can be easily accomplished by a simple normalization.

In particular if instead of using wij = uij we use wij ¼ uijPq

i¼1

Pni
j¼1

uij
since uij = Ti. This simplifies to wij ¼ T iPq

i¼1
niT i

.

As the following example illustrates performing this normalization does not always guarantee a monotonic
aggregation.

Example: Assume H1 = {C11,C12,C13,C14} and H2 = {C21,C22,C23}. Assume for x we have
C11(x) = C12(x) = C13(x) = 1, C14(x) = 0 and C21(x) = C22(x) = C23(x) = 0. In this case S1 = 0 and hence
T1 = 1 and T2 = 0. Thus we get u1j = 1 and u2j = 0 and hence

Pq
i¼1

Pni
j¼1uij ¼ 4. From this we get w1j ¼ 1

4

for j = 1–4 and w2j = 0 for j = 1–3 and therefore
CðxÞ ¼ 1

4
ðC11ðxÞ þ C12ðxÞ þ C13ðxÞ þ C14ðxÞÞ ¼ 0:75:
Consider alternative y for which we have C11(y) = C12(y) = C13(y) = 1, C14(y) = 1 and C21(y) =
C22(y) = C23(y) = 0. The only difference between x and y is that we have increased the satisfaction of C14,
C14(y) = 1 while C14(x) = 0. Monotonicity requires that C(y) P C(x). Let us calculate C(y). In this case
S1 = 1 and therefore T1 = 1 and T2 = 1. In this case all uij = 1 and hence

P
ijuij ¼ 7 and therefore all

wij ¼ 1
7
. From this we get that
CðyÞ ¼ 1

7

X
ij

CijðyÞ ¼
4

7
¼ 0:57 < 0:75:
Thus we see that C(y) < C(x) and the monotonicity condition has not been satisfied.
We note the use of a scoring type aggregation operator does indeed respect the monotonicity. In this case

wij = uij. Hence for x we have w1j = u1j = 1 and w2j = u2j = 0 From this we get C(x) = 3. For the case of y we
get w1j = u1j = 1 and w2j = u2j = 1. From this we get C(y) = 4 and hence the monotonicity is respected.

In the preceding the priority relationship between the criteria was a weak ordering, we allowed ties as was
the case for criteria in the same category. As we shall subsequently show if the priority relationship between
the criteria is a linear ordering, no ties allowed, then we can obtain a prioritized averaging (PA) operator.

He we also assume we have a collection of criteria partitioned into q distinct categories, H1,H2, . . . ,Hq and
we assume a prioritization between these categories H1 > H2 > � � � > Hq. However here we assume each cate-
gory has just one member Hi = {Ci}. Thus here there is a linear ordering among the criteria
C1 > C2 > � � � > Cq. We have used only one index as we have no need for the second index. Our objective is
to get a collection of weights wi that respect the prioritization and use these to calculate
CðxÞ ¼

Pq
i¼1wjCjðxÞ Since we want this to be a prioritized averaging operator we require that wi 2 [0,1] andPq

i¼1wi ¼ 1. In order to obtain these weights we shall essentially follow the procedure used in the preceding
with the addition of a normalization step.

For each priority category Hi we calculate Si as the value of the least satisfied criteria in Hi, in this case we
simply get Si = Ci(x). Again here we let T1 = 1 and for i > 1 we let T i ¼

Qi�1
k¼1Sk. If we let S0 = 1 we can more

succinctly express this as T i ¼
Qi

k¼1Sk�1 for all i. Denoting ui = Ti as the un-normalized weights we can obtain
normalized weights wi ¼ ui

T where T ¼
Pq

i¼1ui ¼
Pq

i¼1T i.
It is clear that the wi lie in the unit interval and sum to one. To assure that CðxÞ ¼

Pq
i¼1wiCiðxÞ is an aver-

aging operator we must show that it is bounded and monotonic.
We now show that this aggregation method is bounded and monotonic. First we see that the value of this

aggregation is bounded by the maximum and minimum of the arguments and hence it is also idempotent. For
simplicity let us denote ai = Ci(x). Using this we have CðxÞ ¼

Pq
i¼1wiai.

