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In this paper, we propose simple exact procedures for testing both a location shift
and�or a scale change between two multivariate distributions. Our tests are strictly
distribution-free and can be made either scale invariant or rotation invariant. Our
approach combines a generalization of the Wilcoxon test based on projections of
the data onto the first principal component, a generalization of the Siegel�Tukey
test based on the concept of data depth, and a bivariate test for the location
problem proposed by K. V. Mardia (1967, J. Roy. Statist. Soc. Ser. B 29, 320�342).
In addition, we show that the limiting null distribution of a test statistic proposed
by R. Y. Liu and K. Singh (1993, J. Amer. Statist. Assoc. 88, 252�260) does not
depend on the depth considered. � 2001 Elsevier Science
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1. INTRODUCTION

We consider two independent random samples X=[X1 , ..., Xm] and
Y=[Y1 , ..., Yn] drawn from unknown continuous p-variate distributions F
and G, respectively. Throughout the paper, we wish to nonparametrically
test the null hypothesis of the equality of these two distributions

H0 : F(x)=G(x) for all x=(x1 , ..., xp).

The choice of the testing procedure will of course depend on the alternative
of interest. In this paper, we consider a location model

Hl : there exists %=(%1 , ..., %p){0,

G(x)=F(x&%) for all x=(x1 , ..., xp),

where 0 is the p-variate null vector, a scale model

Hs : there exists _=(_1 , ..., _p){1,

G(x)=F(x�_) for all x=(x1 , ..., xp),
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where x�_=(x1 �_1 , ..., xp �_p) and 1 denotes a p-dimensional vector with all
entries equal to 1, and a location-scale model

Hls : there exists %=(%1 , ..., %p){0 or there exists _=(_1 , ..., _p){1,

G(x)=F((x&%)�_) for all x=(x1 , ..., xp),

where (x&%)�_=((x1&%1)�_1 , ..., (xp&%p)�_p). If one wishes to non-
parametrically test H0 against H l , Hs , or Hls in the univariate case ( p=1),
he may use the Wilcoxon rank-sum test, the Siegel�Tukey test or the
Kolmogorov�Smirnov test, respectively, which are strictly disitribution-free
procedures. The aim of this paper is to propose a simple way of generaliz-
ing and combining these well-known univariate tests in order to provide
another strictly distribution-free procedure which is valid under a location-
scale model in the multivariate case ( p�1).

Several nonparametric methods have been proposed to deal with the
multivariate two-sample location problem. See Wald and Wolfowitz
(1944), Chatterjee and Sen (1964), Puri and Sen (1966), Tamura (1966),
Brown and Hettmansperger (1987), or Randles (1992) among others. Most
of these methods are based on permutation tests so that the test statistics
are only conditionally distribution-free, and the null distribution is either
complicated to tabulate, or depends on the data. As a consequence, these
procedures cannot be put into practice as exact tests. Instead they may use
an approximative chi-square null distribution with p degrees of freedom.
See also Puri and Sen (1971, Chap. 5) and Hettmansperger (1984, Chap. 6).

One unconditional nonparametric test for the location problem was
given by Mardia (1967) in the bivariate case. His method centers the data
with respect to the sample mean of the combined sample and orders the
m+n angles between the plotted data with the x-axis. Then, the test
statistic is defined as

U=
2(m+n&1)

mn _{ :
m

i=1

cos(2?r i �(m+n))=
2

+{ :
m

i=1

sin(2?ri �(m+n))=
2

& ,

where ri denotes the rank of Xi in the combined sample with respect to this
angle-ordering. The null hypothesis is rejected when U is too large. This
statistic is affine invariant and critical values for small samples were
provided when m+n�18. For larger samples, an approximative chi-
square distribution with 2 degrees of freedom was demonstrated. Randles
and Peters (1990) and Peters and Randles (1991) proposed generalizations
of this test without tabulating the null distribution.

