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Granulocytes, monocytes, macrophages, and dendritic cells (DCs) represent a subgroup
of leukocytes, collectively called myeloid cells. During the embryonic development of
mammalians, myelopoiesis occurs in a stepwise fashion that begins in the yolk sac and
ends up in the bone marrow (BM). During this process, these early monocyte progenitors
colonize various organs such as the brain, liver, skin, and lungs and differentiate into resi-
dent macrophages that will self-maintain throughout life. DCs are constantly replenished
from BM precursors but can also arise from monocytes in inflammatory conditions. In
this review, we summarize the different types of myeloid cells and discuss new insights
into their early origin and development in mice and humans from fetal to adult life. We
specifically focus on the function of monocytes, macrophages, and DCs at these different
developmental stages and on the intrinsic and environmental influences that may drive
these adaptations.
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INTRODUCTION
Granulocytes , monocytes, macrophages, and dendritic cells (DCs)
represent a subgroup of leukocytes, collectively called myeloid
cells. They circulate through the blood and lymphatic system and
are rapidly recruited to sites of tissue damage and infection via
various chemokine receptors. Within the tissues they are activated
for phagocytosis as well as secretion of inflammatory cytokines,
thereby playing major roles in protective immunity. Myeloid cells
can also be found in tissues under steady-state conditions, where
they control development, homeostasis, and tissue repair.

In this review, we first describe the different types of myeloid
cells and their origins in the course of embryogenesis. We then
summarize what is known about their functional status in early life
and discuss the possible factors that influence their development.

ORIGIN OF MYELOID CELLS
EMBRYONIC HEMATOPOIESIS
Myelopoiesis occurs in mammalians through a stepwise process
that begins in the yolk sac (YS) by week 3–4 of gestation in human
and on embryonic day 8 (E7) in mice (Figure 1). At this time,
long before the generation of definitive hematopoietic stem cells
(HSCs), myeloid progenitors develop from the primitive ecto-
derm of the YS and give rise to embryonic macrophages. This
primitive system is followed by definitive hematopoiesis medi-
ated by self-renewing HSCs as the ultimate precursor of the adult
hematopoietic hierarchy.

The first HSCs emerging in the embryo derive from the ventral
wall of the aorta in the aorta–gonad–mesonephros (AGM) region.
At this stage, HSCs can also be found in vitelline/umbilical arteries,
the placenta, and YS. Around week 5 of gestation, YS and AGM
derived HSCs seed the fetal liver, which is eventually the main fetal

hematopoietic site. In the fetal liver, the HSCs expand, mature and,
for the first time, give origin to mature erythroid, lymphoid, and
myeloid cells (1, 2).

Extra-embryonic hematopoiesis ceases around week 10–12 of
gestation in human and E12 in mice. The liver remains the pre-
dominant hematopoietic site through 20–24 weeks of gestation in
human and until birth in mice. From the fetal liver, HSCs colonize
the fetal thymus and spleen, niches that support the expansion of
HSCs but do not support de novo generation of HSCs. Finally, dur-
ing the second trimester in human and just before birth in mice
the bone marrow (BM) gets colonized, resulting in the production
of a small pool of HSCs that are responsible for the maintenance
of hematopoiesis throughout adult life (3).

MONOCYTES AND THEIR EARLY DEVELOPMENT
Monocytes appear in the fetal circulation as soon as self-renewing
HSCs have seeded the fetal liver. HSCs develop through var-
ious multipotent progenitor stages into monocyte/macrophage
and dendritic cell progenitors (MDP). MDP have lost the abil-
ity to generate granulocytes and either give rise to “common
monocyte progenitors” (cMoPs) restricted to monocytes and their
descendants or commit toward a common DC precursor (CDP)
(4, 5). The transcription factor PU.1 plays a prominent role in
monopoiesis at various stages of this commitment. High expres-
sion of PU.1 activates myeloid-specific factors such as interferon
regulatory factor-8 (IRF8), kruppel-like factor 4 (KLF-4), and Erg1
and at the same time antagonizes key regulators of other develop-
mental pathways, such as GATA-1, GATA-2, and C/EBPα. PU.1 is
also critical for the expression of the growth factor receptor CD115
(M-CSFR) in MDP as well as during the later stages of differentia-
tion. CD115 and its ligands M-CSF and IL-34 are key regulators of
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FIGURE 1 |The origin of monocytes and macrophages throughout
development. Tissue resident macrophages arise at different stages of
development and derive from at least three different sources. During early
embryonic development, yolk sac-derived myeloid progenitors give rise to
microglia in the brain, Kupffer cells in the liver, and Langerhans cells in the
skin. Once fetal liver hematopoiesis has started (E10.5 in mice), fetal
liver-derived monocytes differentiate into tissue macrophages and
contribute to the Langerhans cell pool in the skin and lamina propria
macrophages in the gut. They also seed the lung just before birth. After

