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A Mutation of b-Actin That Alters Depolymerization Dynamics Is
Associated with Autosomal Dominant Developmental Malformations,
Deafness, and Dystonia
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Actin, one of the major filamentous cytoskeletal molecules, is involved in a variety of cellular functions. Whereas
an association between muscle actin mutations and skeletal and cardiac myopathies has been well documented,
reports of human disease arising from mutations of nonmuscle actin genes have been rare. We have identified a
missense point mutation in the gene coding for b-actin that results in an arginine-to-tryptophan substitution at
position 183. The disease phenotype includes developmental midline malformations, sensory hearing loss, and a
delayed-onset generalized dystonia syndrome in monozygotic twins. Cellular studies of a lymphoblastoid cell line
obtained from an affected patient demonstrated morphological abnormalities of the actin cytoskeleton and altered
actin depolymerization dynamics in response to latrunculin A, an actin monomer–sequestering drug. Resistance to
latrunculin A was also observed in NIH 3T3 cells expressing the mutant actin. These findings suggest that mutations
in nonmuscle actins may be associated with a broad spectrum of developmental malformations and/or neurological
abnormalities such as dystonia.
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Actin, one of the major cytoskeletal proteins, partici-
pates in many important cellular functions, including
muscle contraction, cell motility, cytokinesis, vesicle and
organelle movement, cell signaling, and the establish-
ment and maintenance of cell junctions and cell shape.1–

5 It is highly conserved throughout evolution because it
interacts with a large number of proteins.1 The actin
family comprises three major isoform groups based on
electrophoretic mobility: a-actin, b-actin, and g-actin.6

In mammalian cells, there are six isoforms coded by
separate genes, consisting of four muscle isoforms (a-
skeletal, aortic smooth, cardiac, and g2-enteric) and two
nonmuscle actins (b and g1).7 Whereas cellular actin may
be altered in various disease states and in aging,8–10 160
mutations of the skeletal (ACTA1) and cardiac (ACTC)
muscle actin genes have been identified in hereditary
muscle diseases.11–13 The majority of ACTA1 mutations
are dominant, a small number are recessive, and most
isolated cases in individuals with no previous family his-
tory are de novo dominant mutations.11 In contrast, re-
ports of nonmuscle actin mutations have been limited
to two reports of the g-actin gene (ACTG1) in familial
deafness14,15 and the b-actin gene (ACTB) in a single

patient with recurrent infections.16 However, no neu-
rodegenerative syndromes or ventral midline–defect phe-
notypes have been linked to mutations in vertebrate non-
muscle actin genes.

Dystonia is a movement disorder syndrome charac-
terized by sustained involuntary muscle contractions
that cause abnormal postures and repetitive move-
ments.17,18 To date, genetic loci have been identified in
at least 12 autosomal dominant forms, and the specific
disease genes have been identified in 5 autosomal dom-
inant forms, in 1 X-linked form, and in 1 autosomal
recessive form.19 Here, we report that a mutation in the
nonmuscle isoform ACTB is associated with a combi-
nation of ventral midline malformations, sensory hear-
ing loss, and delayed-onset generalized dystonia.

Material and Methods

Patient Tissues and Cell Lines

The neuropathology of the probands was reported else-
where.20 At the time of the brain autopsy, tissue samples were
frozen immediately on metal plates previously cooled in a
�80�C freezer. The frozen samples were then stored at �80�C.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81143255?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


948 The American Journal of Human Genetics Volume 78 June 2006 www.ajhg.org

Table 1

Primer Sequences for the ACTB Gene and for ACTB,
ACTG1, CFL1, and ADF cDNAs

The table is available in its entirety in the online
edition of The American Journal of Human Genetics.

The remainder of the brain tissue was fixed in neutral buffered
formalin at room temperature, sections were taken for paraffin
embedding, and the remaining formalin-fixed tissue was stored
in sealed plastic bags at room temperature. Between the deaths
of the first and second probands, blood samples were obtained
with informed consent from the surviving proband, the mother,
and the two half-brothers. Buffy coat fractions were obtained
and transformed using Epstein-Barr virus, in accordance with
standard published procedures.21 Lymphoblastoid cell lines
from the patient, first-degree relatives, and controls were pas-
saged in RPMI 1640 supplemented with additional glucose
(final concentration 4.5 mg/ml), 10% fetal bovine serum, 50
mg/ml uridine, and 1 mM pyruvate.

DNA Sequencing and Mutation Analysis

DNA was extracted from brain tissues, cell lines, and blood
samples with the use of a Puregene kit (Gentra Systems). Total
RNA was extracted from brain tissue and lymphoblast cell
lines with the use of TRIzol, was treated with DNAse I, was
purified using a RNAeasy kit (Qiagen), and was reverse tran-
scribed using a first-strand cDNA kit (Invitrogen).