Consider now boundedness. Assume a = Mini[ai] and b = Maxi[aj] then CðxÞ ¼
Pq

i¼1wiai P a and
CðxÞ ¼

Pq
i¼1wiai 6 b. Now consider the case where all the ai are the same, ai = d. In this case sincePq

i¼1wi ¼ 1 we get CðxÞ ¼
Pq

i¼1wid ¼ d and hence the operation is idempotent.
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We now consider the issue of monotonicity. We shall denote the satisfaction of each criteria to x as
ai = Ci(x). We note that in this case with one criteria at each level, Si = ai. Here then T1 = 1, T2 = a1 and more
generally T i ¼

Qi
k¼1Sk�1. Using this we have
CðxÞ ¼
Pq

i¼1T iai

T
:

Let us denote C(x) =M/T where M ¼
Pq

i¼1T iai and T ¼
Pq

i¼1T i. For monotonicity to hold we have to show
that oCðxÞ

oaj
P 0 for any j. This requires that
T oM
oaj
�M oT

oaj

T 2
P 0:
Hence we must show that the numerator is non-negative,
T
oM
oaj
�M

oT
oaj

P 0:
Before preceding we note that oT i
oaj
¼ 0 for i 6 j and oT i

oaj
¼ T i

aj
for i > j. We also note that M ¼

Pq
i¼1T iai ¼Pq

i¼1T iþ1 since Ti ai = Ti+1. However we shall find it more useful to express M ¼
Pqþ1

i¼2 T i.

We shall denote A ¼ oM
oaj
¼ 1

aj

Pqþ1
i¼jþ1T i. We shall also let B ¼ oT

oaj
hence since T ¼

Pq
i¼1T i we have

B ¼ oT
oaj
¼ 1

aj

Pqþ1
i¼jþ1T i. From this we observe that A P B. In the following we shall find it convenient to denote

E ¼
Pj

i¼2T i.

Consider now the term T oM
oaj
�M oT

oaj
¼ AT � BM . We now observe that
T ¼
Xq

i¼1

T i ¼
Xj

i¼1

T i þ ajB:
Since T1 = 1 then T = 1 + E + ajB. We further observe that
M ¼
Xqþ1

i¼2

T i: ¼ E þ ajA:
Using the relations we see that
AT � BM ¼ Að1þ E þ ajBÞ � BðE þ ajAÞ ¼ Aþ EAþ ajBA� BE � ajBA;

AT � BM ¼ Aþ EðA� BÞ:

Since A P B it follows that AT � BM P 0.

Thus for linear ordered criteria we can obtain a prioritized averaging aggregation operator.

3. Alternative determination of weights

In the preceding we introduced the prioritized scoring operator as a method for multi-criteria aggregation
for the case in which our criteria where partitioned into q categories, Hi = {Cij : j = 1, . . . ,ni} where category
Hi had priority over Hk if i < k. For a given alternative x we shall find it convenient in the following to denote
Cij(x) = aij. Using this notation then we defined
So ¼ 1;

Si ¼Mini½aij� for i ¼ 1 to q;

T i ¼
Yj

k¼1

Sk�1 for i ¼ 1 to q:
With wij = Ti we obtained as our aggregated value
CðxÞ ¼
Xq

i¼1

Xni

j¼1

wijaij ¼
Xq

i¼1

Xni

j¼1

T iaij:
Letting Ai ¼
Pni

j¼1aij we can express this as CðxÞ ¼
Pn

i¼1T iAi.
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In the preceding we assumed that the satisfaction to the priority class Hi ¼ fCi1; . . . ;Cinig under alternative
x was determined by the least satisfied criteria in Hi, Si = Minj[Cij(x)]. Here we shall suggest some alternative
methods for calculating Si.

One method we shall consider will be based on the OWA aggregation operator [9,10]. Here we associate
with each priority class Hi a vector Vi of dimension ni called the OWA weighting vector. The components
Vik of Vi are such that Vik 2 [0,1] and

Pni
k¼1V ik ¼ 1. Additionally we let indi(k) be an index of function so that

bikðxÞ ¼ CindiðkÞ(x) is the kth largest of Cij(x). Using this we now calculate
Si ¼
Xni

k¼1

V ikbikðxÞ:
We see that if V ini ¼ 1 and Vik = 0 for k 6¼ ni then we get Si = Minj[Cij(x)], the original method. An important
special case is where Vik = 1/ni for all k. In this case Si ¼ 1

ni

Pni
j¼1CijðxÞ. Here we take as Si the average of the

satisfactions of the criteria in category Hi. Another special case is when Vi1 = 1 and Vik = 0 for k 6¼ 1. In this
case Si = Maxj[Cij(x)]. Here we take Si as the score of the most satisfied criteria in category Hi. Many other
weight vectors are possible for example if Viq = 1 for some qSi simply becomes the qth largest of the Cij(x).

In this framework we can associate with each weighing vector Vi a measure called its attitudinal character
denoted, A-C(Vi) [11]. We define this as
A-CðViÞ ¼
1

ni � 1

Xni

k¼1

V ikðni � kÞ:
It can easily be shown [9] that for the case where Vini = 1 we get A-C(Vi) = 0. For the case where Vik = 1/ni for
all k then A-C(Vi) = 0.5 and for the case where Vi1 = 1 we have A-C(Vi) = 1.