If we are interested in a multivariate scale model we may use the concept
of data depth introduced by Tukey (1975). The depth of a point x into a
distribution F, noted here D(F, x), is an indication of how ``central'' x is in F.
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Larger depths are associated with more central points. This concept
provides a center-outward ordering of the observations Xi of a data set X,
by considering the ordering of their depths D(Fm , Xi) into their empirical
distribution Fm . Different kinds of depths have been proposed in the
literature, including those of Tukey (1975), Oja (1983), and Liu (1990).
The most natural choice of depth is arguably the Euclidean one,

D1 (F, x)=[(x&+F)$ (x&+F)]&1�2,

which is rotation invariant. A scale invariant version of the Euclidean
depth is given by

D2 (F, x)=[(x&+F)$ 7&1
F (x&+F)]&1�2,

where +F is the expectation of F and 7F is the diagonal matrix which con-
tains the marginal variances of F. If 7F denotes the variance-covariance
matrix of F, we obtain the affine invariant Mahalanobis depth.

Let Z=[Z1 , ..., Zm+n] be the union of X and Y and let Hm+n be
its empirical distribution. In order to test for a scale change between two
multivariate distributions, Liu and Singh (1993) proposed to use the test
statistic

W1= :
n

i=1

Rank(Y i) in Z w.r.t. D(Hm+n , Yi),

which follows the Wilcoxon distribution under the null hypothesis (i.e., the
distribution of the sum of the observations of a random sample of size n
drawn without replacement from [1, 2, ..., m+n]). This test may be seen
as a generalization of the Siegel�Tukey test which also defines a center-
outward ordering.

This procedure of Liu and Singh is exact but not powerful against a
location shift between F and G. As a consequence, it is not adequate if we
consider a multivariate location-scale model. To overcome this drawback,
Liu and Singh (1993) considered the statistic

W2= :
n

i=1

Rank(Y i) in [Yi] _ X w.r.t. D(Fm , Y i),

where each Yi is ranked individually in the data set [Y i] _ X rather than
in Z. If the dispersion of the Xi is larger than the dispersion of the Yi , the
statistic

W$2 = :
m

i=1

Rank(Xi) in [Xi] _ Y w.r.t. D(Gn , Xi)
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should be used instead, where Gn is the empirical distribution of the Yi .
This procedure is able to detect a location shift and�or a scale change
between F and G but is no longer an exact test. Under the null hypothesis,
it was shown that the limiting distribution of W2 �(nm)&1�m when
min(m, n) � � is normal with mean 1�2 and with variance (m+n)�(12mn)
if D is the Mahalanobis depth. Liu and Singh (1993) wrote that finding the
limiting distributions for other kinds of depth remained an open problem.

We take here the opportunity to provide a simple argument which
proves that this limiting null distribution is actually the same whatever the
depth chosen. Consider the statistic

W3= :
n

i=1

Rank(Y i) in Z w.r.t. D(Fm , Yi),

which is not distribution-free under the null hypothesis, but whose limiting
null distribution is clearly the same as that of W1 (since both Fm and Hm+n

converge to F ). As the null distribution of W1 is a Wilcoxon one, it con-
verges towards a normal distribution with mean n(m+n+1)�2 and
variance mn(m+n+1)�12 (see, e.g., Hettmansperger, 1984, p. 134). Observe
that W2=W3&n(n&1)�2. As a consequence, the limiting null distribution
of W2�(nm)&1�m is normal with mean 1�2 and with variance (m+n+1)�
(12mn) regardless of the depth D considered.

Liu and Singh (1993) introduced still another procedure for the multi-
variate two-sample location-scale problem, which is defined only when m
is much larger than n (e.g. in a quality control context). See also Liu
(1995). There seems however to exist no practical and strictly distribution-
free procedure to deal with this problem for arbitrary small sample sizes (if
we except Vincze (1961) who suggested to apply the Kolmogorov�Smirnov
test along a line selected at random). In this paper, we propose a simple
procedure which attempts to fill this gap. Our test is introduced in Section
2 and numerical results are provided in Section 3. Section 4 illustrates
the application of our test on a real multivariate data set while some final
comments take place in Section 5.

