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SUMMARY

Although mixed lineage kinase domain-like (MLKL)
protein has emerged as a specific and crucial protein
for necroptosis induction, how MLKL transduces
the death signal remains poorly understood. Here,
we demonstrate that the full four-helical bundle
domain (4HBD) in the N-terminal region of MLKL is
required and sufficient to induce its oligomerization
and trigger cell death. Moreover, we found that a
patch of positively charged amino acids on the sur-
face of the 4HBD binds to phosphatidylinositol phos-
phates (PIPs) and allows recruitment of MLKL to
the plasma membrane. Importantly, we found that
recombinant MLKL, but not a mutant lacking these
positive charges, induces leakage of PIP-containing
liposomes as potently as BAX, supporting a model
in which MLKL induces necroptosis by directly per-
meabilizing the plasma membrane. Accordingly, we
found that inhibiting the formation of PI(5)P and
PI(4,5)P2 specifically inhibits tumor necrosis factor
(TNF)-mediated necroptosis but not apoptosis.

INTRODUCTION

Necroptosis is a caspase-independent form of cell death that

contributes to the pathogenesis of several human diseases,

including ischemia-reperfusion injury, sepsis, and viral infection

(Duprez et al., 2011; Linkermann et al., 2013; Mocarski et al.,

2012). Understanding the molecular mechanisms regulating

necroptosis is therefore an important priority that may lead to

the development of new therapies for the treatment of these dis-

eases. Signal transduction during necroptosis has so far been

mostly studied in the context of tumor necrosis factor (TNF). In

most cells, TNF receptor 1 engagement promotes cell survival
by assembly of a plasma membrane-associated complex,

known as complex I, which activates the canonical nuclear factor

k B cell (NF-kB) pathway and drives expression of prosurvival

molecules. Inhibition of the NF-kB response consequently

switches the prosurvival signal to a caspase-8-dependent

apoptotic trigger (Vanden Berghe et al., 2014). Under specific

conditions, such as cIAP1/cIAP2 depletion or transforming

growth factor b-activated kinase-1 (TAK1) kinase inhibition,

apoptosis induction was shown to rely on receptor-interacting

serine/threonine-protein kinase 1 (RIPK1) kinase activity (Biton

and Ashkenazi, 2011; Dondelinger et al., 2013; Wang et al.,

2008). When caspase-8 activation is compromised, apoptosis

is inhibited, and the enzymatic activity of RIPK1 alternatively reg-

ulates the formation of the necrosome, a necroptosis-inducing

complex consisting of RIPK1, RIPK3 (Cho et al., 2009; He

et al., 2009; Zhang et al., 2009), and mixed lineage kinase

domain-like (MLKL) protein (Sun et al., 2012; Zhao et al., 2012).

Within this complex, RIPK1 and RIPK3 bind to each other by

homotypic RIP homotypic interaction motif-domain interactions,

allowing them to form amyloid-like fibrillar structures (Li et al.,

2012). MLKL is recruited to the necrosome via interaction of

its kinase-like domain (KLD) with the kinase domain of RIPK3

(Sun et al., 2012; Xie et al., 2013), which subsequently leads

to MLKL activation by RIPK3-mediated phosphorylation (Sun

et al., 2012; Murphy et al., 2013).

Activated MLKL was suggested to further transduce the

necroptotic signal by binding and activating phosphoglycerate

mutase 5 (PGAM5), a signal for dynamin-related protein 1

(DRP1)-mediated mitochondrial fragmentation and subsequent

necroptosis induction (Wang et al., 2012). However, recent

studies have challenged the importance of PGAM5 and

DRP1 in necroptosis induction (Murphy et al., 2013; Remijsen

et al., 2014; Tait et al., 2013). In line with this, mitochondria-

depleted cells were shown to maintain their ability to die

by necroptosis (Tait et al., 2013), therefore questioning the

importance of the mitochondrial axis in the induction of this

cell death modality.
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In this study, we demonstrate that MLKL translocates to the

plasma membrane upon induction of necroptosis, where it inter-

acts with phosphatidylinositol phosphates (PIPs) via a patch of

positively charged amino acids at the surface of a four-helical

bundle domain (4HBD) located in its N-terminal region. Impor-

tantly, we found that this domain is sufficient to induce leakage

of PIP-containing liposomes. From these findings, a model can

be inferred: MLKL mediates cell death by permeabilizing PIP-

containing membranes.