If we denote A-C(Vc) = ai then we see in Fig. 2 the relationship between the value of ai and the form for
the calculation of Si. Here then ai can be seen as a measure of the tolerance in determining the satisfaction of
the category. While it is not necessary, it would be seen that the default situation is to assume ai is the same for
all Hi.

Many of the techniques available for calculating the OWA weights [12] can be tailored for this particular
application. A particularly interesting possibility is to use a variation of the method originally suggested by
O’Hagan [13–15]. In this case we would supply a desired level of tolerance ai and solve the following mathe-
matical programming problem for the Vik:
Min
Xni

k¼1

ðV ikÞ2

Such that :
1

ni � 1

Xni

k¼1

V ikðni � kÞ ¼ ai;

Xni

k¼1

V ik ¼ 1;

V ik P 0:
We provide an example of the preceding variation using the earlier example
Example: H1 = {C11,C12}, H2 = {C21}, H3 = {C31,C32,C33}, H4 = {C41,C42}
α i
0 0.5 1

S = Min [Cj ij(x)] [Cj ij(x)]S
i= Max [Cij(x)]jS i=i Ave

Fig. 2. Relationship between ai and the form of Si.
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For alternative x we have

C11(x) = 0.7, C12(x) = 1,
C21(x) = 0.9,
C31(x) = 0.8, C32(x) = 1, C33(x) = 0.2,
C41(x) = 1, C42(x) = 0.9.

Consider the case where Si = Maxj[Cij(x)]. Here then
1 In
standa
S1 ¼ 1; S2 ¼ 0:9; S3 ¼ 1; S4 ¼ 1:
From this we get
T 1 ¼ 1; T 2 ¼ S1T 1 ¼ 1; T 3 ¼ S2T 2 ¼ 0:9; T 4 ¼ S3T 3 ¼ 0:9:
With CðxÞ ¼
P4

i¼1AiT i where Ai ¼
Pni

j¼1CijðxÞ we have
CðxÞ ¼ ð1Þð1:7Þ þ ð1Þð0:9Þ þ ð0:9Þð2Þ þ ð0:9Þð1:9Þ ¼ 6:11:
Another approach for calculating the Si involves associating with each criteria in Hi an additional local
weight. In this case our form for Hi is
H i ¼ fðCij; gijÞjj ¼ 1; . . . ; nig;
where the gij indicates the importance of Cij in calculating Si. Here we assume that gij 2 [0, 1] and
Pni

j¼1gij ¼ 1.
Using these weights we can calculate Si ¼

Pni
j¼1gijCijðxÞ.

An interesting special case of this is where some criteria Cij has gij = 0. In this case the criteria plays no role
in the determination of Si but still is able to contribute to the overall calculation of C(x).

Another available method for calculating the Si involves the idea of combining these local weights with a
tolerance level. Here we assume for each Hi we have Hi = {(Cij,gij), j = 1, . . . ,ni}, gij 2 [0,1] and

Pni
j¼1gij ¼ 1,

where again gij is the indication at the importance of Cij in calculating Si. In addition we assume a tolerance
level ai 2 [0, 1] associated with Hi. Using one of the methods for generating OWA weights we can obtain a set
of OWA weights, Vik, for k = 1–ni. Let ndi be an index such ndi(k) is the index of the k largest of the Cij(x).
That is bik ¼ Ci;ndiðkÞ (x) is the value of the k most satisfied criteria in Hi. With dik ¼ gi;ndiðkÞ being the impor-
tance weight associated with this kth most satisfied criteria on Hi we calculate
hik ¼
dikV ikPni
k¼1dikV ik

:

Using this we calculate
Si ¼
Xni

k¼1

hikbik:
In the special case when Vik = 1/ni for all k this reduces to the weighted average introduced earlier,
Si ¼

Pni
j¼1gijCijðxÞ.

4. Prioritized ‘‘and’’ operator

In the following we shall consider a related aggregation method called prioritized anding. We refer to this as
the PRI-AND aggregation operator.

We recall the ‘‘and” operator is generalized by a t-norm [15,17]. A t-norm1 is a mapping.
R : ½0; 1� � ½0; 1� ! ½0; 1�

having the properties
the following I use the notation 9i instead the standard notation of T for the t-norm as I used T for something else, I hope this non-
rd notation is not a problem.
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1. Symmetry: R(a,b) = R(b,a);
2. Monotonicity: If a P c and b P d then R(a,b) P R(c,d);
3. Associativity: R(a,R(b,c)) = R(R(a,b),c);
4. 1 as identity: R(1,a) = a.