birth, these cells rapidly differentiate into long-lived alveolar macrophages
(AMF) via a “pre-AMF,” intermediate differentiation stage. Fetal
monocyte-derived Langerhans cells show vigorous proliferation after birth
while lamina propria macrophages are continuously renewed via
differentiation of bone marrow-derived monocytes. In addition to these
resident macrophage populations, Ly6Chigh monocytes can be recruited to
sites of infection or injury and differentiate into inflammatory macrophages,
monocyte-derived dendritic cells (Mo-DCs), or myeloid-derived suppressor
cells (MDSCs).

survival, proliferation, and differentiation and indispensable for
monocyte development.

Monocytes have long been considered as a developmental
intermediate between BM precursors and tissue macrophages.
However, renewed interest in recent years has revealed that
monocytes carry out specific effector functions during inflam-
mation (6). Monocytes can be divided into two primary subsets
based on phenotype and function. The CD14++CD16− classi-
cal human monocytes or intermediate CD14++CD16+ human
monocytes correspond to mouse GR1+/Ly6Chigh inflammatory
monocytes and are CCR2+Cx3CR1low. The non-classical human

CD14dimCD16+ correspond to the GR1−/Ly6Clow mouse mono-
cytes and are CCR2− and express large amounts of Cx3CR1.
GR1+/Ly6Chigh monocytes and their human CD14++CD16− or
CD14++CD16+ counterparts are rapidly recruited to sites of
infection or injury and have the potential to differentiate into
either inflammatory macrophages or monocyte-derived DC (Mo-
DC). They efficiently produce inflammatory mediators such as
tumor necrosis factor (TNF)α, nitric oxide, and reactive oxygen
species. In mice, these cells have shown to be critical for the control
of a number of pathogens, including Listeria (7), Mycobacterium
(8, 9), Cryptococcus (10), Toxoplasma (11), and herpes simplex
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virus (HSV) (12). Human CD14dimCD16+ non-classical mono-
cytes and their mouse Ly6Clow equivalents patrol blood vessels and
mediate early responses against insult (13–16). These cells have
also been shown to promote wound healing and angiogenesis in
models of atherosclerosis and cardiac infarction.

Although real evidence is still lacking, an accumulating
number of studies indicate that monocytes leave the BM as
GR1+/Ly6Chigh monocytes and develop via an intermediate stage
into GR1−/Ly6Clow monocytes. However, most of this evidence
stems from adult mouse models and differential pathways via dis-
tinct precursors during fetal liver hematopoiesis are not excluded.
Indeed, a recent study on the human monocytic equivalents
suggested that monocytic cells derived from human embry-
onic stem cells (hESCs) and fetal liver can differentiate from a
CD14−CD16− precursor to form CD14++CD16+ cells without
producing the CD14++CD16− cell population that predominates
in adult peripheral blood (17). In comparison to adult blood
monocytes, the embryonic CD14++CD16+ monocytes secreted
high amounts of proteins acting on tissue remodeling and angio-
genesis and most of them expressed the angiopoietin-1 receptor
(Tie2). This suggests that embryonic and fetal monocytic cells
may follow a differentiation pathway different to that of adult cells
and leading to specific functions. It remains to determine whether
these differences reflect the plasticity of a unique cell population
generated by the fetal liver environment or reflect the presence of
distinct precursors.

THE ORIGIN OF MACROPHAGES: YOLK SAC PROGENITOR OR
MONOCYTE?
Macrophages are resident phagocytic cells in lymphoid and non-
lymphoid tissues with highly diverse roles in the maintenance
of an organism’s biological integrity ranging from development,
homeostasis, to repair, and immune responses to pathogens.
Macrophages exert these functions through clearance of cell debris,
production of growth factors, highly efficient phagocytosis, and
the production of inflammatory cytokines. Being equipped with
a broad range of pathogen-recognition receptors they can act as
sentinels and instantly respond to changes in physiology as well as
challenges from outside.

Very recently, the concept of monocytes being precursors of tis-
sue resident macrophages has been challenged and the early origin
of tissue macrophages reassessed. Using fate-mapping analysis, it
was shown that embryonic macrophages around E8.25, when the
embryonic heart starts beating, migrate via the nascent circula-
tion to the central nervous system. Here, they form between E8.5
and E9.5 a stable macrophage compartment, the microglia that
maintain them without further input from adult hematopoiesis
(18–20). YS macrophages also contribute to other adult tissue
macrophage populations including liver Kupffer cells (20). The
prototypical macrophages of the skin, epidermal Langerhans cells
were shown to have a dual origin involving both YS progenitors
and fetal liver-derived monocytes (21, 22).