RESULTS

The Full 4HBD of MLKL Is Required and Sufficient for
Necroptosis Induction
Contrary to RIPK1 and RIPK3, MLKL has been reported

to specifically transduce TNF-mediated necroptosis, and not

apoptosis (Biton and Ashkenazi, 2011; Dondelinger et al., 2013;

Murphy et al., 2013; Wang et al., 2008; Wu et al., 2013). In addi-

tion,MLKLwas shown toact downstreamofRIPK1/RIPK3during

necroptosis induction (Chen et al., 2014;Murphy et al., 2013; Sun

et al., 2012). In order to specifically study the molecular events

occurring at the level or downstreamofMLKLduring necroptosis,

we decided to ectopically express MLKL in human embryonic

kidney 293T (HEK293T) cells. As previously reported by Zhao

et al. (2012), MLKL expression was highly toxic and, contrary

toRIPK1orRIPK3, not associatedwith caspase-3 activation (Fig-

ures 1A and 1B). MLKL-induced cell death was characterized by

hallmarks of necroptosis, such as cell swelling and the appear-

ance of a translucent cytoplasm before plasma membrane

rupture andpropidium iodidepositivity (FigureS1A). Accordingly,

the pan-caspase inhibitor zVAD-fmk did not protect cells from

death induced by MLKL overexpression (Figure S1B). To investi-

gate the role of endogenous RIPK1 and RIPK3 in our system,

we tested the effect of inhibiting their kinase activities by using

the RIPK1 kinase inhibitor necrostatin-1 (Nec-1) and the RIPK3

inhibitor (R3i) GSK’840 (Figure S4). Neither Nec-1 nor R3i pro-

tected the cells from MLKL-induced necroptosis, whereas they

potently inhibited TNF/TAK1i/zVAD-fmk-induced necroptosis

in HT-29 cells (Figures S1C and S1D). Together, these results

confirmed the establishment of a model system to specifically

study the molecular events occurring at the level or downstream

of MLKL during necroptosis.

MLKL consists of an N-terminal 4HBD fused by a brace region

(BR) to a C-terminal inactive KLD (Murphy et al., 2013). To iden-

tify the region of MLKL that mediates cytotoxicity in our system,

we individually expressed the 4HBD–BR (amino acids 1–180)

and KLD (amino acids 181–471) and found that the 4HBD–BR
Figure 1. The Full 4HBD of MLKL Is Required and Sufficient for Necrop

HEK293T cells were left untreated, treatedwith the jetPEI transfection reagent alon

vectors encoding the indicated proteins. After 24 hr, cell death was quantified b

analyzed by immunoblotting (B, D, G, and I). Cell death data are presented as me

R3, pLenti6-strep-hRIPK3-FLAG; ML, pLenti6-strep-hMLKL-FLAG.

(E) HEK293T cells were transfected with 50 ng of the indicated pLenti6-strep-h

confocal microscopy. Scale bars, 15 mM.

(J–M) HEK293T cells were transfected with 1 mg of empty vector or the indicated p

buffer with 50 mM dithiothreitol (DTT) (reducing) or without (nonreducing). Cell ly

See also Figure S1.
was sufficient to induce necroptosis (Figures 1C and 1D). We

fused full-length MLKL, N-terminal 4HBD–BR, and C-terminal

KLD to GFP and analyzed the subcellular localization of the

different fusion proteins by confocal microscopy. We observed

that both full-length MLKL and the 4HBD–BR mutant were

recruited to the plasma membrane, whereas the KLD mutant

remained cytoplasmic (Figure 1E), indicating that recruitment

to the plasma membrane correlates with the killing potential of

MLKL.

In silico analysis combined with homology studies based on

the recently solved crystal structure of mouse MLKL (Murphy

et al., 2013) allowed us to predict the structure of human MLKL

and to delineate the four a helixes contained within its N-terminal

4HBD (amino acids 1–125) and the two in its BRs (amino acids

125–181) (Figure S1E). To investigate the contribution of the

different a helixes in necroptotic cell death, we generated C-ter-

minal (Figures 1F and 1G) and N-terminal (Figures 1H and 1I)

deletion fragments of the 4HBD–BR and found that the four

a helixes of 4HBD (1–125) were required and sufficient to induce

necroptotic cell death (Figure 1F). Intriguingly, a truncation

mutant with a partial BR (1–167) was unable to induce necrop-

tosis, suggesting that the complete BR stabilizes the killing

potential of MLKL. Of note, we found that only the necrop-

tosis-inducing constructs (full-length MLKL, 4HBD–BR, 1–210

MLKL, 1–180 MLKL, and 1–125 MLKL) formed high molecular

weight (HMW) oligomers upon expression, as observed by enor-

mous upshifts in nonreducing SDS-PAGE (Figures 1J–1M and

S1F). These results indicated a clear correlation between forma-

tion of HMW oligomers on nonreducing PAGE and necroptosis

induction.

