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Abstract

Rheumatoid arthritis (RA) is the most common inflammatory rheumatic disease, affecting almost 1% of the world population. Although
the cause of RA remains unknown, the complex interaction between immune mediators (cytokines and effector cells) is responsible for the
joint damage that begins at the synovial membrane. Activated macrophages are critical in the pathogenesis of RA and showed specifically
express a receptor for the vitamin folic acid (FA), folate receptor 3 (FR{). This particular receptor allows internalization of FA-coupled
cargo. In this review we will address the potential of nanoparticles as an effective drug delivery system for therapies that will directly target
activated macrophages. Special attention will be given to stealth degree of the nanoparticles as a strategy to avoid clearance by macrophages
of the mononuclear phagocytic system (MPS). This review summarizes the application of FA-target nanoparticles as drug delivery systems

for RA and proposes prospective future directions.
© 2016 Elsevier Inc. All rights reserved.
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Arthritis may be defined as inflammation of the joints causing
pain, swelling and stiffness. The broad category of arthritis
includes diseases that can be classified as inflammatory,
metabolic, degenerative or infectious. These conditions affect
joints and the surrounding tissues, as well as the connective
tissue of the skin, bones, and muscles.! RA is the most common
form of chronic inflammatory arthritis, characterized by
inflammation of the joints, resulting in synovial hyperplasia by
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infiltration of activated immune cells further leading to cartilage
and bone destruction. '

The history of RA, as many chronic diseases, started around
1500 BC when Ebers Papyruralies describe a condition similar to
RA. Several reports along time suggest that mummies were
found to bear deformities similar to arthritis, however this
condition was identified as RA by Garrod only in 1800,
replacing the old terms arthritis deformans and rheumatic gout.?

RA occurs worldwide, although the estimated prevalence
ranges from nearly 1% of the adult population in northern Europe
and USA to 0.5% in other geographic areas. The highest
prevalence is observed in certain Northern-American Indian
populations. The annual incidence of RA varies from § to 50
cases per 100,000 inhabitants, with considerable differences
according to the diagnostic criteria used and the geographic area.
RA is clearly more common in women than in men with a ratio of
approximately of 3:1.> RA can develop in persons of any age,
with a typical age at onset of about 55 years.*

Arthritis in general, and RA in particular, is a common cause
of disability. Mortality rates in RA patients are higher than in the
general population (mortality ratios ranges from 1.28 to 2.98).”
Life expectancy is shortened by up to 3 to 5 years, especially in
patients that develop treatment-related adverse effects including
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Figure 1. (A) Schematic view of (1) a normal joint and (2) its changes in RA. The “radiographic joint space” of metacarpophalangeal joints in (3) a normal hand
and (4) from a patient with established RA. (B) Schematic representation of events occurring in RA.

infections, tumors and gastrointestinal toxicity from drugs used
in RA therapy.*® Furthermore, it was known that patients with
RA are at higher risk of suffering from acute cardiovascular
events, such as myocardial infarction, compared with the general
popula‘[ion.7 Therefore, the most common cause of death in RA
are concomitant cardiovascular diseases, accounting for more
than 50% of the mortality.'

Immunopathogenesis

Like many other rheumatic diseases, RA is an autoimmune
disease. In these disorders, the affected organism has a defective
ability to distinguish self from foreign molecules. Humoral and
cellular immune responses to autoantigens, such as production of
rheumatoid factors (RFs), occur in RA.' RFs are the first
autoantibodies described in RA, which was posteriorly found to
be directed to the Fc region of immunoglobulin (Ig) G.® The
immune and inflammatory systems are intimately linked to the
destruction of cartilage and bone. Although the cause of RA is
unknown, many pathways involved in the generation of the
disease have been recognized and identiﬁed as important by
therapeutic proof-of-concept studies.” RA is a combination of
genetic and environmental factors that when present increase the
susceptibility to develop clinical manifestations.” The complex
interaction of immune modulators (cytokines and effector cells)
is responsible for the joint damage that begins at the synovial

membrane and affects other structures (Figure 1). Synovitis is
caused by the influx and/or local activation of mononuclear cells
(including T cells, B cells, plasma cells, dendritic cells,
macrophages and mast cells) and by the formation of new
blood vessels'’