We recently showed that alveolar macrophages (AMF) com-
pletely derive from fetal liver-derived monocytes. Although
embryonic macrophages colonize the fetal lung around E12.5,
we found them quickly outnumbered by high numbers of
GR1+/Ly6Chigh fetal liver-derived monocytes entering the lung

from E16.5 onward. The fetal liver monocytes differentiate into
AMF just after birth and enter the alveolar spaces by 3 days
post-natal where they adopt a stable phenotype in response
to instructive cytokines and then self-maintain throughout life
(23). In contrast to the highly stable macrophage populations
in brain and liver and more or less in skin and lungs, the
macrophages residing in the intestinal lamina propria are contin-
uously renewed from fetal liver and BM derived GR1+/Ly6Chigh

monocytes (24).
Thus, tissue resident macrophages arise at different stages

of development and from at least three different sources, i.e.,
YS macrophages and monocytes derived from fetal liver or
BM. In addition to these resident macrophage populations that
arise under steady-state conditions and at specific time points,
CD14++CD16− classical monocytes or their GR1+/Ly6Chigh

counterparts in mice can recruit to sites of infection or injury
and differentiate into macrophages.

TROPHIC FUNCTION OF EMBRYONIC MACROPHAGES
Once the liver becomes a major source of myeloid cells, it becomes
difficult to distinguish macrophages of YS and liver origin in
the absence of definitive markers. Therefore, most studies to the
function of embryonic macrophages have not made distinction
between YS derived embryonic macrophages and macrophages
that differentiated from fetal liver-derived monocytes. Regardless
of their origin, as in adult mice, embryonic macrophages play
a key role in innate responses to pathogens and constitute the
primary host defense in the mouse embryo. In addition, several
lines of evidence suggest important trophic roles for embryonic
macrophages (25, 26). During early development they are most
numerous in areas of active tissue remodeling such as the dor-
sal midline, the developing retina, and interdigital zone in the
developing footpad. Programed cell death is an integral part of
embryonic development and the macrophages in these regions
are actively involved in phagocytosis of dying cells. Embryonic
macrophages are also critically involved in allowing primitive ery-
thropoiesis. They are the major source of the red cell growth factor
erythropoietin (27) and ingest the nuclei expelled by maturing
erythrocytes (28).

Besides erythropoietin, embryonic macrophages have shown
to secrete a wide range of other mediators important for regula-
tion of cell function. For example, embryonic macrophages seem
to contribute to vascularization of embryonic tissues by secreting
appropriate cytokines, a proposal supported by their close asso-
ciation with the developing vasculature. Furthermore, studies of
the optic nerve suggest that macrophages produce factors that are
necessary for axon growth and guidance. Embryonic macrophages
also have been implicated in depositing components of base-
ment membrane such as proteoglycans, laminin, tiggrin, type IV
collagen, and glutactin (29).

Collectively, these data suggest that embryonic macrophages as
well as fetal liver-derived monocytes have a major function in
tissue growth and remodeling. This conclusion is underscored
further by studies showing that the gene signature of mouse
embryonic macrophages is shared with the so-called tumor-
associated macrophages (TAM) that have tumor remodeling and
immunosuppressive functions (30).
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CONVENTIONAL DCs
Dendritic cells are specialized antigen-processing and -presenting
cells. By taking up antigen and bringing it to tissue draining lymph-
nodes DCs have major functions in the initiation and regulation
of adaptive immune responses and are central to the develop-
ment of immunological memory and tolerance. In recent years,
researchers have defined distinct DC subsets differing in surface
marker expression and development (31, 32). In the adult situation
all lymphoid tissue, including spleen, LN, and BM, as well as most
non-lymphoid tissue contain two families of conventional DCs in
the mouse characterized by either CD8α and CD103 or CD11b
integrin expression and equivalents of human CD141/BDCA3+

cDC and CD1c/BDCA1+ cDC. CD8α+ cDCs and CD103+ cDCs
are functionally specialized in cross-presentation of exogenous
viral antigen to CD8+ T cells (33, 34). CD8α+ cDCs also present
glycolipid Ags in CD1d context and can activate and polarize iNKT
toward the production of T helper 1 (Th1) or Th2 cytokines (35).
Conversely, CD11b+ DCs seem specialized in presenting soluble
antigen to CD4 T cells (36) and produce large amounts of pro-
inflammatory chemokines such as CCL3, CCL4, and CCL5 (37–
39). This specialization of CD11b+ cDCs was recently attributed
to their expression of the transcription factor IRF4.