The associativity property allows us to extend this to any number of arguments. An interesting property of
the t-norm is R(a1, . . . ,an) P R(a1, . . . ,an,an+1).

A large number of possible examples of t-norms exist [18]. Three of the most important are

RM(x,y) = Min(x,y) Minimum
RP(x,y) = xy Product
RL(x,y) = Max(x + y � 1,0) Lukasiewicz

It can be shown that for any x,y,RM(x,y) P RP(x,y) P RL(x,y). It is also true that for any t-norm R it is
the case that RM(x,y) P R(x,y).

We now look at the issue of performing the t-norm aggregation when the arguments have importance
weights associated with them [3,19]. Consider the aggregation R((a1,w1), (a2,w2), . . . , (an,wn)) where
wj 2 [0,1] is the importance weight associated with the argument aj. In [2], Yager suggested that we can imple-
ment this aggregation as
Rðða1;w1Þ; . . . ; ðan;wnÞÞ ¼ Rðawi
i ; . . . ; awn

n Þ:

For example in the case where R = RP we have
Rðða1;w1Þ; . . . ðan;wnÞÞ ¼
Yn

i¼1

awi
i :
In the case where R = RM then
Rðða1;w1Þ; . . . ; ðan;wnÞÞ ¼Mini½awi
i �:
We note that if wi = 0 then a0
i = 1. Since one is the identity of the t-norm then criteria with zero importance

have no effect in the calculations of Rðawi
i ; . . . ; awn

n Þ.
In [20], Yager suggested alternate methods for implementing weighted t-norm aggregations. While we shall

not discuss these here we do note that the methodology introduced in the following can be easily applied to
any of the other methods for including importance.

In the following we introduce a prioritized ‘and’ operator. We refer to this as the PRI-AND aggregation
operator.

Again we have a collection of criteria partitioned into q categories {H1, . . . ,Hq} such that Hi =
{Ci1, . . . ,Cini }. Again we assume a prioritization of the categories, H1 > H2 > � � � > Hq. Our objective is to
obtain a prioritized ‘anding’ aggregation of the satisfaction of these criteria by some alternative x. We assume
Cij(x) 2 [0,1] is the satisfaction of criteria Cij by alternative x.

We first calculate for each category Si = Minj[Cij(x)]. We next calculate
T i ¼
Yi

k¼1

Sk�1
with the understanding that So = 1 by definition. We now define the prioritized weight associated with Cij as
wij = Ti. We now calculate the PRI-AND aggregation of the Cij(x) using the t-norm R as
CðxÞ ¼ Ri;j½ðCijðxÞÞwij �:

Since wij = Ti then C(x) = Ri,Rj[(Cij(x))Ti].

In the case where R is the Min then we get CðxÞ ¼Mini½MinjðCTi
ijðxÞÞ�

Noting that Minj(Cij(x)) = Si we have
CðxÞ ¼Mini½ST i
i �:
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In the case where R is the product t-norm we have
2 In
standa
CðxÞ ¼
Y

i

Y
j

½ðCijðxÞÞT i �
If we get DiðxÞ ¼
Qni

j¼1CijðxÞ then we get
CðxÞ ¼
Yq

i¼1

ðDiÞT i :
If we take the log of the above we have
LogðCðxÞÞ ¼
Xq

i¼1

T iLogðDiÞ:
Since DiðxÞ ¼
Qni

j¼1CijðxÞ then LogðDiÞ ¼
Pni

j¼1LogðCijðxÞÞ. Hence in this case we have
LogðCðxÞÞ ¼
Xq

i¼1

T iLogðDiÞ and LogðDiÞ ¼
Xni

j¼1

LogðCijðxÞÞ:
This form looks very similar to the weighted average where
CðxÞ ¼ 1

T

Xq

i¼1

T iA and Ai ¼
Xni

j¼1

CijðxÞ:
5. Prioritized ‘‘or’’ operator

We now consider a related aggregation method the prioritized oring. We refer to this as PRI-OR aggrega-
tion operator.

We recall that the ‘‘or” operator is generalized by a t-conorm2 [16], a mapping.
P : ½0; 1� � ½0; 1� ! ½0; 1�

having the properties

1. Symmetry: P(a,b) = P(b,a).
2. Monotonicity: If a P c and b P d then P(a,b) P P(c,d).
3. Associativity: P(a,P(b,c)) = P(P(a,b),c).
4. 0 as identity: P(0, a) = a.

A property of the t-conorm is P(a1, . . . ,an) 6 P(a1, . . . ,an,an+1).