Positive Charges in the Four-Helical Bundle ofMLKLAre
Required for Recruitment of MLKL to the Plasma
Membrane, Its Oligomerization, and the Induction of
Necroptosis
Given the correlation between necroptosis induction and plasma

membrane recruitment, we investigated whether MLKL directly

binds to plasma membrane components to mediate its cyto-

toxicity. Protein-membrane interactions can be mediated by

a broad spectrum of protein domains, including C1, C2, PH,

FYVE, PX, ENTH, ANTH, BAR, and FERM domains (Cho and

Stahelin, 2005). A universal theme is that protein-membrane

interaction is regulated by electrostatic interactions between

the negatively charged phospholipids of the plasma membrane

and the positively charged amino acids in a domain of the mem-

brane-binding protein. Because the 4HBD is sufficient to induce

necroptosis after ectopic expression, we investigated whether it
tosis Induction

e, or transfected with 1 mg of an empty vector or with pLenti6-strep-CDS-FLAG

y SYTOX Green staining (A, C, F, and H), and protein expression levels were

an ± SEM of three independent experiments. R1, pLenti6-strep-hRIPK1-FLAG;

MLKL-EGFP mutants, and GFP fluorescence was analyzed the next day by

Lenti6-strep-hMLKL-FLAGmutants. After 24 hr, cells were lysed in 13 Laemmli

sates were analyzed by immunoblotting as indicated.
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contains a patch rich in positively charged amino acids. Interest-

ingly, the region between amino acids 22 and 35 contains nine

positively charged amino acids, and some of those are evolu-

tionarily conserved between species (Figure 2A). To test whether

these residues are involved in plasma membrane recruitment,

we mutated all of them to the neutral amino acid alanine

(9posA) or to the negatively charged glutamate residue

(9posE). The side chains of these positively charged amino

acids are solvent accessible at the surface of MLKL and do

not contribute to intramolecular interactions. Therefore, we

assumed that inverting the charge of these amino acids would

not interfere with the overall protein structure. Additionally, a

secondary structure prediction analysis revealed that these mu-

tations would not alter the secondary structure of MLKL (data not

shown). When ectopically expressed in cells, these mutants

could no longer induce necroptosis, though theywere expressed

at much higher levels than the wild-type lethal counterparts

(Figures 2B, 2C, and S2A). Using GFP-fusion constructs, we

observed that these two mutants were not recruited to the

plasma membrane anymore but instead were mainly found in

the cytoplasm (Figures 2D and S2B).

Interestingly, we found that both the MLKL 9posA and 9posE

mutants did not oligomerize anymore, suggesting that recruit-

ment to the plasma membrane is necessary for oligomerization

of MLKL (Figures 2E and 2F). To further validate the need of

plasma membrane recruitment for MLKL’s cytotoxicity, we per-

formed a competition experiment with a positively charged

probe modeled on the C-terminal part of K-Ras fused to GFP

(posKRas), which has been shown to be recruited to the plasma

membrane by electrostatic interactions (Yeung et al., 2006).

Remarkably, we observed that posKRas cotransfection inhibited

MLKL-induced cell death (Figures 2F–2H). In summary, these

results indicate that highly conserved positive charges within

the first two a helixes of the 4HBD of MLKL are required for

recruitment of MLKL to the plasma membrane, for MLKL oligo-

merization, and for induction of necroptosis.

MLKL Interacts with PIPs by Positive Charges in Its
N-Terminal Four-Helical Bundle
The functions of plasma membrane-associated proteins are

often regulated by interaction with specific phospholipids in the

plasma membrane. Therefore, we investigated whether MLKL

binds to specific phospholipids. We produced a recombinant

glutathione S-transferase (GST)-fused N-terminal fragment of

MLKL (4HBD–BR), cleaved off the GST tag, and incubated the

protein on a lipid array. We found that the N-terminal MLKL

directly interacted with PIPs, but not with nonphosphorylated PI

or other phospholipids (Figure 3A, upper panel). We next incu-

bated the recombinant N-terminal MLKL with a specific PIP lipid

array and found thatMLKL could bind tomost PIP species in vitro

(Figure 3A, lower panel), whereas the recombinant MLKL 9posE

mutant was unable to bind to PIPs on these arrays, further

demonstrating that the interaction between MLKL and PIPs is

mediated by the positively charged patch identified on the sur-

face of MLKL (Figure 3A). Pleckstrin homology (PH) domains

are protein domains of about 120 amino acids known to bind to

PIP-containing lipids. Interestingly, different PH domains have

different specificities for distinct PIPs. For example, the PH
4 Cell Reports 7, 1–11, May 22, 2014 ª2014 The Authors
domain of phospholipase C d (PLCd) mainly binds to phosphati-