In mice, DCs arise from CDPs that expresses the hematopoietic
cytokine receptor Flt3 and gives rise to Plasmacytoid DC (pDC)
or pre-conventional DCs (pre-cDCs) (4, 40). The transcription
factors PU.1, Gfi1 (41), and Cbfb (42) control the development
of the common DC lineage. Pre-cDCs can be found in the blood
and develop further in the tissue into the two subsets of cDCs. It is
unknown whether committed DC progenitors exist in humans. So
far, no equivalents of mouse MDP, CDP, or pre-DC have been iden-
tified. Development of CD8α+ cDCs and CD103+ cDCs from pre-
DCs is orchestrated by the same transcription factors: inhibitor
of DNA binding 2 (Id2), IRF8, basic leucine zipper ATF-like 3
transcription factor (BATF3), and the nuclear factor interleukin
3 regulated (NFIL3). CD11b+ cDC development is controlled by
transcription factors including RelB (43), NOTCH2 (44), RBP-J
(45), IRF2 (46), and IRF4 (47).

Conventional DCs generally display a short half-life of approx-
imately 3–6 days and in adults are constantly replenished from
BM precursors in a strictly Flt3L-dependent manner (48). So far,
splenic DC development has not been investigated during fetal life.
At birth, DCs represent only 0.2% of murine splenic cells and reach
adult levels by 3 weeks of age (49, 50). A similar post-natal devel-
opment of DCs is described in murine as well as human neonatal
lungs (51, 52).

NON-CONVENTIONAL DCs: PLASMACYTOID DCs AND
MONOCYTE-DERIVED DCs
Plasmacytoid DCs are present in the BM and all peripheral organs.
They are relatively long-lived and display a characteristic surface
phenotype and morphology, including a highly developed secre-
tory compartment (53). pDCs are specialized to respond to viral
infection with a massive production of type I interferons (IFNs).
They can also act as antigen-presenting cells and control T cell
responses (54–56). Suppression of Id2, the transcription factor
critical for cDC development, by E2-2 (also known as TCF4) leads
to pDC development (57, 58).

As a consequence of inflammation or infection, lymphoid and
non-lymphoid organs can also harbor DCs that originate from
monocyte infiltrates and have been termed “monocyte-derived
DCs” (MoDCs) or “inflammatory DCs” (iDCs) (59–61). For
a long-time MoDCs have been phenotypically difficult to dis-
cern from cDCs because they share similar expression patterns
of MHC-II, CD11b, and CD11c. However, recent studies have
identified CD64, the Fc-gamma receptor 1 (FcγRI) as a Mo-DC
marker in the mouse (62, 63) and indicated that Mo-DCs, through
their rapid and numerous recruitment and high production of
chemokines and inflammatory cytokines play an important role
in the initiation of inflammation (62, 64–66).

GRANULOCYTE DEVELOPMENT
Granulocytes are at all ages the most abundant type of myeloid
cells in the blood stream and can be further subdivided into neu-
trophils, eosinophils, and basophils. All granulocytes derive from
the granulocyte/monocyte progenitor (GMP), through further
differentiation into the eosinophil lineage-committed progenitor
(EoP), and the basophil/mast cell progenitor (BMCP), which in
turn gives rise to the mast cell progenitor (MCP) and the basophil
progenitor (BaP). With regard to neutrophils a committed prog-
enitor is not yet described. Granulopoiesis is present in the liver
parenchyma of human fetuses as early as 5 weeks gestation and
is dependent on the transcription factors C/EBPα, PU.1, and
GATA-2.

In adults, neutrophils are the most frequent granulocytes. They
are constantly generated in a high number in the BM and circulate
with the blood stream until activated by signals that are provoked
by resident macrophages at the site of infection or injury. Once
in the tissue neutrophils combat microorganism via phagocytosis,
the release of microbicidal proteins and by neutrophil extracellular
trap formation. Until the third trimester fetal blood contains few
neutrophils. Although mature neutrophils are scarce, progenitor
cells with the capacity to generate neutrophil clones are abun-
dant in fetal blood. The production of GM-CSF and G-CSF, the
cytokines that drive differentiation of precursors into granulocytes
and promote the survival of mature neutrophils is also low in fetal
blood. However, G-CSF shows a steep increase just before birth,
most likely contributing to the quick rise in neutrophils seen in the
same period. This kinetics also fits the finding that G-CSF recep-
tors on the surface of neutrophils of newborn infants are equal in
number and affinity to those on adult neutrophils (67).