The ACTB gene (GenBank accession number M10277),
ACTB cDNA (GenBank accession number NM_001101),
ACTG1 cDNA (GenBank accession number NM_001614),
cofilin 1 (CFL1) cDNA (GenBank accession number NM_
005507), and actin depolymerizing factor (ADF) cDNA
(GenBank accession number NM_006870) were amplified us-
ing standard conditions and were sequenced with primers cho-
sen from the cDNA or genomic DNA reference sequences (ta-
ble 1). PCR products were treated with ExoSAP-IT (Amer-
sham), to remove primers and unincorporated nucleotides be-
fore sequencing. Sequencing reactions were performed with the
ABI PRISM Big Dye Terminator Cycle Sequencing v3.0 Ready
Reaction Kit and were analyzed on an ABI 3100 DNA Ana-
lyzer (Applied Biosystems). To identify single polymorphisms
occurring in normal controls, we sequenced exon 4 of ACTB
in 117 DNA samples derived from unrelated control individ-
uals, of the same ethnicity as the patient, who had no neu-
rological or malformation disorders.

The patients were previously screened for torsion dystonia-
1 (DYT1) gene mutations as well as for the dystonia/deafness-
1 (DDP1) mutation, and the results were negative.20 Results
from mitochondrial respiration studies performed after muscle
biopsies were negative as well. The patients also exhibited
clinical features found in Opitz syndrome (OS [MIM 300000]),
including ventral midline abnormalities such as esophageal
motility problems and hypertelorism. We therefore screened
for genetic abnormalities known to be associated with this
syndrome.22 The nine coding exons of the MID1 gene were
amplified using primers and conditions described elsewhere to
evaluate the X-linked form of the syndrome.23,24 To evaluate
the chromosome 22–linked form of the syndrome,25 FISH anal-
ysis was performed on metaphase lymphoblastoid cells from
the patient, with the use of the N25 and TUPLE1 probes
(Appligene Oncor) in accordance with the manufacturer’s
instructions.

Electrophoresis/Immunoblotting

Brain tissues stored at �80�C were pulverized in the presence
of liquid nitrogen before homogenization. Lymphoblasts were
harvested and were washed twice with PBS, and the cell pellets
were stored frozen at �80�C. They were lysed in 3–4 vol of
SDS sample buffer (2% SDS, 80 mM Tris, 5% b-mercapto-
ethanol, 15% glycerol, and 0.05% bromophenol blue [pH
6.8]), were heated at 97�C for 2 min, were homogenized by
brief sonication, and were heated again at 97�C for 2 min.
Protein concentrations of the lysates were determined by a filter
paper dye-binding assay.26 For one-dimensional SDS-PAGE,
the lysates were used directly for analysis. Samples were load-
ed into the gel lanes in equal protein concentrations, with an
additional lane employed as a “loading control” (probed for
tubulin). For two-dimensional electrophoresis, proteins in the
lysates were precipitated by the method described elsewhere27

to remove SDS, were resuspended in isoelectric focusing (IEF)
sample buffer (8 M urea, 2% CHAPS, 50 mM dithiothreitol,
and 0.2% Bio-Lite 3/10 ampholytes) with brief sonication, and
were applied to pH 4–7 ReadyStrip immobilized pH gradient
(IPG) strips (11-cm gel [Bio-Rad]) by passive rehydration. IEF
was performed by applying 35,000 V/h, with a maximum volt-
age of 8,000 V, with the use of Protean IEF cell (Bio-Rad).
The IPG strips were equilibrated in equilibration buffer I (6
M urea, 0.375 M Tris-HCl [pH 8.8], 2% SDS, 20% glycerol,
and 2% dithiothreitol) for 10 min and then in equilibration
buffer II (6 M urea, 0.375 M Tris-HCl [pH 8.8], 2% SDS,
20% glycerol, and 2.5% iodoacetamide) for 10 min and were
applied to SDS-PAGE (12% acrylamide gel) for the second
dimension. The proteins from SDS-PAGE were transferred to
Immobilon-P (0.2 mm) membranes. After incubation in block-
ing solution (Tris-buffered saline [pH 7.4], 0.025% Triton X-
100, and 5% powdered milk), membranes were rinsed and
incubated overnight at 4�C with either anti–b-actin (mouse
monoclonal clone AC-15 [Sigma]), anti–g-actin (sheep [Chem-
icon]), anti–pan-actin (mouse monoclonal clone AC-40
[Sigma]), or anti–a-tubulin (monoclonal mouse clone DMIA
[Sigma]). All antibodies were used in the 1:1,000–1:2,000 di-
lution range. After several rinses, the membranes were incu-
bated for 1 h at room temperature with appropriate horse-
radish peroxidase (HRP)–labeled secondary antibodies: HRP
goat anti-sheep (1:5,000 [Zymed]) and HRP donkey anti-
sheep IgG (1:7,000 [Jackson Immunoresearch Labs]). The
membranes were then rinsed, and proteins were visualized
using chemiluminescence (ECL [Amersham Biosciences]). The
x-ray film was exposed to the membranes for varying time
intervals ranging from 5 s to 10 min. The developed films
were scanned for image archiving and for densitometry
measurements.
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Coverslip Cultures/Phalloidin Staining and
Immunofluorescence