dylinositol (4,5)-diphosphate (PI(4,5)P2) (Figure S3A; PI(4,5)P2

GRIP), whereas the PH domain of Bruton’s tyrosine kinase

(BTK) has a specificity toward phosphatidylinositol (3,4,5)-

triphosphate (PI(3,4,5)P3) (Garcia et al., 1995; Rameh et al.,

1997; Salim et al., 1996). To investigate whether binding of

MLKL to PIPs is required for the induction of cell death, we per-

formed a competition experiment by cotransfecting increasing

amounts of PH-PLCd and PH-BTK. Remarkably, we found that

expressionof eitherPHdomainprotectedagainstMLKL-induced

necroptosis (Figures 3B–3E). Of note, their coexpression greatly

increased their inhibitory potential. These results indicate that

MLKL binds PIPs via the positive charges of its 4HBD and has

a broader affinity for PIPs than the PH domains of BTK and

PLCd taken separately. Taken together, these results indicate

that binding of MLKL to PIPs is crucial for necroptosis execution.

The Interaction between MLKL and PIPs Permeabilizes
Liposomes
Our in silico analysis revealed that the 4HBD of MLKL has

structural similarities with a-pore-forming toxins (data not

shown). These bacterial toxins consist of helical bundle domains

that can oligomerize into cytolytic pores in the plasma mem-

brane (Parker and Feil, 2005). Because MLKL oligomerization

and translocation to the plasma membrane are required for its

killing potential, we investigated whether MLKL itself has pore-

forming capacities. To do so, we incubated the recombinant

N-terminal domain of MLKL (4HBD–BR), which is sufficient for

necroptosis induction in cells (Figure 1F), with phosphatidycho-

line (PC) liposomes containing 5% PI, phosphatidylinositol (5)-

phosphate (PI(5)P), PI(4,5)P2, or PI(3,4,5)P3. We observed that

this MLKL easily released carboxyfluorescein (CF) from lipo-

somes containing PI(5)P, PI(4,5)P2, or PI(3,4,5)P3, but not from

PI-containing liposomes (Figures 4A–4D). When we compared

the activity of N-terminal MLKL to the activity of the known

pore-former BCL2-associated X protein (BAX), we found that

this MLKL was as potent as BAX in permeabilizing liposomes

(Figures 4A–4D). These results indicate that MLKL, and more

precisely its 4HBD, has intrinsic capacities to permeabilize

membranes. Interestingly, BAX was also able to induce lysis of

PI-containing liposomes, whereas MLKL clearly was not, high-

lighting the clear dependency of MLKL for PIPs in permeabilizing

liposomes. This is consistent with the results obtained with the

lipid arrays, which showed that recombinant MLKL bound to

PIP, PI(4,5)P2, and PI(3,4,5)P3, but not to PI. Importantly, the

MLKL 9posE mutant was unable to permeabilize the PIP-con-

taining liposomes (Figures 4A–4D), demonstrating the crucial

role of the positive patch in the recruitment and function of

MLKL at the membrane. Collectively, these results demonstrate

that MLKL can potently and specifically rupture PIP-containing

liposomes, and suggest that MLKL permeabilizes the plasma

membrane by binding to PIPs.

Interfering with the Formation of PI(5)P or PI(4,5)P2

Inhibits TNF-Induced Necroptosis but Not TNF-Induced
Apoptosis
To validate our findings on the importance of theMLKL-PIP inter-

action for the execution of necroptosis in a physiological context,



Figure 2. Positive Charges in the Four-

Helical Bundle of MLKL Are Required for

Recruitment of MLKL to the Plasma Mem-

brane, Its Oligomerization, and the Induc-

tion of Necroptosis

(A) MLKL (green) contains a patch of positively

charged amino acids (red) in the 4HBD. Some of

the positively charged amino acids are conserved

among species (underlined).

(B and C) HEK293T cells were transfected with

1 mg of empty vector or the indicated pLenti6-

strep-hMLKL-FLAG mutants. After 24 hr, cell

death was quantified by SYTOXGreen staining (B),

and protein expression levels were analyzed by

immunoblotting (C).

(D) HEK293T cells were transfected with 50 ng

of pLenti6-strep-hMLKL-EGFP mutants, and

GFP fluorescence was analyzed the next day by

confocal microscopy. Scale bars, 15 mM.