Eosinophils are resident in various organs such as the gas-
trointestinal tract and BM and contribute to tissue and immune
homeostasis. Only a minor part of the eosinophils circulates in
the peripheral blood and is recruited mainly upon TH2 responses
into sites of inflammation. Within the tissues they produce several
cytokines and lipid mediators and release toxic granule proteins.
Eosinophils are associated with immune responses directed against
parasites or allergens and contribute to immune pathology and
parasite clearance (68). Eosinophilopoiesis is observed in the fetal
liver as early as 5 weeks after gestation. Fetal liver eosinophils still
have self-renewing capacity although they already lost the clas-
sical stem cell markers (c-Kit, CD34, and Sca-1). The cytokines
IL-3, IL-5, and GM-CSF are especially important for eosinophil
expansion. Of these three cytokines, IL-5 is the most specific to the
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eosinophil lineage and is responsible for selective differentiation of
eosinophils. Besides neutrophils cord blood contains more mature
eosinophils as well as more progenitor cells than adult peripheral
blood; thus, neonates seem to have a high capacity to produce high
eosinophil counts (69, 70). It is also widely known that premature
infants develop eosinophilia during the first weeks of post-natal
life (71, 72). The physiological role of this phenomenon is not yet
understood.

The least common granulocytes in the circulation are basophils.
Basophils play a central role in inflammatory and immediate
allergic reactions. They are able to release potent inflamma-
tory mediators, such as histamine, proteases, chemotactic factors,
cytokines, and metabolites of arachidonic acid that act on the vas-
culature, smooth muscle, connective tissue, mucous glands, and
inflammatory cells.

FUNCTIONAL STATUS OF MONOCYTES, INFLAMMATORY DC,
AND MACROPHAGES IN EARLY LIFE
As discussed in the previous sections, the first days/weeks of post-
natal life in mice is an important transition period for the ontogeny
of monocyte/macrophage system this reflects the sources of prog-
enitors (different waves from the YS, the liver, and the BM), the
local production of growth factors and the influence of the first
encounter with microorganisms from the microbiota. It is there-
fore not surprising that the functional capacity of macrophages
gradually changes during this period. For example, in young rats,
AMF display a lower capacity for phagocytosis and cytokine pro-
duction (73). Epidermal Langerin+ cells proliferate intensely dur-
ing the first week of life (21). These cells display reduced capacity
to activate T cells and low expression of costimulatory molecules
(74).

Due to the longer intra-uterine life, post-natal development of
myeloid cell populations in humans might be less important in
term infants than in rodents. Recently, distinct functional charac-
teristics were identified between human adult and fetal monocytes
by comparing the transcriptional and signaling programs of clas-
sical monocytes from fetal (18–22 gestational weeks) and adult
BM (75). Interestingly, fetal monocytes phosphorylate canonical
and non-canonical STATs and respond more strongly to IFNγ, IL-
6, and IL-4 than adult monocytes. Upon stimulation with IFNγ,
fetal monocytes fail to upregulate costimulatory and antigen pre-
sentation genes but instead upregulate many genes, which mediate
innate pathogen responses (75).

As far as neonatal human macrophages are concerned, they
exhibit decreased responsiveness to IFNγ, which is associated to
a marked alteration in Stat1 phosphorylation (76). A decreased
phagocytic activity of E. coli was detected in neonatal macrophages
compared to adult cells, this alteration being even more pro-
nounced in fetuses before 30 weeks of gestation (77).

Most of our understanding on human myeloid cell function
in early life arises from in vitro data obtained with cord blood
cells. In terms of cytokine production elicited by TLR ligation,
human cord blood mononuclear cells have been found to pro-
duce less IL-1α, IL-1β, TNFα, IL-18, and IL-12p70 but equal or
greater amounts of IL-6 or IL-10 compared with adult cells. Sin-
gle cell flow cytometry analysis of cytokine production revealed
that cord blood monocytes produced less TNFα but as much

or even more IL-12/23p40 and IL-6 in response to TLR2, TLR-
4, and TLR7/8 ligands in comparison to adult monocytes (78).
Furthermore, TLR-mediated production of innate immune effec-
tor molecules such as oxygen radicals is profoundly attenuated in
early life (77). These findings show that TLR-mediated responses
of human neonatal monocytes are not globally impaired or altered
but follow distinct rules from that of control cells from adults.
Although previous studies have indicated reduced expression of
TLR-4 on cord blood monocytes compared to its expression in
adults, other studies have not. A reduced expression of TLR-4 was
recently detected on cord blood monocytes as a consequence of a
reduced frequency of intermediate CD14++CD16+ monocytes in
cord blood compared to the frequency in adult blood of such sub-
set characterized by high TLR-4 expression (79). In comparison
to classical CD14++CD16− and non-classical CD14dimCD16+

monocytes, intermediate CD14++CD16+ monocytes represent
the main producers of TNFα in response to microbial products.
Their reduced frequency in cord blood could therefore contribute
to LPS hyporesponsiveness in newborns. At the signaling level,
a decreased expression of MYD88, as well as a reduced NF-κB-
dependent transcriptional activation was observed in neonatal
monocytes as compared to adult counterparts (80).