Lymphoblast cell lines (sex- and age-matched control and
patient) were grown in RPMI 1640 supplemented with uridine
(5 mg/100 ml), gentamycin sulfate (0.05 mg/ml), and 20% fetal
bovine serum (Hyclone) in 25-cm2 flasks under a 5% CO2

humidified incubator at 37�C. Cells were seeded on coverslips
previously coated with the combination of 0.01% poly-L-ly-
sine (Sigma) and 20 mg/well of fibronectin (Invitrogen) in
growth medium. After 24 h in culture, cells were incubated
for 24 h in medium containing 1% bovine growth serum. They
were then treated for 3 h with or without 0.25 mg/ml latrun-
culin A (Molecular Probes). Cells were then fixed for 20 min
in 4% paraformaldehyde (PFA) in PBS, were permeabilized for
5 min in 0.1% Triton X-100 in PBS, and were processed for
visualization of filamentous actin with the use of Alexa Fluor
488 conjugated phalloidin (1:100 [Molecular Probes]),28 or
tetramethylrhodamine-phalloidin (Sigma) at 0.1 mg/ml. The
samples were mounted with Fluoromount (Fisher) and were
examined on a Zeiss microscope equipped with a 100# ob-
jective. Images were directly captured and were transferred to
Adobe Photoshop CS for printing.

For immunofluorescence, coverslip cultures were fixed either
with PFA, as described above, or with ice-cold methanol for
10 min. After rinsing and permeabilization, cells were incu-
bated with antibodies to either b-actin (AC-15, 1:1,000 di-
lution [Sigma]) or g-actin (sheep, 1:7,000 dilution [Chemicon])
for 1 h at room temperature. Coverslips were then rinsed and
were stained with appropriate secondary antibodies (Alexa
Fluor 488 goat anti-mouse IgG, 1:5,000 dilution; Alexa Fluor
568 donkey anti-sheep IgG, 1:5,000 dilution [Molecular
Probes]) for 1 h at room temperature. The coverslips were then
rinsed and mounted. The slides were examined in a Leica DMR
microscope, and images were captured with a digital camera
and a Zeiss LSM50 confocal microscope. Images were pro-
cessed using Adobe Photoshop and Zeiss LSM software.

Flow Cytometry

Lymphoblast cell lines (control and patient) were treated
with and without latrunculin A for 15 min at 37�C, were rinsed
in PBS, and were fixed in 4% PFA for 20 min. After permea-
bilization in 0.025% Triton X-100 in PBS, cells were incubated
with Alexa Fluor 488 phalloidin for 30 min at 37�C and were
resuspended in PBS. Actin filaments stained with phalloidin
were analyzed using an analytical flow-cytometry system (BD
Biosciences). The results were analyzed using Flojo version 6.0
(Treestar).

Latrunculin A Studies on Transfected 3T3 cells

To verify that the R183W mutation in the patient lympho-
blasts was responsible for the resistance to latrunculin A, we
performed similar studies using NIH 3T3 cells stably trans-
fected with green fluorescent protein (GFP)–tagged constructs
of mutant and wild-type b-actin. A cDNA construct encoding
full-length human b-actin was generated by RT-PCR and was
introduced into a plasmid pEGFP vector (BD Biosciences). Ex-
pression of the R183W substitution in the b-actin construct
was introduced by site-directed mutagenesis, with use of the

QuikChange XL Site-Directed Mutagenesis Kit (Stratagene)
with a pEGFP vector as a template plasmid harboring the entire
coding sequence of b-actin. Clones were confirmed to contain
the desired mutation by DNA sequence analysis. NIH 3T3
cells were transfected with the wild-type and mutant constructs
with the use of standard commercial reagents (Effectene [Qia-
gen]) and were grown in selection media containing the neo-
mycin analogue, G418. The transfected cells that survived se-
lection demonstrated ∼30% positivity for GFP fluorescence
when examined under epifluorescence. Populations of cells en-
riched (180%) for efficient transgene expression were obtained
using preparative fluorescence-activated cell sorting at the Yer-
kes Primate Facility at Emory. The sensitivity of transfected
cells to the depolymerizing actions of latrunculin A was ini-
tially evaluated on live cell preparations with the use of con-
focal microscopy. Briefly, the cells were plated at low density
onto chambers containing glass-bottomed wells that had been
previously coated with growth-factor–free commercial sub-
stratum (Matrigel) and were allowed to attach for 3 h. After
attachment, the medium was replaced with low-serum medium
(1%), and cells were allowed to incubate overnight. Chambers
were then rinsed, the medium was replaced with phenol-free
medium plus Hepes buffer, and they were placed on the stage
of an inverted Zeiss LSM 510 confocal microscope system,
which was fitted with an objective warming collar and used
immersion oil designed for the warming environment. Micro-
scopic fields containing GFP fluorescence associated with the
actin stress-fiber networks were selected using a 40# oil ob-
jective, and several pre-drug images were captured. Latrun-
culin A was then added to the chambers for final concentra-
tions of either 250 or 500 ng/ml, and the fields were scanned
at intervals of 1 min, for up to 30 min. Image series were then
evaluated using LSM software. Control chambers in which no
drug was added demonstrated that the stress fiber–associated
fluorescence remained stable over the 30-min incubation pe-
riod. On the basis of an examination of the real-time images,
quantitative experiments were performed on duplicate cov-
erslip cultures of the transfected cells with the use of a final
latrunculin A concentration of 250 ng/ml. Coverslips were
rinsed and were fixed with ice-cold methanol at intervals of
5, 10, 15, and 20 min after drug addition. Coverslip cultures
without drug treatment were included as controls. All pro-
cessed coverslips were mounted onto glass microscope slides
with the use of gelvatol and were examined using the Zeiss
LSM 510 confocal microscope. For each coverslip, five random
fields of cells were scanned using a 40# oil objective, and the
images were analyzed using Metamorph software to compute
the fluorescence intensity of individual cell profiles as a per-
centage of cell area. The collected data was analyzed sta-
tistically with the use of the Student t test.