T cells

CD4+ helper T (Th) cells make a crucial contribution to the
development of inflammatory arthritis, where two T-cell subsets
have been well characterized. T cells undergo polarization into
either Th1 or Th2 cells, which is mutually exclusive. Thl cells
mainly secrete interferon (IFN) vy and tumor-necrosis factor
(TNF)-a; Th2 cells produce interleukin (IL)-4, IL-5, IL-13 and
IL-10. The polarity of Th cells is pivotal for the type of B-cell
activation. Thl cells have pro-inflammatory potential and
promote certain humoral responses, whereas Th2 cells besides
exerting anti-inflammatory events also stimulate other types of
humoral responses, such as immunoglobulin (Ig) E production.’
RA is clearly characterized by a shift toward the proinflamma-
tory Thl phenotype, with overproduction of IFN+y and
inadequate production of Th2 cytokines such as IL-4 and
IL-13. However, a Thl phenotype does not explain all the
mechanisms involved in RA, such as the contradictory role for
IFN in experimental arthritis.'"*'> The model attributing a key
role to a Th1/Th2 imbalance in RA was clarified by the
identification of Th17 and T-regulatory (Treg) lymphocyte
subsets. "
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The differentiation of lymphocytes to Th17 cells is dependent
on the nuclear transcription factor RORvyt. Th17 cells produce
the proinflammatory cytokine IL-17, which acts on several cell
types found in rheumatoid joints: monocytes, macrophages,
fibroblasts, osteoclasts and chondrocytes. Furthermore, this
cytokine also induces a wide range of effector molecules
implicated in joint damage, such as proinflammatory cytokines
(e.g., IL-1B, IL-6, and TNF-a), multiple chemokines, matrix
metalloproteinases (MMPs), cyclooxygenase-2 and prostaglan-
din E2. In this way, the cellular targets and biological effects of
IL-17 are in agreement with the theory that Th17 cells have a
vital role in mediating synovitis and articular damage.'® The
importance of IL-17 in the pathogenesis of arthritis in animal
models has been demonstrated quite consistently. IL-17
knockout mice develop significantly less severe arthritis than
wild-type mice, and neutralizing anti—IL-17 antibody reduces the
severity of arthritis. Furthermore, in the streptococcal cell wall
model of arthritis, IL-17 receptor signaling is required in
radiation-resistant cells in the joint for full progression of
chronic synovitis and bone erosion. ">

The immune response needs to be controlled to avoid a
chronic inflammation. For this purpose, Treg cells, known to
have suppressor activity, are pivotal in the maintenance of
self-tolerance. '® Treg cells exhibit a CD4+CD25 high phenotype
and express the transcription factor FOXP3. Although Treg cells
can regulate any Th subset, special attention has been put on the
Th17/Treg balance. It is therefore clear that Th17 and Treg cells
have a functional antagonism, in which Tregs act as immuno-
suppressive cells and Thl17 cells are involved in inducing
autoimmunity.'” Treg cells can suppress inflammation and
immune responses through several mechanisms including
cell-contact-dependent and -independent ones. '®

B cells

B cells play several key roles in the pathogenesis of RA. Their
primary function is the production of autoantibodies, RF and
anti-citrullinated peptide/protein antibodies (ACPA), that con-
tribute to form larger immune complexes that can further
stimulate the production of pro-inflammatory cytokines, includ-
ing TNF-q, through complement and Fc-receptor activation.''°
Furthermore, B cells with specificity for self-immunoglobulin
can bind and internalize immunoglobulin—antigen complexes
and enhance antigen-presenting function by generating a wider
range of peptides.'® In this way, besides production of
pathologic autoantibodies and proinflammatory cytokines, B
cells can also present antigens to T cells and supply
costimulatory signals which are essential for T cell activation,
clonal expansion and effector functions.'® These findings on the
role of B cells and their immunoglobulin products in self--
sustaining chronic inflammatory processes have effectively
contributed to the development of therapies. Targeted B cell
therapies attenuate the function of secreted and membrane
associated factors that contribute to B cell accumulation and
survival at sites of the disease.”’ The clinical efficacy of an
anti-CD20 monoclonal antibody, designated as rituximab, has
confirmed the essential role of B cells in RA pathogenesis, as
demonstrated in experimental models. "’