As mentioned earlier, monocytes can differentiate in vivo into
iDCs as a consequence of inflammation or infection and in vitro
in presence of GM-CSF and IL-4 or by migrating through the
endothelium (81, 82). Cord blood MoDCs were found to produce
very low levels of IL-12p70 in response to LPS, poly I:C, Bordetella
pertussis toxin or CD40 ligation (83–85). This limited production
of IL-12p70 is due to a specific decrease in the transcription of
the IL-12p35 subunit, while the IL-12p40 subunit transcription is
preserved. Moreover, expression of IFNβ and IFN-inducible genes
such as CXCL9, CXCL10, and CXCL11 are selectively reduced in
LPS-stimulated cord blood cells in comparison to adult cells (86).
A low IFNβ production was associated with a decreased expres-
sion of interferon regulatory factor (IRF)3-dependent genes but
not of NF-κB-dependent genes, indicating that TRIF-dependent
signaling events are preferentially affected in neonatal cells despite
comparable levels of TLR-4 expression in adult and neonatal
MoDCs. While proximal signals leading to IRF3 activation are
preserved, its interaction with CBP are altered in neonatal DCs,
leading to impaired DNA binding capacity (86). In addition to
its critical role in TLR-4-mediated IFNβ synthesis, IRF3 is also
directly involved in IL-12p35 gene expression (87). Interestingly,
reduced IL-12p70 synthesis in neonatal MoDCs was associated
with impaired chromatin remodeling in the IL-12p35 promoter
region (88). It is therefore possible that limited expression of IL-
12p35 subunit in LPS-stimulated neonatal MoDCs could be due
to altered recruitment of the IRF3/CBP complex to the IL-12p35
promoter.

The observation that the NF-κB-dependent pathway in TLR-4
signaling is intact in neonatal MoDCs is consistent with their abil-
ity to produce pro-inflammatory cytokines upon LPS stimulation
such as TNF-α, IL-6, IL-8, and IL-23, which all depend on NF-κB.

Altogether, these findings highlight the differential signaling
pathways underlying distinct and unique patterns of inflamma-
tory responses in neonatal and adult monocytes or MoDCs.
How these differences may participate to the high burden of
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infectious diseases in early life is still a matter of debate (89).
The high susceptibility to specific pathogens in newborns and
infants results from many different factors, including immuno-
logical, anatomical, genetic, and environmental factors. It is
tempting to speculate that the decreased capacity of circulating
monocytes to produce inflammatory cytokines such as TNF-α
or IL-1β predisposes premature (and term) newborns to wide-
spread bacterial sepsis. Decreased capacity to produce IL-12p70
is long-lasting and correlates with the susceptibility of young
children to disseminated infections with pathogens that require
efficient Th1-type responses, such as Mycobacterium tuberculo-
sis, Salmonella, or Burkholderia pseudomallei (89). Furthermore,
in comparison to adult controls, antigen-specific IFN-γ pro-
duction was found to be decreased upon vaccination with oral
polio or hepatitis B vaccines at birth (90, 91). However, BCG
vaccination at birth elicits higher IFNγ and IL-17 production
than when the immunization is achieved at 4 months of age
(92). These observations re-enforce the notion that the immune
system in early life can be efficiently activated under specific
conditions.

FUNCTIONAL STATUS OF CONVENTIONAL AND
PLASMACYTOID DENDRITIC CELLS IN EARLY LIFE
As discussed in the previous sections, development of most
myeloid cell populations, including DCs is well advanced in human
term infants. The situation is different in newborn mice where the
splenic composition of DC subsets varies significantly from the
adult. Indeed, at birth, pDC and CD4−CD8α− cDC are found in
the spleen whereas CD8α+ and CD4+ cDC are not present (49,50).
The CD4+ cDC subset predominates by the age of 3 weeks whereas
a significant number of CD8α+ cDC accumulate in the spleen by
day 6 after birth. This particular cDC subpopulation is endowed
with a high capacity to produce IL-12. Hence, preferential polar-
ization into Th2 cells observed upon immunization in the first
week of life was attributed to the delayed maturation of CD8α+