Results

Genetic Studies

The probands whom we reported elsewhere were born
with several ventral midline malformations, including
cleft palate and lip, hypertelorism, and esophageal mo-
tility problems.20 The hearing loss was first reported in
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Figure 1 FISH analysis of metaphase lymphoblast cells from the
proband, with DiGeorge markers for chromosome 22. The legend is
available in its entirety in the online version of The American Journal
of Human Genetics.

primary school, was documented by audiometric testing,
and was confirmed through periodic follow-up by oto-
laryngological specialists. The hearing loss was severe
and bilateral, eventually necessitating the use of sign
language to communicate. Beginning in early adoles-
cence, the patients developed a progressive generalized
dystonia syndrome that led to death in their early twen-
ties due to repeated episodes of aspiration pneumonia.
As reported elsewhere, genetic testing results for DYT1
mutations associated with one of the forms of primary
dystonia18 were negative, as were results for the DDP1
mutation and known mitochondrial disorders.20 The
constellation of malformations exhibited by the patients
resembles OS.22 We searched for mutations in MID1,
the gene responsible for the X-linked form of OS
(XLOS),23 and found no mutations in the nine coding
and splice-site regions of this gene (data not shown). OS
is genetically heterogeneous, and an autosomal domi-
nant form (ADOS) has also been identified. Although
the gene implicated has not been discovered yet, ADOS
has been mapped to chromosome 22.22 Patients with
ADOS usually show a large chromosomal deletion in
the long arm of chromosome 22—in particular, in the
DiGeorge region (22q11.2).25 For this reason, we per-
formed FISH analysis with the use of two different
probes for the 22q11.2 region on lymphoblastoid cells
of the proband. Both probes revealed that no large de-
letions are present in the patient cells (fig. 1).

Postmortem brain examinations of both patients re-
vealed a remarkable pathology consisting of abundant
proteinaceous inclusions that stained positively for actin
and for the actin regulatory protein, cofilin.20 Therefore,
genes coding for actin and actin regulatory proteins, such
as ADF and CFL1, were sequenced using cDNAs ob-
tained from reverse-transcribed mRNA from the brains
of both twins and from the lymphoblast cell line of the
second twin (table 1). A heterozygous missense point
mutation was identified in ACTB, which was confirmed
by sequencing genomic DNA. As illustrated in fig. 2A,
a sequence electrophoregram of the genomic sequence
from exon 4 identified a heterozygous base change of
cytosine to thymine at nucleotide position 547CrT. This
change predicts an amino acid substitution of arginine
(R) to tryptophan (W) at position 183 in the b-actin
molecule (R183W), which is highly conserved across
species (fig. 2B). No mutations were identified in the
remaining five ACTB exons, in ACTG1, or in ADF and
CFL1 cDNAs (table 1). Similarly, no mutations in ACTB
or other related genes were identified in the mother and
the two half brothers. Paternal samples were not avail-
able for analysis, but there is no paternal family history
of similar disorders. The patients had the appearance of
identical twins, and we have confirmed monozygosity
with DNA microsatellite analysis, by typing a series of
polymorphic loci (fig. 3A). In addition, a series of mi-

crosatellite markers in close proximity to ACTB on chro-
mosome 7 was used to trace the inheritance of ACTB
alleles over generations. Individuals were genotyped for
markers on chromosome 7 bracketing the disease locus.
Segregation analysis of microsatellite markers flanking
ACTB demonstrates the inheritance of maternal chro-
mosomes in the affected twins and an unaffected half
brother (fig. 3B).

Mutations in skeletal muscle a-actin at this same po-
sition, R183, with different amino acid substitutions,
cysteine or glycine, are associated with severe myopa-
thies.11 In addition, a double mutant—R183A-D184A,
which does not confer an obvious cytopathic phenotype
in yeast29—was shown to induce resistance to the actin
depolymerizing agent, latrunculin A, both in yeast30 and
in mammalian cells.31 The 547CrT substitution was not
detected in sequence analysis of exon 4 of ACTB in 117
DNA control samples from a population of the same
ethnicity. Similarly, the R183W substitution was not
found in searches of databases reporting known poly-
morphisms in ACTB (dbSNP). These results argue
against the possibility that the R183W substitution rep-
resents a genetic polymorphism.