2. THE PROPOSED TEST

Let Z=[Z1 , ..., Zm+n] be the union of X and Y as in Section 1. Under
the null hypothesis, the joint density of Z is symmetric in Z1 , ..., Zm+n . The
idea of our method is to replace the p-variate data set Z by a q-variate data
set V=[V1 , ..., Vm+n] (with q=1 or 2) defined as Vi=t(Zi) where the
function t depends itself on the data, which we may write t(x)=
t(x; Z1 , ..., Zm+n). If this function t is symmetric in Z1 , ..., Zm+n , the joint
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density of V will also be symmetric in V1 , ..., Vm+n under the null hypothesis
(see Proposition 1 below). For example, if q=1, each of the (m+n)! possible
orderings of the Vi will be equally probable under the null hypothesis. Hence
we obtain a strictly distribution-free procedure for testing H0 by applying a
strictly distribution-free two-sample test to the Vi .

Proposition 1. Consider two (multivariate) data sets Z=[Z1 , ..., ZN]
and V=[V1 , ..., VN]=T([Z1 , ..., ZN]) where the transformation T is
defined such that Vi=t(Zi) for i=1, ..., N with t(x)=t(x; Z1 , ..., ZN).
Denote the joint densities of Z and V by fz and fv , respectively. If fz and t
are symmetric in Z1 , ..., ZN , then fv is symmetric in V1 , ..., VN .

Proof. Let _(1), ..., _(N ) be any permutation of 1, ..., N. Consider
the data set W=[W1 , ..., WN] such that Wi=t(Z_(i )) for i=1, .., N. Note
that W=T([Z_(1) , ..., Z_(N )]) has the same joint distribution as
V=T([Z1 , ..., ZN]) since fz is symmetric in Z1 , ..., ZN . But as t is
also symmetric in Z1 , ..., ZN , we have Wi=V_(i ) for i=1, .., N. Thus
fv (V_(1) , ..., V_(N ))= fv (V1 , ..., VN) and so fv is symmetric in V1 , ..., VN .

In order to be powerful under a location-scale model, we shall define the
Vi such that they contain information about both the location and the
scale of the Zi . For summarizing the location of a multivariate data set into
a lower dimension we may consider projection techniques such as principal
component analysis. For characterizing the scale of the data we shall use
the concept of data depth. More precisely, we shall use the inverse of the
depths D1 or D2 defined in Section 1. Our general method may be
described as follows:

(1) Center the values Zi (i=1, ..., m+n) such that they have a mean
vector zero.

(2) Calculate the projections Ui of the Zi (i=1, ..., m+n) onto the
first principal component of the combined sample.

(3) Calculate the Ri as inverse depths of the Zi (i=1, ..., m+n) into
the empirical distribution of the combined sample (if the depth D1 is
chosen, the Ri are the Euclidean distances between the Zi and the origin).

(4) Standardize in turn the Ui and the Ri such that they have zero
mean and unit standard deviation.

(5) Define Vi=�(Ui , Ri) (i=1, ..., m+n) for a well chosen q-variate
function � (with q=1 or q=2).

(6) Apply a distribution-free procedure to the Vi valid in dimension
q (e.g., the Wilcoxon rank-sum test or the Kolmogorov�Smirnov test if
q=1, or Mardia's test if q=2).
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One may verify that the definition of the Vi does not involve the par-
ticular ordering of the Zi . In particular, we do not use any information that
an observation Zi is in X or in Y. This ensures the symmetry in its
arguments of the function t defined earlier in this section and Proposition
1 applies under the null hypothesis. This proves the strictly nonparametric
character of our test.

If we wish to use Mardia's test at Step 6 of our procedure, we simply
take � as the bivariate identity function and apply Mardia's test to the
bivariate data set (Ui , Ri). We shall see in the next section that this
approach is particularly promising.