cDCs in the spleen (93). IL-12 levels produced by ex vivo isolated
splenic cDC from 7-day-old mice were found to be either similar
or reduced in comparison to their adult counterparts (49, 50, 94).
The differences could be due to the mode of stimulation as CpG
was used either alone or in combination with cytokines. What-
ever the reason for this difference, such a delayed maturation of
IL-12p70 production also occurs in humans. Indeed, longitudinal
studies using whole blood or peripheral mononuclear cell cultures
revealed age-dependent changes in TLR-induced cytokines in cDC
in infancy. As observed in MoDCs, cDCs synthesize very low lev-
els of IL-12p70 but much higher levels of IL-23 in comparison
to adult cells. After TLR stimulation, production of IL-12p70 is
still below adult levels in 12 years old children whereas synthe-
sis of IL-23, IL-6, and IL-10 dominates in term infants (78, 95,
96). Interestingly, production of IL-23, IL-6, and IL-10 declines
over the first few years of life, while secretion of pro-inflammatory
cytokines TNFα and IL-1β gradually increases with age (97, 98).
These findings indicate that cDCs have a reduced ability to produce
Th1-supporting cytokines, which corresponds to increased risk of
infection with intracellular pathogens such as Listeria monocyto-
genes, M. tuberculosis, and HSV in early life. Conversely, at birth,
human cDCs have an enhanced capacity to promote Th17-type

immune responses involved in the defense against extracellular
pathogens (99). Interestingly, cord blood naïve CD4+ T cells
from preterm and term infants have the potential to develop
into Th17 effector cells upon in vitro stimulation under Th17
polarizing conditions (99). Th17 responses can be detected in the
peripheral blood and the airways of respiratory syncytial virus
(RSV)-infected 1-month-old infants suggesting that the capacity
for Th17 development may be acquired quickly after birth (100).

Plasmacytoid DCs have the unique property to sense a vari-
ety of viruses by pattern recognition receptors and to secrete very
rapidly 10–100 times more IFN (IFN)- αβ than other immune
cells. Despite comparable levels of TLR9 and TLR7 expression
in adult and neonatal human pDCs, cord blood pDCs exhibit a
strong limitation in their capacity to produce IFNαβ in response to
TLR9 as well as TLR7 ligation, HCMV, or HSV-1 exposure (101).
This decreased production is associated with a reduced nuclear
translocation of IRF7 (102). In contrast, a recent report indicates
that purified cord blood pDCs are responsive to CpG and a vari-
ety of viruses (103). Despite such discrepancy, impaired type I
IFNs production was demonstrated both in whole cord blood cul-
tures after stimulation with CpG or R848 and ex vivo in pDC
from cord blood mononuclear cells infected with RSV, showing
that human pDCs are clearly less functional in early life (104).
Similarly, in mouse, neonatal pDCs exhibit dampened IFNα and
IRF7 translocation during lymphocytic choriomeningitis virus
(LCMV) infection, which was correlated with downregulation of
E2.2, a master transcription factor regulating pDC development
and function (105). The fact that neonatal murine pDCs were
found to display an adult-like response capacity when assessed
in vitro indicates that the decreased functionality of murine pDCs
is not cell-autonomous but reflects the influence of their local
environment (see below). Altogether, these observations suggest
that early life pDCs responses are tightly regulated in vivo, which
may be beneficial to avoid potentially harmful inflammatory or
autoimmune reactions and resulting in increased vulnerability to
viral pathogens such as influenza, RSV, HSV-1, or cytomegalovirus
(CMV).

POTENTIAL MECHANISMS INVOLVED IN THE POST-NATAL
ACQUISITION OF ADULT-LIKE FUNCTION BY MYELOID CELLS
It is generally believed that there is an inherent immaturity in
the myeloid compartment in newborns and young infants that
contributes to their susceptibility to infections and impairs their
responses to vaccination. As discussed above, this might be the
case in rodents where post-natal period is still important for
the colonization of lymphoid and non-lymphoid organs by liver
and BM myeloid progenitors. In humans, monocytic cells derived
from embryonic and fetal liver progenitors preferentially express
M2-type signature genes (17). In comparison to their adult coun-
terparts, BM monocytes from mid-gestational age also display dis-
tinct responsiveness to cytokine stimulation. These results imply
that the functional differences observed in early life could result
from a distinct origin of precursors. However, it is not clear
when the transition between fetal (liver) versus “adult-like” (BM)
myeloid progenitors occurs in human ontogeny. Colonization of
BM by hematopoietic progenitors starts around 15–16 weeks of
gestation (106). High levels of circulating HSCs are observed
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before 32 weeks of gestation, probably reflecting the active trans-
fer of hematopoiesis from liver to BM (107). Hence, in term
newborns, BM probably represents the major source of myeloid
progenitors. Yet, at birth, the function of these different subpop-
ulations appears to be qualitatively and quantitatively different
from that of adults. The classical model of hematopoiesis is based
on a hierarchy of progenitors that progressively lose their devel-
opmental potential (108). It is not evident to apply this model to
monocyte/macrophage/DC differentiation as data from patients
with mutations in GATA-2 or IRF8 reveal the intricate relation-
ship between the various “committed” progenitors that allows the
convergence of different paths to the same cell types (109). These
concepts allow a high degree of functional plasticity in response to
micro-environmental cues throughout the differentiation process.
Hence, multiple factors can account for the distinct functional
properties of myeloid cells in early life (Figure 2). The materno-
fetal environment is very specific. High local or systemic levels of
immunomodulatory factors such as IL-10, TGFβ, or adenosine can
directly affect the function of myeloid cells during fetal life or early
post-natal life (110). Several populations with immunosuppressive
functions were suggested to participate to materno-fetal tolerance.
These include regulatory T cells (Tregs), B cells (Bregs), CD71+