Synovial fibroblasts

There is growing evidence that activated synovial fibroblasts
(SFs), largely present in rheumatoid synovium, are one of the main
players in the destructive process of RA.?' In healthy tissue, the
physiological function of SFs is to provide nutritive plasma
proteins and lubricating molecules such as hyaluronic acid to the
joint cavity and the adjacent cartilage. Furthermore, SFs are
involved in continuous matrix remodeling by the production of
matrix components such as collagen, hyaluronan and a variety of
matrix-degrading enzymes.?* Studies indicate the involvement of
Toll-like receptors (TLRs), key recognition structures of the innate
immune system, at an initial stage of synovial activation. In theory,
microbial fragments or RNA released from necrotic cells within the
synovial fluid acts as endogenous TLR ligands in the stimulation of
pro-inflammatory gene expression in SF of synovial membrane. >
Once activated, SFs produce increased amounts of cytokines,
chemokines and matrix-degrading enzymes that mediate the
interaction with neighboring inflammatory and endothelial cells
and are responsible for the progressive destruction of articular
cartilage and bone.?* In this way, the production of cytokines and
chemokines helps to recruit macrophages, neutrophils and T cells
to the rheumatoid synovium, which attracts more inflammatory
cells and, which, in turn, enhances the activated state of SFs and
osteoclasts.! Furthermore, SFs also stimulate synovial vasculari-
zation through the release of proangiogenic factors. In this way,
angiogenesis supports the influx of immune cells into affected
joints, perpetuating the inflammatory processes and facilitating the
access of SFs to the bloodstream, thus increasing dissemination of
RA.?* SF hyperplasia also contributes to the pathogenesis of RA,
however the molecular mechanisms that sustain it are incompletely
understood.*

Osteoclasts

Osteoclasts are multinucleated cells of hematopoietic origin and
are the primary bone resorbing cells, essential for the remodeling of
bone throughout life. Osteoclasts have two pivotal molecular
machineries that allow them to resorb bone.”® Osteoclasts utilize a
proton pump to acidify the environment deep to the ruffled border
and solubilize mineral from bone. In addition, proteolytic enzymes
including matrix metalloproteinases (MMPs) and cathepsin K are
secreted that degrade the organic bone matrix.?’ Macrophage--
driven osteoclastogenesis requires the presence of macrophage
colony-stimulating factor (M-CSF) and results from the interaction
of the receptor activator of nuclear factor-kB (RANK) and the
RANK ligand (RANKL).'® RANKL expression is regulated by
inflammatory cytokines, such as TNF-a, IL-1p, IL-6 and IL-17,
but is also influenced by non-cytokine inflammatory mediators
such as prostaglandin E2. The interaction of RANKL with its
receptor RANK is modulated by osteoprotegerin (OPG), a soluble
decoy receptor, which is expressed by mesenchymal cells in the
rheumatoid arthritis synovium. In RA, an imbalance between OPG
and RANKL expression promotes RANKL-induced bone loss.*®

Chondrocytes

Adult human articular cartilage, which covers the articulating
surfaces of long bones, is populated exclusively by chondrocytes
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that are somewhat unique to this tissue. Under physiological
conditions, the chondrocytes maintain a stable equilibrium
between the synthesis and the degradation of matrix
components.”’ Under the influence of synovial cytokines
(particularly IL-1 and IL-17A) and reactive nitrogen intermedi-
ates, cartilage is progressively deprived of chondrocytes, which
undergo apoptosis.>> Chondrocytes switch from an anabolic
matrix-synthesizing state to a catabolic state that is characterized
by the formation of ADAMTS (a disintegrin and metallopro-
teinase with thrombospondin motifs) and MMPs that cleave the
cartilage components proteoglycan and collagen fibers,
respectively.?® These processes ultimately lead to the destruction
of the surface cartilage and the radiographic appearance of
joint-space narrowing.