If we wish to use an univariate test, such as the Wilcoxon rank-sum test
or the Kolmogorov�Smirnov test, we may define � as a linear combination
of Ui and Ri and calculate

Vi (#)=#Ui+sign(Ui , Ri)(1&#) Ri ,

for a certain value of # in [0, 1] and where sign(Ui , Ri) denotes the sign
of the correlation of the bivariate data set (Ui , Ri). The choice #=1 leads
to a powerful test under a location model, while #=0 defines a powerful
test under a scale model. The intermediate choice #=0.5 corresponds to
defining Vi as the projection of the bivariate elements (Ui , Ri) onto their
first principal component. This choice is found adequate under a location-
scale model since both Ui (location information) and Ri (scale information)
are used for defining Vi .

Another possible choice of # may be motivated as follows. In the
univariate case, it is equivalent to apply the Wilcoxon rank-sum test to the
Vi or to the Zi when #=1 (since Vi=Zi). On the other hand, applying the
Wilcoxon rank-sum test to the Vi is equivalent to applying the Siegel�
Tukey test to the Zi when #=0. Is is known that the univariate Wilcoxon
test is more efficient than the univariate Siegel�Tukey test when the null
distribution is normal. By comparing these nonparametric tests with their
parametric analogues, namely the classical t- and F-tests, respectively, we
have an asymptotic relative efficiency of 0.955 for the former and 0.608 for
the latter (see, e.g., Gibbons, 1976, p. 30). Thus, the Wilcoxon test is in a
sense 570 more powerful than the Siegel�Tukey test. In order to have a
test which is well-balanced with respect to location and scale powerfulness,
one could define Vi with #=1�(1+1.57)=0.39.

A desirable property of a two-sample test would be to be affine invariant
(the outcome of the test should not depend on the p-variate system of coor-
dinates which expresses the Zi). Unfortunately, our method does not share
this property. However, our test can be made either rotation invariant (or
more generally invariant with respect to an orthogonal transformation) or
scale invariant, depending on how Steps 2 and 3 of our procedure are
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implemented. Note that in both cases, our test will be invariant under an
homogeneous scale change (when the same scale change is applied to each
variable). In fact, the rotation and scale invariance properties of our test
depend directly on the rotation and scale invariance properties of the Vi ,
and hence of the Ui and Ri , as follows:

v Step 2. Recall that the definition of principal components uses
eigenvectors of the variance-covariance or correlation matrix of the data.
Use of the former option defines rotation invariant Ui , whereas use of the
latter option defines scale invariant Ui . Note that the U i cannot be made
affine invariant.

v Step 3. Choice of the Euclidean depth D1 defines rotation
invariant Ri , while choice of depth D2 defines scale invariant R i . Note that
the Mahalanobis depth or any other affine invariant depth would define
affine invariant Ri .

This property of our test may be sufficient in praxis. In most applications
the concern is either rotation invariance or scale invariance, but rarely
both. Rotation invariance is desirable when each variable shares the same
unit of measurement, for example when we are interested in the representa-
tion of items on a two-dimensional map. In such cases, we would like our
test to be independent of the coordinates chosen (and thus to be rotation
invariant), but invariance under a (nonhomogeneous) scale change is often
not relevant. On the other hand, scale invariance is a necessary property
when the units of the variables involved may not be compared with each
other (such as a distance with a temperature), in which cases a rotation
does not really make sense.

3. SIMULATION STUDY

In order to check the performance of our methods, we performed a small
simulation study. We considered bivariate samples X and Y of sizes
m=n=9. The first sample was drawn from a product of two independent
standardized normal or Laplace distributions. The second sample was
generated such that we had a location shift % and a scale change _. We
considered the following four possibilities:

(1) %=(0, 0) and _=(1, 1)

(2) %=(1, 1) and _=(1, 1)

(3) %=(0, 0) and _=(2, 2)

(4) %=(1, 1) and _=(2, 2).
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Case (1) corresponds to the null hypothesis. Cases (2), (3), and (4) correspond
to a location model, a scale model and a location-scale model, respectively.