(E and F) HEK293T cells were transfectedwith 1 mg

of empty vector or the indicated pLenti6-strep-

hMLKL-FLAG mutants. After 24 hr, cells were

lysed in 13 Laemmli buffer with 50 mM DTT

(reducing) or without (nonreducing). Cell lysates

were analyzed by immunoblotting, as indicated.

(G and H) HEK293T cells were transfected with

333 ng of empty vector or pLenti6-strep-hMLKL-

FLAG in the presence of increasing concentrations

of the posKRas plasmid. After 24 hr, cell death was

quantified by SYTOX Green staining (G), and pro-

tein expression levels were analyzed by immuno-

blotting (H). Cell death data are presented as

mean ± SEM of three independent experiments.

See also Figure S2.
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we tested the effect of several inhibitors of proteins involved in

the formation of PIPs on TNF-induced necroptosis. We found

that the inhibitor of PIKfyve (P5i), the enzyme responsible for

the production of most intracellular PI(5)P, efficiently inhibited

TNF-induced necroptosis in both the mouse L929sAhFas cell

line (Figures 5A and 5B) and the human FADD�/� Jurkat cell

line (Figures 5C and 5D). The inhibitor of phosphatase and tensin

homolog (PTEN) (SF1670), which dephosphorylates PI(3,4,5)P3

to PI(4,5)P2, also reduced cell death induced by TNF, as did

the PI(3,4,5)P3 antagonist PITenin-7 (PIT-7). Interestingly, the

combination of the PTEN and PIKfyve inhibitors blocked TNF-

induced necroptosis even more potently in both cell lines (Fig-

ures 5A–5D). In contrast, the PI 3-kinase inhibitor 3MA did not

affect TNF-induced necroptosis. We previously demonstrated

that TNF-induced necroptosis in L929sA can be switched to a

rapid induction of apoptosis by the knockdown of RIPK1 (Van-

langenakker et al., 2011). We generated a stable L929sAhFas

cell line expressing either a nontargeting microRNA (miRNA) or

a RIPK1 miRNA. When testing the PTEN and PIKfyve inhibitors

separately or in combination on both transduced cell lines,

we found that they inhibited TNF-induced necroptosis, but not

TNF-induced apoptosis (Figures 5E and 5F). These results

demonstrate a crucial and specific role of PIPs in TNF-mediated

necroptosis, which supports our model of MLKL acting as a

pore-forming molecule in PIP-containing membranes. The fact

that simultaneous interference with the production of both PI(5)

P and PI(4,5)P2 efficiently and specifically inhibited TNF-induced

necroptosis suggests that in these cell lines, MLKL is preferen-

tially recruited to these PIPs.

DISCUSSION

It is becoming clear that necroptosis plays an important role in

health and disease (Vanden Berghe et al., 2014; Vanlangenakker

et al., 2008). Although necroptosis has a beneficial role in host

defense against viral infections by clearing virus-infected cells

and by activating the immune system through the release of dam-

age-associated molecular patterns, it can also be detrimental

and contribute to different pathologies when activated by death

receptors in other contexts (Kaczmarek et al., 2013; Mocarski

et al., 2012). Although our understanding of the upstream events

leading to necrosome formation and RIPK3/MLKL activation has

greatly increased lately, the downstream molecular mechanisms

of necroptosis execution are still poorly understood. Several po-

tential downstreamevents havebeen associatedwith necroptotic

cell death, including integrity of mitochondria and lysosomes,

Ca2+ signaling, and reactive oxygen species generation (Vanden

Berghe et al., 2014). However, none of them was consistently
Figure 3. MLKL Interacts with PIPs by Positive Charges in Its N-Termi

(A) Recombinant GST-hMLKL 1–210 or GST-hMLKL 1–210 9posE was incubate

vidually with a general lipid strip (upper panel) or a PIP strip (lower panel). Bindin

system. The ‘‘Blank’’ is spotted with xylene cyanol, and this interfered with detec

(B–E) HEK293T cells were transfected with 333 ng of the empty vector or the pLen

either PH-BTK or PH-PLCd plasmid. Whenever combined, these latter plasmids w

staining (B and D), and protein expression levels were analyzed by immunoblotting

experiments.

See also Figure S3.
associated with necroptosis in every cell type. This led to the

hypothesis that several cell death subroutines might contribute

to pulling the final trigger during necroptosis.