Biochemical Studies

The R183W substitution predicts a gene product with
a more acidic isoelectric point than its wild-type coun-
terpart. To test this hypothesis, we investigated the ex-
pression of mutant versus wild-type protein in brain and
lymphoblast cell lysate samples, using two-dimensional
gel electrophoresis and immunoblot analysis. As illus-
trated in figure 4A, wild-type b- and g-actin migrate
according to predicted isoelectric points (pI) of 5.29 and
5.31, respectively (Expasy Proteomics Server), and a mo-
lecular size of 42 kDa. In cortical brain specimens from
both patients, a second, more acidic b-actin species with
a predicted pI of 5.21 was present at approximately
equal levels with wild-type. These findings are consistent
with the predicted R183W substitution. In contrast,
probing for g-actin revealed only the wild-type species.
Similarly, wild-type and mutant b-actin were detected in
the immunoblots from two-dimensional gels of lympho-
blastoid cell lysates from the second patient (fig. 4B) but
not in those from a control sample or the mother. It has
been demonstrated elsewhere that the expression levels



www.ajhg.org The American Journal of Human Genetics Volume 78 June 2006 951

Figure 2 Identification of the mutation in the gene coding for b-actin. A, Partial sequence of exon 4 of ACTB in a control, the patient,
and the patient’s mother. The sequences illustrated in the control and mother are no different than the sequence found in 117 ethnicity-matched
control samples of this region of the gene and in the two half-brothers. The patient shows a heterozygous CGG-to-TGG transition, which
predicts an R183W substitution. B, Sequence conservation of the b-actin sequence among different species. Alignment of amino acid sequences
in the region of the identified R183W substitution indicates the strict conservation of an arginine residue at position 183 in all species assessed,
from yeast to man.

Figure 3 Microsatellite analysis of proband family pedigree, to
determine monozygosity of probands with the use of random chro-
mosome microsatellite markers and markers for chromosome 7. The
legend is available in its entirety in the online version of The American
Journal of Human Genetics.

of actin pools are autoregulated, even in the presence
of mutant actin species.32,33 We therefore examined
whether our newly identified mutation would behave
similarly. Brain samples and cell lysates were subjected
to SDS-PAGE and immunoblot analysis probing for
b-, g-, and total actin, with the use of an antibody rec-
ognizing all isoform species. We observed no apparent
difference in the expression levels of these markers in
patient versus control samples (fig. 4C and 4D). Den-
sitometric measurements of band intensity did not show
any differences (data not shown). These findings sug-
gest that the R183W substitution does not alter b-actin
stability or induce compensatory changes in the ex-
pression of other actin isoforms.

Morphological Studies

The morphology of the lymphoblastoid cell lines was
examined using both brightfield microscopy, phalloidin

staining, and immunofluorescence of actin isoforms.
Control cells exhibited a rounded morphology and la-
mellapodia with microspikes, as well as some small fil-
opodia (fig. 5A), and the pattern of filamentous actin
was most concentrated in the cell cortex (fig. 5B). In
contrast, cells expressing the mutant b-actin exhibited
variations in cell shape, with long tapering processes
extending for distances greater than a cell diameter (fig.
5C and 5D). Immunofluorescence for b- and g-actin and
merged images (fig. 5E–5G for control cells and fig. 5H–
5J for patient cells) revealed the same differences in cell
morphology in the patient cells. In both wild-type and
mutant cells, the actin visualization was most intense at
the cell cortex, and the relative fluorescence intensities
were similar for b- and g-actin, exhibiting a strong co-
localization pattern.

Molecular Modeling and Interactions with Phalloidin
versus Latrunculin A

The structural effect of the R183W substitution was
examined by modeling the mutation in known actin
structures. Furthermore, we used previous mutational
analyses on the binding of actin-disrupting drugs, to test
predictions of the R183W model. A molecular model of
the b-actin monomer region containing residue 183,
based on the crystal structure from C. elegans34 (fig. 6A),
illustrates the arginine residue (183) positioned directly
across from the ATP-binding pocket. This residue can
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Figure 4 Two-dimensional and SDS-PAGE gel-immunoblot analyses of b- and g-actins in brain samples and cell lysates. A, Immunoblots
from two-dimensional gels probed for b- and g-actin in brain samples from an age-matched control and both patients. B, Immunoblots from
two-dimensional gels probed for b- and g-actin in lymphoblast cell lysates from an age-matched control, patient 2, and the patient’s mother.
C and D, Brain samples from both patients and cell lysate from the second patient, in which two species of b-actin are present in equal amounts,
consistent with heterozygosity. The theoretical pIs for wild-type and mutant b-actin (R183W) are 5.29 and 5.21 (Expasy). Only wild-type g-
actin with a theoretical pI of 5.31 was detected in brain and cell lysates from all individuals. Immunoblots are shown from SDS-PAGE analysis
of brain samples (C) and cell lysates (D) from controls, patients, and mother. The relative levels of b- versus g- and total actin did not show
any differences between controls, mother, and patients in the samples tested. All gel lanes were loaded with equal protein concentrations, and
a-tubulin was probed as a protein loading control.