Among exact procedures, we tried the Wilcoxon and Kolmogorov�
Smirnov tests applied to the rotation invariant Vi (#) defined in Section 2
with #=0, 0.39, 0.5, 1, as well as Mardia's procedure applied to the original
data set and to the rotation invariant data set (U i , Ri). The level 0.9 was
used throughout. Note that due to their discreteness, the true levels of the
Wilcoxon, the Kolmogorov�Smirnov and Mardia's tests were 0.906, 0.966
and 0.900, respectively. For obtaining a fairer comparison with the other
methods, the Kolmogorov�Smirnov tests were randomized such that their
true levels were 0.900.

In addition, we tried the nonexact procedure based on W2 or W$2 (see
Section 1). The Euclidean depth D1 was used. The statistic W2 was selected
when the variance of the Ri corresponding to the Xi was smaller than the
variance of the Ri corresponding to the Yi . Otherwise the statistic W$2 was
selected. Both a normal and a Wilcoxon approximation were calculated.
The Wilcoxon version of this test was then calibrated using a nominal level
of 0.93 in order to be compared with the exact tests.

Tables I and II give the percentage of acceptance of the null hypothesis
achieved by each of these methods based on 1000 samples drawn according
to cases (1), (2), (3), and (4) with bivariate normal and bivariate Laplace
distributions, respectively. From the first columns of these tables, we see
that the Wilcoxon approximation to W2 was more accurate than the
normal approximation under the null hypothesis, but the proportion of
acceptance remained well below the nominal level.

TABLE I

Percentage of Acceptance of the Null Hypothesis for 10 Methods and 4 Cases When
the Population Is Bivariate Normal with m=n=9

Test Case (1) Case (2) Case (3) Case (4)

Wilcox. Vi (1) 90.9 22.5 90.2 59.5
Wilcox. Vi (0.5) 89.5 56.5 49.6 32.3
Wilcox. Vi (0.39) 90.5 74.8 39.0 29.1
Wilcox. Vi (0) 91.4 95.6 32.0 43.2

Kolm�Smirn. V i (1) 90.3 31.0 82.1 54.2
Kolm�Smirn. V i (0.5) 89.8 53.9 57.5 36.7
Kolm�Smirn. V i (0) 90.7 93.5 38.4 49.1

Mardia orig. data 89.9 30.3 84.5 49.1
Mardia (U i , R i) 90.8 46.3 44.7 34.4

Approx. normal W2 83.3 38.7 18.2 14.6
Approx. Wilcox. W2 86.3 42.6 21.0 15.7
Calibrated W2 90.3 50.1 28.7 20.3
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TABLE II

Percentage of Acceptance of the Null Hypothesis for 10 Methods and 4 Cases When
the Population Is Bivariate Laplace with m=n=9

Test Case (1) Case (2) Case (3) Case (4)

Wilcox. Vi (1) 91.2 25.8 92.1 55.4
Wilcox. Vi (0.5) 90.2 52.7 61.3 46.5
Wilcox. Vi (0.39) 90.9 73.0 52.0 47.5
Wilcox. Vi (0) 91.6 91.7 49.8 56.1

Kolm�Smirn. V i (1) 89.6 27.2 85.3 47.7
Kolm�Smirn. V i (0.5) 89.4 53.3 67.2 49.2
Kolm�Smirn. V i (0) 92.8 90.2 54.7 60.0

Mardia orig. data 89.7 16.8 83.3 36.7
Mardia (U i , R i) 90.9 33.9 59.5 36.0

Approx. normal W2 83.3 28.1 35.1 16.7
Approx. Wilcox. W2 86.0 31.2 37.7 18.7
Calibrated W2 89.6 36.6 44.4 22.7

For the bivariate normal location model, the Wilcoxon test applied to
the Vi (1) was the most powerful among all the tests considered, including
the nonexact one. When the distribution was bivariate Laplace, however, it
did not perform as well as Mardia's procedure, which is known to have
high power for heavy-tailed distributions (see Peters and Randles, 1991).
Under a scale model, the Wilcoxon test applied to the Vi (0) was the best

TABLE III

Percentage of Acceptance of the Null Hypothesis for 10 Methods and Cases (A), (B), and (C)
with m=n=30