Cytokines

Cytokines are directly implicated in many of the immune
processes that are associated with the pathogenesis of RA.** A
large number of cytokines are found elevated in rheumatic joints.
Indeed, it is now evident that these cytokines play an important
role in the processes that cause inflammation, articular
destruction and the comorbidities associated with RA.?°
Cytokines are small proteins with key roles in cell signaling,
being secreted by several cells acting either in themselves
(autocrine) or on surrounding cells (paracrine signaling).®'
Cytokines can be categorized into several classes, families or
superfamilies. This has been done using either their numerical
order of discovery or their functional activity.*! In RA, the primary
site of inflammation is the synovial tissue, from which cytokines
may be released into the systemic circulation.' Cytokines however
do not have one single effect and the phases of the inflammatory
process depend on several cytokines. Therefore, the cytokine
network is both pleiotropic and redundant. In RA inflammation,
the effects of proinflammatory cytokines predominate over those
of anti-inflammatory cytokines>> (Table 1).

Plasma levels of cytokines in RA tissue revealed that many
proinflammatory cytokines such as TNF-o, IL-1, IL-6, granu-
locyte-macrophage colony-stimulating factor (GM-CSF) and
chemokines such as IL-8 (CXCLS8) are abundant in all patients
regardless of therapy. Through tangled signal pathways, these
cytokines activate genes associated with inflammatory re-
sponses, including other cytokines and MMPs involved in tissue
degradation.'® On the other hand, this can be compensated
through the increased production of anti-inflammatory cyto-
kines, such as IL-10 and transforming growth factor beta
(TGFp), and cytokine inhibitors such as IL-1 receptor antagonist
(IL-1Ra) and soluble TNF receptor.'

Macrophages

Macrophages are of central importance in the pathogenesis of
RA, due to their higher presence in the inflamed synovial
membrane and at the cartilage pannus junction, their activation
status and their successful response to anti-rheumatic
therapy.'* Recent data demonstrate that resident tissue
macrophages are established during embryonic development
and persist into adulthood independently of blood monocyte
input in the steady state. In the context of inflammation, classical

Table 1
Cytokine roles categorized according to their contribution to inflammation in
RA (Adaptaded from Chizzolini C. et al., 2009").

Proinflammatory Ambivalent Anti-inflammatory
TNF-a IFNvy IL-1Ra
IL-1 IL-4x
IL-6 IL-13%
IL-12 IL-10
IL-15 TGFp
IL-17

IL-18

IL-23

CXCL8

CCL3

CCL2

* IL-4 is anti-inflammatory in the context of RA synovial inflammation. By
impacting on IgE production, however, IL-4 is a key cytokine in
IgE-mediated inflammation. Similar considerations apply to IL-13.

! Chizzolini C, Dayer JM, Miossec P. Cytokines in chronic rheumatic
diseases: is everything lack of homeostatic balance? Arthritis Res Ther
2009;11(5):14.