MLKL and the necrosome have been observed in various sub-

cellular compartments, suchas thecytosol (Sunetal., 2012),mito-

chondrial fraction (Wang et al., 2012), mitochondrial-associated

membrane fraction (Chen et al., 2013), and very recently also

the plasma membrane (Cai et al., 2014; Chen et al., 2014; Wang

et al., 2014). In line with the latter reports, we observed plasma

membrane localization, and our study additionally provides amo-

lecular mechanism explaining the recruitment of MLKL to the

plasma membrane. Indeed, we identified a positively charged

patch in the 4HBD of MLKL that is required for PIPs binding and

plasmamembrane recruitment.We also report that plasmamem-

brane localization is associatedwith the ability ofMLKL to kill, and

demonstrate that interfering with plasma membrane recruitment

or PIP binding, respectively, by competitive assays using KRas

or PH domain expression, blocked MLKL cytotoxicity.

Our in vitro liposome experiments revealed that MLKL specif-

ically induces leakage of PIP-containing liposomes, raising the

possibility that upon binding to PIPs at the plasma membrane,

MLKL assembles into a pore that would facilitate the osmosis-

mediated rupture of the membrane. Remarkably, we demon-

strate that inhibiting formation of certain PIP species protects

human and mouse cells from TNF-mediated necroptosis, but

not apoptosis, a cell death modality that does not affect the

plasma membrane integrity. Using nonreducing SDS-PAGE,

we demonstrate that only the necroptosis-inducing constructs

were associated with the occurrence of HMW forms of MLKL,

whereas all other noncytotoxicMLKL deletionmutants displayed

mobility at the predicted molecular weights. The observation of

HMW forms of MLKL does not exclude the existence of the pre-

viously described trimers, tetramers, or hexamers (Cai et al.,

2014; Chen et al., 2014; Wang et al., 2014), which may represent

an earlier phase in the HMW complex formation process. It is

indeed conceivable that MLKL pore formation works similarly

to the BH3-in groove Bcl-2 antagonist/killer and BAX homo-

dimers, which upon activation, expose a hydrophobic surface

that initiates HMW pore-forming structures (Czabotar et al.,

2014). Moreover, the formation of these HMW complexes is

only observed when the full PIP-binding 4HBD is present. At

this stage, we can only speculate on the pore size and on

whether this is an ion-permeable or water-permeable pore, or

even an active channel. Interestingly, two recent publications

have functionally connected MLKL to two different ion channel

mechanisms. In the first study, the authors report a role of

MLKL in regulating extracellular calcium influx from the transient

receptor potential melastatin-related 7 (Cai et al., 2014). In the
nal Four-Helical Bundle

d with PreScission protease to remove the GST tag and then incubated indi-

g was revealed by immunoblotting with anti-MLKL with the Odyssey detection

tion in the red channel.

ti6-strep-hMLKL-FLAG plasmid in the presence of increasing concentrations of

ere used at 333 ng each. After 24 hr, cell death was quantified by SYTOXGreen

(C and E). Cell death data are presented as mean ± SEM of three independent
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Figure 4. The Interaction between MLKL and PIPs Permeabilizes

Liposomes

Liposomes consisting of 95% PC supplemented with (A) 5% PI(3,4,5)P3, (B)

5% PI(4,5)P2, (C) 5% PI(5)P, or (D) 5% PI were incubated with 500 nM of the

indicated recombinant proteins of which GST was clipped. GST was included

to control for any residual GST still present in the recombinant protein samples.

CF release was measured in function of time using a CYT3F Cytation3 Cell

Imaging Multi-Mode Microplate Reader. The data were normalized to put the

percent CF release at 0% at time point 0 by subtracting the percent CF release

at time point 0 for every measurement. The data are presented as mean ± SD

of replicates of one representative experiment.
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second one, MLKL function was associated with sodium influx

(Chen et al., 2014). Our findings that MLKL binds PIPs and in-

duces PIP-containing liposome leakage support a model in

which the PIPs function to recruit MLKL to the membrane where

it oligomerizes and forms a pore, therefore arguing for a direct

pore-forming capacity of MLKL rather than for a role of MLKL

in regulating other channels. However, a model combining our

findings and those from these two recent publications can not

be excluded. The PIPs that are associated with MLKL in the

plasma membrane may facilitate the functioning of ion channels

and transporters. Indeed, many ion channels and transporters

require PI(4,5)P2 for proper functioning (Suh and Hille, 2008). It

is therefore conceivable that MLKL can act as a direct pore

and that the associated PIPs may facilitate ion influx through

channels and transporters, disturbing the osmotic homeostasis

of the cell and leading to the typical cell swelling (‘‘oncosis’’)