potentially participate in a hydrogen-bonded network
with water molecules and Ser14/His73, which can form
a flexible gatelike structure facilitating ATP exchange
within the cleft.35 The R183W substitution (fig. 6B)

could theoretically disrupt the hydrogen bonds by in-
troducing the hydrophobic tryptophan side chain. Such
a change could potentially alter the ATP-binding pocket
without affecting the overall structure (fig. 7). We pre-
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Figure 5 Brightfield microscopy, phalloidin staining, and immunofluorescence for b- and g-actins in patient and control lymphoblastoid
cell lines. Brightfield phase-contrast images of control (A) and patient (C) lymphoblasts illustrate the rounded morphology with lamellapodia
and microspikes observed in control cells, in contrast to the extensive process formation observed in many of the patient cells. Epifluorescence
images of Alexa Fluor 488 phalloidin staining in the same cells from control and patient illustrate actin-rich microspikes in the control cells
(B) and actin filaments in long filopodial processes in the patient cells (D). Immunofluorescence confocal images of control cells stained for b-
actin (E, green) and g-actin (F, red). Both actin species are enriched in cortical regions and within microspikes and short filopodia (G, merged
images). Immunofluorescence confocal images of a patient cell stained for b-actin (H, green) and g-actin (I, red). Both actin species are enriched
in cortical regions and within long filopodial processes (J, merged images). All cells were viewed with a 100# oil objective.

dicted from the model that the binding of drugs whose
recognition sites lie away from this region should remain
unaffected. Phalloidin binds to a site on subdomain III
and stabilizes actin filaments. The phalloidin-binding do-
main is removed from the ATP pocket (fig. 7). To test
our prediction, we performed quantitative flow-cyto-
metry analysis to determine the binding of Alexa-labeled
phalloidin to fixed control and patient lymphoblasts and
found no differences (fig. 6C and 6D).

In contrast to normal phalloidin binding, the R183W
substitution modified the response of cells to actin mono-
mer–sequestering drug latrunculin A, which binds close
to the ATP-pocket36,37 (fig. 7). Microscopic analysis of
lymphoblasts treated with latrunculin A revealed that
drug conditions leading to the depolymerization of the
actin cytoskeleton in control lymphoblasts were less ef-
fective in cells carrying the R183W substitution (fig. 8).
To assess this apparent resistance quantitatively, we
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Figure 6 Molecular models of wild-type versus mutant actin and of phalloidin binding. A, Structure of globular actin monomer based
on the crystal structure of actin from C. elegans (ACT1/3),34 viewed using Deepview/Swiss PDB viewer (PDB accession number 1D4X). The
ATP pocket region is magnified, and arginine 183 (light blue) lies directly across from the ATP-binding pocket. (see fig. 7 for an illustration of
the entire monomer). B, R183W substitution disrupting the hydrogen-bonding network across the ATP-binding pocket of C. elegans actin. In
addition, the tryptophan residue leads to a significant loss in flexibility of the residue. The most favorable rotamer predicted by the software
is shown. C, Representative results of flow-cytometry measurements of phalloidin binding. Lymphoblast cell lines (control and patient) were
fixed in PFA, were stained with phalloidin for 30 min at 37�C, and were analyzed by flow cytometry. No differences in actin filaments stained
with phalloidin were observed between control and patient cells. NS p Fluorescence-background control samples where phalloidin was omitted.
D, Analysis of the mean � SD phalloidin binding for control (1,385 � 138) and patient (1,349 � 191) cell lines. and in threeP p .8 n p 10t

independent experiments.

treated the cells in suspension and measured the loss of
phalloidin-stained filamentous actin, using flow cyto-
metry. Consistent with the microscopy results, the mu-
tant lymphoblasts were resistant to latrunculin A over

a wide range of drug concentrations (fig. 9A and 9B).
In contrast, when the drug was washed out, actin re-
polymerized to the same baseline levels in both control
and mutant cells, irrespective of the extent of the la-
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Figure 7 Structure of globular actin monomer. The legend is
available in its entirety in the online version of The American Journal
of Human Genetics.

Figure 8 Effects of latrunculin A on attached mutant and control lymphoblasts. Control and patient lymphoblastoid cells were grown
on coverslips in serum-deprived media and were treated with 250 ng/ml latrunculin A for 3 h. Treatment of control cells resulted in complete
loss of filamentous actin visualized with Alexa Fluor 488 phalloidin staining. In contrast, filamentous actin is still present on patient cells after
drug treatment.

trunculin-induced actin depolymerization (fig. 9C and
9D).