monocytes readily differentiate to macrophages, and both
recruited and resident macrophages share the capacity for
proliferation in tissues.***> Macrophages subsequently become
“activated macrophages” displaying different phenotypes de-
pending on the nature of the recruiting stimulus and the
location.®® Activated macrophages may release cytokines
(IL-1, TL-6, TNF-a), chemokines (eg, monocyte chemotactic
protein-1, MCP-1/CCL2), digestive enzymes (eg, collagenases),
prostaglandins, and reactive oxygen species (ROS), which can
aggravate or accelerate damage to the normal tissues.”’ Further,
activated macrophages are known to participate in antigen
presentation, and thereby they are thought to contribute to the
activation and proliferation of antigen specific T-cells and their
consequent destructive effects.®® An increase in the levels of
macrophage-derived proteases, such as leucocyte elastase, and
MMPs, including MMP-1, MMP-3 and MMP-9, has also been
described at the site of inflammation.*” However, they possess
broad proinflammatory, destructive and remodeling abilities, and
contribute considerably to inflammation and joint destruction in
both acute and chronic phases of RA." Apart from the vital role
of macrophages in RA inflammation, they are at the origin of
pathological bone erosion due to their excessive differentiation
into osteoclasts, unique cells specialized in bone resorption.*

Folate receptor

Prolonged inflammatory states may last for weeks, months or
even years. Macrophages can display different markers of
activation and maturation depending on the type of activation,
the immune cells involved, state of differentiation, type of
aggression and the tissue where this all takes place. FRp, whose
expression is selectively elevated in RA synovial
macrophages,”’ has been used as a target for immunotherapy
in a number of clinical situations, such as autoimmunity and
chronic inflammation. **

FRs include at least four isoforms, «, [, vy/y' and 6,
exhibiting distinct patterns of tissue expression. FRa is
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expressed at the luminal surface of polarized epithelial cells of
normal adult tissues including proximal kidney tubules, uterus,
fallopian tube, choroid plexus, epididymis, submandibular
salivary, acinar cells of the breast, bronchial gland, type I and
type II pneumocytes in the lung, and trophoblasts of the placenta.
Furthermore, cancer types such as endometrial, cervix, ovary,
testicular colorectal, choriocarcinoma, lung, pediatric ependy-
momas, mesotheliomas and renal cell carcinomas also show FRa
expression.* In other malignant types of cancer such as breast,
colon and renal, FRa expression is less frequent.44 In turn, FRP
is a differentiation marker in the myelomonocytic lineage during
neutrophil maturation and is amplified in activated monocytes
and macrophages. However, FR{3 in neutrophils is unable to bind
the vitamin FA (or folate) due to dysfunctional posttranslational
modifications.** In contrast, a functional FRB with nanomolar
affinity for folate has been identified on activated macrophages,
key effect cells in chronic inflammatory diseases such as RA,*°
atherosclerosis,*’ systemic lupus erythematosus,*® Crohn’s
disease® and osteoarthritis.>® Furthermore, FRP is expressed
in a functional form in chronic myelogenous leukemia (CML)
and in 70% of acute myelogenous leukemias (AML).* A
functional FRpB has also been reported on macrophages induced
by repeated treatment of human monocytes with macrophage
colony-stimulating factor (M-CSF).>' FRry has been detected in
normal and malignant hematopoietic cells present in the spleen,
bone marrow and thymus, as well as ovarian, cervical and uterine
carcinoma.** A polymorphism in the FRy gene is caused by a
mutation that results in a carboxyl-terminal truncation of the
protein; the mutated protein is referred to as FRy’ 2 FRS has
been found to be expressed on regulatory T cells in mice and has
recently been proposed as a potential therapeutic target.’
Recently, FR& was renamed to Izumol egg receptor or Juno
(Roman goddess of fertility and marriage), due to the expression
of this protein on the egg surface, essential for female fertility.>*

FRs are N-glycosylated proteins, of relative molecular mass
(Mr) in the range of 38,000-45,000, with high binding affinity to
folate. The FR isoforms are 220-237 amino acid polypeptides
that share 68-79% amino acid sequence identity and contain
eight conserved putative disulfide bonds.** The o, B, and &
isoforms are glycosyl phosphatidylinositol (GPI)-anchored
membrane proteins, while FR+y/y’ is constitutively secreted
due lack of the signal for GPI-anchor attachment.