associated with necroptosis (Vanden Berghe et al., 2010). Very

recently, another paper independently found that the recombi-

nant N-terminal domain of MLKL is able to induce leakage of car-

diolipin- or PIP-containing liposomes, suggesting a direct role of

MLKL in membrane rupture (Wang et al., 2014). Importantly, a

direct plasma membrane pore-forming capability of MLKL is

consistent with data supporting the view that necroptosis induc-

tion is independent of the mitochondria (Murphy et al., 2013; Re-

mijsen et al., 2014; Tait et al., 2013). Finally, our finding that the

MLKL-PIP interaction is of crucial importance for necroptosis in-

duction opens doors for the development of new compounds

targeting the MLKL-PIP interaction, which will have great scien-

tific and therapeutic benefits.

EXPERIMENTAL PROCEDURES

Plasmids

The sequences encoding wild-type RIPK1, RIPK3, andMLKL and the mutated

and truncated versions of MLKLwere cloned into pENTR3C using the CloneEZ

PCR Cloning Kit (GenScript). The sequence encoding an N-terminal Strep-tag

was fused directly to the coding sequence of all the used plasmids by PCR.

Next, these sequences were transferred into homemade modified pLenti6

vectors, i.e., pLenti6-FLAG-puromycin or pLenti6-EFGP-V5-BLAST destina-

tion vector, using the LR Gateway recombination system (Life Technologies).

The plasmid encoding a modified version of the positively charged C-terminal

part of KRas (Addgene plasmid 17274) has been described elsewhere by

Yeung et al. (2006). The plasmids containing the PH domains of BTK and

PLCd were a kind gift from J. Gettemans (Nanobody Lab, Department of

Biochemistry, Ghent University).

Cell Lines

HEK293T and L929sAhFas cells were cultured in Dulbecco’s modified

Eagle’s medium supplemented with 10% fetal calf serum (FCS), L-glutamine

(200mM), and sodium pyruvate (400mM). HT-29 cells were cultured in Eagle’s



Figure 5. Interfering with the Formation of PI(5)P or PI(4,5)P2 Inhibits TNF-Induced Necroptosis but Not TNF-Induced Apoptosis

(A–D) L929sAhFas cells (A and B) or FADD�/� Jurkat cells (C and D) were pretreated for 30 min with the indicated compounds and subsequently stimulated by

hTNF. Cell death was analyzed over a period of 14 hr by SYTOX Green staining (A and C). Statistical analysis is shown after 6 hr of TNF stimulation (B–D).

(E and F) L929sAhFas cells transduced with either a nontargeting miRNA (miCtrl) or a miRNA targeting RIPK1 (miRIPK1) were pretreated for 30 min with the

indicated compounds and subsequently stimulated by hTNF. Cell death was analyzed after 6 hr by SYTOX Green staining (E). These transduced cells were also

stimulated with hTNF for the indicated durations and immunoblotted as indicated (F).

Cell death data are presented as mean ± SEM of three independent experiments. Statistical significance was determined by one-way ANOVA followed by a post

hoc Bonferroni correction for multiple testing between the control sample (DMSO-treated) and the treated samples. *p < 0.05; **p < 0.01; ***p < 0.001; ns,

nonsignificant.
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minimal essential medium supplemented with 10% FCS and 13 minimal

essential medium nonessential amino acid solution (Sigma-Aldrich). FADD�/�

Jurkat cells were cultured in RPMI media supplemented with 10% FCS,

L-glutamine, sodium pyruvate, and b-mercaptoethanol. For the transfection

of HEK293T cells, the cells were seeded at 300,000 per well in a 6-well plate

on day 0 and transfected on day 1 with 1 mg DNA using jetPEI transfection

reagent (Polyplus-transfection) according to the manufacturer’s instructions.

Transduction of the L929sAhFas was done by lentiviral transduction. A total

of 1 3 106 HEK293T cells were transfected using calcium phosphate with

either a pLenti6.2-miCtrl or a pLenti6.2-miRIPK1 plasmid in combination

with the lentiviral-packaging vectors pMD2-VSVG and pCMV-DR8.91. The

medium was changed after 6 hr, and this virus-containing supernatant was

collected 48 hr posttransfection. The supernatant was then used to infect

the L929sAhFas cell line.

Antibodies, Cytokines, and Reagents

The antibodies, cytokines, and reagents used in this manuscript are listed in

the Supplemental Experimental Procedures.