Test Case (A) Case (B) Case (C)

Wilcox. Vi (1) 89.9 88.5 83.1
Wilcox. Vi (0.5) 81.2 45.0 70.6
Wilcox. Vi (0.39) 77.2 38.8 73.9
Wilcox. Vi (0) 77.0 46.3 79.5

Kolm�Smirn. V i (1) 87.4 61.4 61.1
Kolm�Smirn. V i (0.5) 82.6 32.8 55.2
Kolm�Smirn. V i (0) 75.3 26.8 54.1

Mardia orig. data 89.5 53.0 50.2
Mardia (Ui , R i) 79.3 22.0 42.8

Approx. normal W2 76.6 47.0 73.1
Approx. Wilcox. W2 77.3 47.2 73.9
Calibrated W2 81.3 50.9 76.7
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among exact procedures. For the bivariate normal location-scale model,
the Wilcoxon test applied to the Vi (0.39) was especially powerful.
Nevertheless, in the bivariate Laplace case, Mardia's procedures again per-
formed better.

In order to be powerful under all these models, Mardia's procedure
applied to the data set (Ui , Ri), and the Wilcoxon test applied to the Vi (#)
with # around 0.4 or 0.5, were found to be good compromises between tests
specifically developed for a location model and tests specifically developed
for a scale model. The nonexact test based on W2 performed well too, but
its calibration may be problematic in practice (when the distribution is
unknown).

The randomized Kolmogorov�Smirnov tests were found close to the
Wilcoxon ones. Moreover, these tests are interesting if one is interested in
detecting other kinds of difference than a location shift or a scale change.
Table III provides results based on 1000 samples drawn from the following
three situations:

(A) The first sample follows a product of two independent normal
and the second a product of two independent Laplace distributions.

(B) The first sample follows a product of two independent normal
and the second a product of two independent chi-square (with 1 d.f.) dis-
tributions.

(C) The first sample follows a product of two independent Laplace
and the second a product of two independent chi-square (with 1 d.f.) dis-
tributions.

TABLE IV

Percentage of Acceptance of the Null Hypothesis for 9 Methods and 4 Cases When
the Population Is Univariate Normal with m=n=30

Test Case (1) Case (2) Case (3) Case (4)

Wilcox. Vi (1) 90.7 2.1 89.9 25.0
Wilcox. Vi (0.5) 90.5 36.4 30.8 11.8
Wilcox. Vi (0.39) 91.7 58.6 18.5 11.2
Wilcox. Vi (0) 89.7 94.3 12.6 21.4

Kolm�Smirn. V i (1) 90.6 5.4 60.3 11.8
Kolm�Smirn. V i (0.5) 90.3 22.2 39.5 12.2
Kolm�Smirn. V i (0) 90.4 92.7 13.9 23.7

Mardia (U i , R i) 91.9 24.9 22.6 11.1

Approx. normal W2 88.4 33.8 11.0 5.2
Approx. Wilcox. W2 88.7 34.5 11.6 5.3
Calibrated W2 89.5 36.5 12.8 6.0
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TABLE V

Percentage of Acceptance of the Null Hypothesis for 9 Methods and 4 Cases When
the Population Is Univariate Laplace with m=n=30

Test Case (1) Case (2) Case (3) Case (4)

Wilcox. Vi (1) 89.8 0.9 90.3 10.5
Wilcox. Vi (0.5) 88.7 18.2 43.6 21.2
Wilcox. Vi (0.39) 88.7 47.5 34.0 25.5
Wilcox. Vi (0) 89.7 89.0 29.1 43.4

Kolm�Smirn. V i (1) 89.2 0.6 72.3 4.7
Kolm�Smirn. V i (0.5) 89.7 11.5 51.6 19.7
Kolm�Smirn. V i (0) 88.9 2.1 37.2 46.1

Mardia (U i , R i) 89.5 33.9 40.1 3.1

Approx. normal W2 86.8 10.9 25.1 3.1
Approx. Wilcox. W2 87.2 11.1 25.7 3.5
Calibrated W2 90.0 13.6 31.7 4.8