Three important are examples of this are

PM(x,y) = Max(x,y) Maximum
PS(x,y) = x + y � xy Probabilistic Sum
PL(x,y) = Min(x + y, 1) Lukasiewicz

It is well know that for any t-conorm P it is the case that PM(x,y) 6 P(x,y), max is the smallest.
We now look at the issue of performing the t-conorm aggregation when the arguments have importance

weights associated with them. Consider the aggregation P((a1,w1), (a2,w2), . . . , (an,wn)) where wj 2 [0,1] is
the importance weight associated with the argument aj. In [3], Yager suggested that we can implement this
aggregation as
the following I use the notation P instead the standard notation of S for the t-conorm as I used S for something else, I hope this non-
rd notation is not a problem.
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P ðða1;w1Þ; . . . ; ðan;wnÞÞ ¼ Pðw1a1;w2a2; . . . ;wnanÞ:

We aggregate the product of wj times aj. For example in the case where P = PM we have
P Mðða1;w1Þ; . . . ; ðan;wnÞÞ ¼Maxi½wiai�:

Consider now the case of probabilistic sum. Since Rp(x � y) = 1 � (1 � x)(1 � y) then
P sðða1;w1Þ; . . . ; ðan;wnÞÞ ¼ 1�
Yn

i¼1

ð1� wiaiÞ:
We note that if wi = 0 then wiai = 0. Since zero is the identity of the t-conorm then criteria with zero impor-
tance have no effect in the calculations of P(w1a1,w2a2, . . . ,wnan).

In the following we introduce a prioritized ‘or’ operator, the PRI-OR aggregation operator.
Here we have a collection of criteria partitioned into q categories {H1, . . . ,Hq} such that Hi = {Ci1 , . . .Cini }.

Again we assume a prioritization of the categories, H1 > H2 > � � � > Hq. Our objective is to obtain a prioritized
‘oring’ aggregation of the satisfaction of these criteria by some alternative x. We assume Cij(x) 2 [0, 1] is the
satisfaction of criteria Cij by alternative x.

We first calculate for each category Si = Maxj[Cij(x)]. We next calculate
T i ¼
Yi

k¼1

Sk�1
with the understanding that So = 1 by definition. We define the prioritized weight associated with Cij as wij =
Ti. We now calculate the PRI-OR aggregation of the Cij(x) using the t-conorm P as
CðxÞ ¼ Pi;j½ðwijCijðxÞÞ�:

Since wij = Ti then C(x) = PiPj[(TiCij(x))].

To get a feel for this we consider the special case where each category has just one element, Hi = {Ci} and P

is the probabilistic sum. In this case Si = Ci(x) with So = 1. Furthermore T i ¼
Qi

k¼1Sk�1 ¼
Qi�1

k¼1CkðxÞ. In this
case
CðxÞ ¼ 1�
Yq

i¼1

1� CiðxÞ
Yi�1

k¼1

CkðxÞ
 ! !

¼ 1�
Yq

i¼1

1�
Yi

k¼1

CkðxÞ
 !

:

For the case where q = 2 we have
CðxÞ ¼ 1� ð1� C1ðxÞÞð1� C1ðxÞC2ðxÞÞ ¼ C1ðxÞ þ C1ðxÞC2ðxÞ � C1ðxÞC1ðxÞC2ðxÞ;
CðxÞ ¼ C1ðxÞð1þ C2ðxÞð1� C1ðxÞÞÞ ¼ C1ðxÞð1þ C2ðxÞC1ðxÞÞ:
Thus if C1(x) = 1 then C(x) = 1 and if C1(x) = 0 then C(x) = 0. If for example C1(x) = 0.7 then
CðxÞ ¼ 0:7ð1þ 0:3C2ðxÞÞ:

On the other hand if C2(x) = 0 then C(x) = C1(x) while if C2(x) = 1 then
CðxÞ ¼ C1ðxÞ þ C1ðxÞC1ðxÞ:
6. Conclusion

We considered criteria aggregation problems where there is a prioritization relationship over the criteria.
We suggested that prioritization between criteria can be modeled by making the weights associated with a cri-
teria dependent upon the satisfaction of the higher priority criteria. This resulted in a situation in which the
weights associated with the criteria depended upon the alternative being evaluated. We introduce a number of
aggregation operators in which there exists a prioritization relationship between the arguments. We first intro-
duced a prioritized scoring operator. We showed that in the special case where prioritization relationship
among the criteria satisfies a linear ordering we can obtain a prioritized averaging operator. We next intro-
duced a prioritized ‘‘anding” and then a prioritized ‘‘oring” operator.
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