Resistance to Latrunculin A in Transfected 3T3 cells

Although the results of latrunculin A experiments per-
formed using patient lymphoblastoid cells suggest that
the R183W mutation was responsible for the resistance
observed, it is also possible that nonspecific effects of
the immortalization procedure may also have been re-
sponsible for the phenotype observed. In addition, it is
possible that the affected twins harbor additional genetic
abnormalities contributing to the phenotype, which has
been documented in some cases of myoclonus-dys-
tonia.38 To test whether latrunculin A resistance in our
patient lymphoblasts is a direct effect of the mutant b-
actin expression, we prepared GFP-tagged constructs of

wild-type and R183W b-actin and expressed them in
NIH 3T3 cells. Latrunculin A sensitivity was then eval-
uated qualitatively on living cell cultures and quantita-
tively on methanol-fixed coverslip cultures. As illustrated
in figure 10A, cells transfected with either the wild-type
or R183W construct did not show any distinct differ-
ences in the morphology of their respective b-actin stress-
fiber networks. However, after incubation in the pres-
ence of 250 ng/ml concentrations of latrunculin A, cells
transfected with the wild-type constructs demonstrated
stress-fiber loss by 15 min, whereas R183W-transfected
cells were less altered. By 30 min, substantial stress-fiber
loss was observed in the R183W-transfected cells, but
the response was still less striking than that in cells trans-
fected with the constructs (data not shown). At a higher
latrunculin A dose, 500 ng/ml, cells expressing the mu-
tant construct exhibited a faster loss of stress fibers but
could still be distinguished from the wild-type cells (data
not shown).

Latrunculin A resistance was examined quantitatively
using coverslip cultures from either wild-type– or R183W-
transfected 3T3 cells, which were treated for varying
times with 250 ng/ml latrunculin A. As shown in figure
10B, cells transfected with the mutant construct exhib-
ited resistance to the depolymerizing actions of the drug
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Figure 9 Quantitation of latrunculin A resistance in patient cells using flow cytometry. A and B, Both control and patient cells show
similar actin filament content in nontreated cells. Latrunculin A treatment (80 ng/ml) induces a rapid actin depolymerization in control compared
with patient cells. Actin filament content was reduced to 17% � 1.8% and 50% � 4.9% (average � SD, ) in control and patient,n p 8
respectively. NS p Fluorescence-background control samples where phalloidin was omitted. B, Resistance of actin filaments in patient cells to
depolymerization also observed by using increasing concentrations of latrunculin A. C and D, Recovery from latrunculin A. Cells were treated
with 80 ng/ml of latrunculin A for 15 min, were washed, and were incubated with RPMI plus 10% fetal bovine serum for 5 min at 37�C (C).
Cells were treated with 250 ng/ml latrunculin A for 30 min, were washed, and were incubated with RPMI plus 5% fetal bovine serum (D).
Under both conditions, actin filament content recovered to 100% in both control and patient cells.

at 10 min ( ), at 15 min ( ), and at 20P p .02 P ! .0001t t

min ( ). These results demonstrate that the mu-P p .04t

tant actin species is responsible for the cellular
phenotype.

Discussion

The results of the present studies indicate that a mutation
in one of the major forms of nonmuscle actin, b-actin
(R183W), is associated with a complicated disease phe-
notype that includes developmental malformations, sen-
sory hearing loss, and a delayed-onset dystonia. To date,
reports of diseases resulting from alterations of non-
muscle actins have been extremely uncommon. For b-
actin, there is one report in the literature of a child with
recurrent infections who exhibited a mutation at posi-

tion 364 resulting from a substitution of glutamic acid
to a lysine residue and causing defects in leukocyte func-
tion.16 In contrast to the location of the mutation that
we are reporting, the latter mutation was reported to
reside in an actin subregion that is important for profilin
binding, which facilitates nucleotide exchange within the
actin monomer.39

In the present study, the R183W substitution replaces
a flexible arginine residue with a more rigid hydrophobic
tryptophan. Both database searches and testing of our
own control samples failed to reveal this substitution as
a polymorphism. In addition, the arginine residue at po-
sition 183 is highly conserved throughout species (fig.
2B). This point is further supported by observations
demonstrating that mutations at the same position 183
with different amino acid substitutions, such as cysteine



Figure 10 Latrunculin A resistance in NIH 3T3 cells expressing a GFP-tagged construct of R183W actin, compared with cells expressing
a wild-type construct. A, Real-time confocal images of GFP-fluorescing wild-type (WT) and mutant (Mut) transfected cells before and 15 min
after addition of latrunculin A (Lat) to a final concentration of 250 ng/ml. Note the loss of the stress-fiber network in the WT cells (top left
vs. top right panels), in contrast to lack of significant change of stress fibers in the Mut cells (bottom left vs. bottom right panels). The images
are representative of two separate experiments and a total of seven chamber cultures of WT cells and eight chamber cultures of Mut cells. The
images were scanned under a 40# oil objective. B, Quantitation of stress-fiber depolymerization in Mut versus WT coverslip cultures after
incubation in the presence of 250 ng/ml latrunculin A for 10, 15, and 20 min. At each type point, the coverslips were rapidly rinsed and were
fixed with methanol at 20�C. Confocal image series were captured from five random fields from each coverslip using a 40# oil objective and
Zeiss LSM software. LSM series were converted to TIFF files, and individual cells were analyzed for the percentage of cell area containing
fluorescence with the use of Metamorph software. Image analysis for each series was performed on optical sections containing optimal visu-
alization of the stress-fiber network. The results are from a single experiment performed using duplicate coverslips (a total of 10 fields) for each
time point. ND indicates control coverslips without drug treatment. The numbers above the columns represent the cell number analyzed. Pt