erythroid cells, or myeloid-derived suppressor cells (MDSCs)

(111–114). The most dramatic event that occurs at birth is cer-
tainly the initial colonization of the gastrointestinal tract by the
microbiota. Strikingly, macrophages isolated from mice treated
with antibiotics show reduced expression of IFN-responsive genes,
suggesting that signals derived from commensal bacteria influence
systemic innate antiviral responses (115). Furthermore, this might
implicate tunable chromatin level changes as DCs from germ-
free or antibiotic-treated mice show reduced H3K4me3 deposits
at specific inflammatory genes (116). Despite normal NF-κB or
IRF3 activation upon TLR stimulation, direct recruitment to pro-
moter regions was reduced, an observation that parallels previous
findings in cord blood monocyte-derived DCs. Tonic stimulation
by commensals might therefore enable rapid induction of spe-
cific defense genes upon infection, a hypothesis that goes along
well with the concept of “trained immunity” (117). Such mecha-
nism could account for blunted type I IFN and IL-12 production
by cord blood DCs and alterations of STAT signaling pathways
in fetal monocytes and macrophages. The way microbial-derived
signals influence the function of immune cells even at distant sites
is still poorly understood. Soluble factors such as metabolites can
clearly play a determinant role in this process. Constant diffusion
of low-level microbial products such a TLR or NOD ligands from
the gastrointestinal tract to the bloodstream could also drive this

FIGURE 2 | Factors that can account for the different functional
properties of monocytes/DCs in the course of their ontogeny. Monocytes
and DCs are highly plastic, even in “steady-state” conditions. Lineage
specification and function are influences by the origin of the progenitors and

by environmental factors. We depict the role of the materno-fetal
immunomodulatory environment (red arrows) and the direct or indirect
priming effects of microbial-derived signals that are encountered after birth
(green arrows).
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bystander control of peripheral responses (118). Interestingly, such
mechanisms would then allow the maternal flora to influence the
function of fetal innate immune cells during gestation. This sys-
temic effect could, however, be indirect, for example, by triggering
the local activation of innate lymphoid cells.

Several reports indicate that the first year of life represents an
important period for the acquisition of “adult-like” responsive-
ness to TLR ligands by circulating monocytes/DCs. Major changes
in the composition of the gut and respiratory tract microbiota
occur during this period. The development of the microbiota is
influenced by multiple factors such as the mode of delivery, the
feeding regime, or the use of antibiotics (119). Along this line,
decreased diversity of the bacteroidetes phylum in infants born by
cesarean section is associated with lower seric levels of CXCL10 and
CXCL11, two IFN-dependent chemokines (120). Thus, defined
members of the microbiota are likely to influence the trajectory of
myeloid cell function in the course of childhood.

In mice, splenic DCs are entirely replaced by circulating prog-
enitors within 2 weeks (121). One would therefore expect the
“adjuvant” effect of commensals on myeloid function to be tran-
sient and reversible. However, other myeloid subpopulations such
as tissue macrophages or Langerhans cells are long-lived and
arise from local progenitors. This implies that exposure to other
microbial-derived signals, in the context of inter-current infec-
tions or vaccination could continuously shape the function of
myeloid cells throughout life. Once again, these effects could
directly target myeloid cells or influence their function through
the activation and expansion of innate lymphocytes such as NK
or γδ T cells (122–124). The capacity to produce IL-12 slowly
increases with age, suggesting that a maturation process occurs
throughout life, a phenomenon that parallels the acquisition of
memory T and B cells.

In conclusion, our knowledge of the origin and development
of myeloid cells during embryogenesis and early life has greatly
expanded in recent years. The functional capacity of myeloid cells
to respond to pathogens is influenced by the origin of their pre-
cursors and also by non-cell-autonomous factors such as signals
derived from the commensal microbiota. Defining the molecular
and cellular mechanisms underlying the determinants of myeloid
cell functions in early life will allow a better understanding of the
susceptibility of young infants to infections and other clinically
relevant implications such as the development of allergies.
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