For all these cases, the distributions were standardized such that the vec-
tor means were equal to (1,1) and the marginal variances to (2,2). Sample
sizes were taken to be m=n=30. The true levels of the Wilcoxon and the
Kolmogorov�Smirnov tests were here 0.901 and 0.929, and the latter were
randomized. One can see their advantage over the Wilcoxon tests for cases
(B) and (C), while case (A) corresponds to a case for which all tests failed
to be powerful. Mardia's procedure was applied using its chi-square null
approximation. It was found once again very powerful when applied to the
data set (Ui , Ri). The statistic W2 was calibrated using a nominal level 0.92
but was not as performant as under cases (1)�(4).

Finally we tried all these methods under the univariate analogues of
situations (1)�(4) with sample sizes m=n=30 (except the original
Mardia's procedure which is strictly bivariate). Tables IV and V refer to
normal and Laplace cases, respectively. It is interesting to note that Mardia's
procedure applied to the data set (Ui , Ri) was found competitive with the
randomized Kolmogorov�Smirnov test under a location-scale model.
Moreover, it had not to be randomized for achieving exactness since its
true level was very close to the nominal one.

4. REAL DATA EXAMPLE

We illustrate our methodology on the Tibetan skulls data set studied in
Morant (1923). This data set consists of p=5 measurements (all in
millimetres)
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Z1 : Greatest length of skull

Z2 : Greatest horizontal breadth of skull

Z3 : Height of skull

Z4 : Upper face height

Z5 : Face breadth, between outermost points of cheek bones

TABLE VI

Tibetan Skulls Data Set and Standardized Values of U i and Ri for Both the Rotation and the
Scale Invariant Versions of Our Tests

Ui Ri Ui Ri

Zi1 Zi2 Zi3 Zi4 Zi5 rot. inv. scale inv.

190.5 152.5 145.0 73.5 136.5 1.22 0.98 1.21 1.09
172.5 132.0 125.5 63.0 121.0 &1.55 0.94 &1.83 1.21
167.0 130.0 125.5 69.5 119.5 &1.78 1.27 &1.74 1.16
169.5 150.5 133.5 64.5 128.0 &0.91 0.63 &0.87 0.72
175.0 138.5 126.0 77.5 135.5 &0.23 &0.62 &0.06 &0.48
177.5 142.5 142.5 71.5 131.0 &0.06 &0.55 0.08 &0.37
179.5 142.5 127.5 70.5 134.5 &0.12 &1.04 &0.23 &0.93
179.5 138.0 133.5 73.5 132.5 &0.07 &1.85 &0.05 &1.95
173.5 135.5 130.5 70.0 133.5 &0.60 &0.87 &0.59 &0.99
162.5 139.0 131.0 62.0 126.0 &1.74 1.16 &1.70 1.06
178.5 135.0 136.0 71.0 124.0 &0.57 &0.47 &0.60 &0.52
171.5 148.5 132.5 65.0 146.5 &0.06 0.80 &0.04 0.88
180.5 139.0 132.0 74.5 134.5 0.09 &1.78 0.11 &1.81
183.0 149.0 121.5 76.5 142.0 0.58 0.57 0.54 0.84
169.5 130.0 131.0 68.0 119.0 &1.59 0.98 &1.59 0.88
172.0 140.0 136.0 70.5 133.5 &0.48 &0.81 &0.33 &1.05
170.0 126.5 134.5 66.0 118.5 &1.63 1.32 &1.69 1.34
182.5 136.0 138.5 76.0 134.0 0.31 &1.04 0.39 &0.96
179.5 135.0 128.5 74.0 132.0 &0.23 &1.13 &0.27 &1.09
191.0 140.5 140.5 72.5 131.5 0.72 &0.12 0.53 &0.33
184.5 141.5 134.5 76.5 141.5 0.77 &0.62 0.81 &0.69
181.0 142.0 132.5 79.0 136.5 0.40 &1.01 0.57 &0.82
173.5 136.5 126.0 71.5 136.5 &0.50 &0.55 &0.48 &0.57
188.5 130.0 143.0 79.5 136.0 0.84 0.44 0.91 0.64
175.0 153.0 130.0 76.5 142.0 0.34 0.50 0.61 0.57
196.0 142.5 123.5 76.0 134.0 0.93 0.75 0.54 0.51
200.0 139.5 143.5 82.5 146.0 2.21 1.94 2.17 1.81
185.0 134.5 140.0 81.5 137.0 0.75 &0.15 0.96 0.16
174.5 143.5 132.5 74.0 136.5 &0.11 &0.98 0.07 &1.15
195.5 144.0 138.5 78.5 144.0 1.71 0.96 1.62 0.70
197.0 131.5 135.0 80.5 139.0 1.37 0.98 1.18 0.72
182.5 131.0 135.0 68.5 136.0 0.01 &0.64 &0.21 &0.55