are .02 at 10 min, !.0001 at 15 min, and .04 at 20 min.
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or glycine, have been documented in ACTA1, all of
which result in severe myopathies.11 These mutations
exert a dominant-negative effect, which supports the
concept of a “poison” protein rather than a decrease of
normal actin function.40 More than 60 mutations of
ACTA1 have been identified to date and are associated
with three categories of muscle disease: (1) actin my-
opathy, (2) nemaline myopathy, and (3) intranuclear rod
myopathy.11,13,40,41 The characterization of these muta-
tions in ACTA1, coupled with structural and functional
studies of a-actin, has provided insights into genotypic-
phenotypic distinctions and correlations between these
different hereditary myopathies.42

The results of the present studies indicate that the
R183W substitution affects actin dynamics in the patient
lymphoblast cells and in a cell line expressing the mutant
actin, and they suggest potential mechanisms by which
the mutant actin form may alter the actin cytoskeletal
architecture and function. First, the mutation may affect
the integrity and function of the ATP-binding pocket or
regions close to the pocket that are known to bind la-
trunculin A. Alternatively, the R183W substitution may
confer greater rigidity to the filamentous molecule with
lowered depolymerization dynamics. This hypothesis
would explain the presence of cofilin-decorated actin
inclusions in the brains of both patients.20 Cofilin facil-
itates depolymerization by binding preferentially to ade-
nosine diphosphate–rich actin filaments.43 In vivo, the
generation of small actin oligomers increases actin nu-
cleation.44 If the mutant filaments are resistant to normal
physiologic depolymerization signals or to drugs that
lower the effective concentration of ATP monomer, as
with latrunculin A, then the accumulation of filamentous
inclusions would be expected. Since depolymerization is
the rate-limiting step in actin turnover and is critical for
many biological functions, it is reasonable to hypoth-
esize that the cellular abnormalities arising from the
present mutation are linked to this defect.

The prevalence of MZ twins affected with nemaline
myopathy has been reported to be higher than expected,
and it has been suggested that the presence of ACTA1
mutations might alter actin dynamics during early
phases of embryogenesis.45 In addition, our patients’
phenotypes shared some clinical similarities with OS de-
fined by midline abnormalities such as cleft lip and pal-
ate, hypertelorism, and esophageal motility abnormali-
ties. Mutations in MID1, a member of the B-box protein
family encoding the protein midin, have been identified
in the X-linked form of OS, and these mutations have
been proposed to result in altered microtubule dynam-
ics.46 Interestingly, MZ twinning is unusually frequent
in these families and may be a consequence of analogous
developmental errors.45 Segregation analysis of micro-
satellite markers flanking the ACTB gene on chromo-
some 7 of our cohort demonstrates the inheritance of

the same maternal alleles in the probands, which differs
from one of the half-brothers (fig. 3B). On the basis of
studies of ACTA1 mutations, a large number of cases
are sporadic, arising as de novo dominant missense mu-
tations.11 A small number are either compound hetero-
zygous or recessive, and two families have been shown
to have somatic mosaicism for the mutation in one of
the parents.42 Unfortunately, we were not able to ex-
amine the father of our probands to rule out this
possibility.

In summary, we have identified a mutation in b-actin
that is associated with several disease phenotypes, in-
cluding a syndrome of ventral midline defects resembling
OS,47 sensory hearing loss, and delayed-onset general-
ized dystonia. The implications of these findings suggest
that genetic variants of nonmuscle actins may play a
wider role in human disease, analogous to the spectrum
of myopathic diseases that have been associated with
mutations in the muscle actin isoforms.41 In addition,
actin effects are probably mutation specific and reflect
the presence of different functional domains of the
monomer and filament. In fact, although numerous de-
velopmental malformation syndromes and hereditode-
generative diseases related to dystonia have been
mapped to specific chromosomal loci and genes, the vast
majority of these entities remain poorly understood.17,48

Given the important actions of b-actin in all cells, it is
not surprising to connect abnormalities of actin dynam-
ics with developmental as well as neurological disorders.
In fact, proteins that are known to function in concert
with actin have been implicated in hereditary disorders
and malformation syndromes, such as dynamin in Char-
cot-Marie-Tooth disease,49 filamin in otopalatodigital
syndromes,50 as well as other conditions.5 With respect
to neural-tube closure defects, it has recently been sug-
gested that actin abnormalities should be considered as
important candidates for uncovering new pathogenic
mechanisms.51 Ongoing studies are aimed at analyzing
the functional consequences of the b-actin mutation we
have identified, as well as others, which should help us
to understand the complex clinical phenotype of our
patients.
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