Analysis of Cell Death

For HEK293T cells, SYTOX Green (Invitrogen) was added 24 hr after transfec-

tion at a final concentration of 5 mM. SYTOX Green intensity was measured by

a FLUOstar Omega fluorescence plate reader (BMG Labtech) using an excita-

tion filter of 485 nm, an emission filter of 520 nm, gains set at 1,100, 40 flashes

per well, and orbital averaging with a diameter of 7 mm. Afterward, all cells

were lysed by adding Triton X-100 at a final concentration of 0.1%, and SYTOX

Green intensity was measured again.

L929sAhFas, FADD�/� Jurkat, or HT-29 cells were seeded at 10,000,

50,000, or 40,000 cells per well, respectively, in triplicates in a 96-well plate.

The next day, cells were pretreated with the indicated compounds for

30min and then stimulated with human TNF (hTNF) (600 IU/ml) in the presence

of 5 mM SYTOX Green. SYTOX Green intensity was measured at intervals of

1 hr by using a FLUOstar Omega fluorescence plate reader, with an excitation

filter of 485 nm, emission filter of 520 nm, gains set at 1,100, 20 flashes per well,

and orbital averaging with a diameter of 3 mm.

In both cases, percentage of cell death was calculated as (induced fluores-

cence � background fluorescence) / (maximal fluorescence � background

fluorescence)3 100. The maximal fluorescence is obtained by full permeabili-

zation of the cells by using Triton X-100 at a final concentration of 0.1%. All cell

death data are presented as mean ± SEM of three independent experiments.

MLKL Subcellular Localization Using Confocal Microscopy

Two days before imaging, HEK293T cells were seeded at 10,000 cells per well

in an 8-well Ibiditreat m-slide from Ibidi. The next day, cells were transfected

with 50 ng of the indicated pLenti6-strep-hMLKL-EGFP mutants using jetPEI

transfection reagent according to the company’s instructions. After 24 hr, cells

were fixed with 4% paraformaldehyde for 15min at room temperature. Images

were acquired using a Leica TCS SP5 confocal systemwith a 633HCXPL Apo

1.4 oil-immersion objective, with a format of 1,0243 1,024, a line average of 4

at 400 Hz, and a zoom of 2.5. Stacks were imaged at a z step of 83.9. The

bright-field images were acquired with the 633 laser line, with a gain of 300.

The GFP fluorescence was imaged with the 488 argon laser line at 28%,

bandwidth of 498–589, with a gain of 893. Deconvolution of the GFP signal

was performed on Volocity software (PerkinElmer), and image reconstruction

was performed using ImageJ.

Lipid and PIP Arrays

Recombinant GST-human MLKL (hMLKL) 1–210 and GST-hMLKL 1–210

9posE were purified from E. coli as explained in the Supplemental Experi-

mental Procedures. PIP and lipid strips were purchased from Echelon Biosci-

ences. Both strips were blocked overnight at 4�C in buffer A (PBS [pH 7.4], 3%

[w/v] fatty acid-free BSA). A total of 2.5 mg recombinant protein was incubated

on lipid and PIP strips for 1 hr at room temperature in buffer B (PBS [pH 7.4],

0.1% [v/v] Tween 20, 3% [w/v] fatty acid-free BSA). Binding of the proteins

to the lipids was revealed with goat anti-GST (GE Healthcare) or rabbit anti-

MLKL (Sigma-Aldrich) in buffer B and visualized by infrared fluorescence

detection using the Odyssey system (LI-COR Biosciences).
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Liposome Assay

Recombinant GST-hMLKL 1–210 and GST-hMLKL 1–210 9posE were purified

from E. coli as explained in the Supplemental Experimental Procedures.

CF-containing liposomes were prepared as described before by Antonsson

et al. (1997) but with a modified lipid composition. Briefly, 1 mg lipid containing

95% (mol %) PC and 5% (mol %) PI, PI(5)P, PI(4,5)P2, or PI(3,4,5)P3 was dried

under nitrogen and solubilized in 1 ml PBS (pH 7.4) containing 20 mM CF

(purity >99%) and 30 mg of octyl glucoside/ml. Incubation was carried out

for 3 hr at 20�C. Liposomes were then isolated after filtering through a Sepha-

dex G-25 column (1.5 3 20 cm) and dialyzed overnight against PBS at

4�C. Liposomes were diluted to give a suitable fluorescence measurement.

Recombinant proteins were added as indicated in the figures, and the change

in fluorescence was recorded as a function of time with excitation at 488 nm

and emission at 520 nm using a CYT3F Cytation3 Cell Imaging Multi-Mode

Microplate Reader (Molecular Devices).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and four figures and can be found with this article online at http://dx.doi.org/

10.1016/j.celrep.2014.04.026.
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