Note. Rows 1�17 and 18�32 refer to type X and type Y, respectively.
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made on 32 skulls divided into two groups. The m=17 skulls of type X
came from graves in Sikkim and neighbouring area of Tibet, while the
n=15 skulls of type Y were picked up on a battlefield in the Lhassa district
and were believed to be those of native soldiers from the eastern province
of Khams. Hand et al. (1994, p. 111) noted that these skulls were of par-
ticular interest because it was thought at the time that Tibetans from
Khams might be survivors of a particular fundamental human type,
unrelated to the Mongolian and Indian types which surrounded them.

When there is some doubt about the origin of a group of skulls, as those
of type Y, it may be useful to test whether they belong to the same popula-
tion as another group of skulls whose origin is more certain (as those of
type X). If skulls of type Y came from another population as skulls of type
X, they would typically differ in location with respect to at least some of
the measurements. On the other hand, if skulls of type Y came from a
mixture of several distinct populations (as it may arise on a battlefield),
their measurements would exhibit an higher dispersion compared to type X
(they would differ in scale). Our tests which can detect both a location shift
and scale change between two samples may be of particular interest to
answer such a question.

The data are given in Table VI, along with the Ui and the Ri for both
the location and scale invariant version of our tests. We may indeed
hesitate here between these two options. Since all measurements were made
in millimetres, one could argue that scale invariance is not really necessary
and advocate rotation invariance in order to be somewhat robust with
respect to how the five variables have been defined to characterize a skull.
On the other hand, one may prefer scale invariance since dispersion may
differ among variables. Table VII provides the p-values resulting from our
different tests. We observe that location differed significantly between the

TABLE VII

p-Values for Both Versions of Our Tests Applied to
the Tibetan Skulls Data Set of Table VI

Test Rot. inv. Scale inv.

Wilcox. Vi (1) 0.0003 0.0005
Wilcox. Vi (0.5) 0.08 0.02
Wilcox. Vi (0.39) 0.18 0.08
Wilcox. Vi (0) 0.53 0.35

Kolm�Smirn. V i (1) 0.002 0.003
Kolm�Smirn. V i (0.5) 0.08 0.01
Kolm�Smirn. V i (0) 0.55 0.11

Mardia (Ui , R i) 0.003 0.006
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two types of skulls while scale did not (see the tests which use Vi (1) and
Vi (0), respectively). Conclusion of the tests which use Vi (0.5) varied (at the
50 significance level) whether implemented with their rotation or scale
invariance versions. By way of contrast, Mardia's test applied to the data
set (Ui , Ri) clearly rejected the null hypothesis in both cases and proved to
be robust with respect to this invariance issue, which is certainly another
advantage of this test.

5. CONCLUSION

In this paper, we have proposed some strictly nonparametric methods
which combine the ideas of linear ordering and center-outward ordering.
Contrary to the already existing methods, they can be powerful under a
location-scale model and may be used in any dimension, including dimen-
sion one. Moreover, their null distributions are well known and already
tabulated in the statistical literature. A simulation study has shown their
good performance in the univariate and bivariate cases. The version of our
test which uses Mardia's procedure was found particularly attractive.
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