The affinities of FA for the FRs are: FRa, K4 ~ 0.1 nM;
FRP, K4 ~ 1 nM; and FRy, K4 ~ 0.4 nM.* Importantly unlike
the reduced folate carrier (RFC), which mediates transmembrane
folate transport, has a K4 in the uM range and is ubiquitously
expressed, FR is not normally required for cellular survival and
for this reason their expression is highly restricted among tissues.
Furthermore, the >10°-fold higher affinity of FRs for folate
enables in vivo targeting of the FRs via folate conjugation, not
being affected by the presence of RFC in non-target tissues.*’

Folate mediated targeting

FA is a high affinity ligand for the FR, and even after
derivatization via one of its carboxyl groups, folate retains a high
affinity. Although the K, of folate conjugates for FRs is higher
than FA (~10x), indicating a slight reduction in the binding

affinity, this is still within the nM range. FRs mediate cellular
internalization of folate conjugates via receptor-mediated
endocytosis. In this way, folate conjugation constitutes a valid
method for targeted delivery of therapeutic agents to FR
expressing cells.*> Receptor-mediated endocytosis of folate
conjugates occurs through a succession of distinct steps,
beginning with conjugate binding to a cell surface FR
(Figure 2).>> As a GPI anchored protein, FR internalization is
thought to use clathrin independent carriers (CLIC) and
GPI-anchored protein-enriched early endosomal compartment
(GEEC) pathway.>® After membrane invagination and internal-
ization to form an endocytic vesicle, the pH of the vesicle lumen
decreases through the action of proton pumps localized in the
endosome membrane. This acidification mediates a conforma-
tional change in the FR protein allowing the release of bound
ligand and its delivery in the cytosol.>” Finally, the FR recycles
back to the cell surface, allowing the delivery of additional folate
conjugates into the cell.””

Besides their high affinity for its receptor, other properties
make FA an attractive ligand for use in drug targeting. These
features include its convenient availability, low molecular
weight, easy conjugation chemistry, lack of immunogenicity,
water solubility, stability in diverse solvents, pH and tempera-
ture. Furthermore, the small size of the folate ligand also allows
good tissue penetration and rapid clearance from receptor
negative tissues.”” Therefore, these desirable properties render
folate as one of the most studied ligands in targeted drug
delivery. A wide range of molecules and drug carriers have been
conjugated to folate and tested in FR targeting.*’

Folate therapies

RA therapies, while directed at reducing joint inflammation
and joint damage, have undesirable systemic effects that increase
the risk of adverse events. Therefore, there is a need for improved
measures of disease control, as well as methods to better target
therapies just for involved tissues.>® The selective neutralization
of synovial macrophage activation is an appealing approach for
diminishing local and systemic inflammation as well as for
preventing irreversible joint damage.>® Although macrophages
are crucial to inflammation process, none of the available
biological therapies specifically target synovial macrophages in
RA. Their plasticity makes them an ideal target for the treatment
of inflammation, especially arthritis.*” Some therapies are
designed to eliminate the entire population of macrophages.
However, since they are involved in several processes, ranging
from wound repair to defense against pathogens, this can cause
severe adverse effects. Therefore, while depletion of cells from
monocytic lineage might not cause toxicity over a short period of
time, continuous elimination of these cells for long time would
lead to severe consequences.’® Specific elimination of the
sub-population of chronic activated macrophages constitutes an
alternative to the depletion of the entire macrophage population.
Delivery of therapeutic agents specifically to pro-inflammatory
cells would avoid toxicity and side damage to healthy cells.®

As described above, previous studies described that inflamed
joints of RA patients present a subpopulation of activated
macrophages expressing a receptor for the vitamin FA. Once just
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Figure 2. Schematic representation of folate mediated endocytosis.

few cell types also expressed the FRP, accumulation of FR
macrophages in arthritic joints allowed the selective targeting of
folate linked imaging and therapeutic agents to these sites of
inflammation.>’ In this way, folate-targeted therapies, selectively
attack the pathologic cell type, leaving the healthy macrophages
unharmed. Furthermore, since no other population of white cells
appears to express a functional FRP, the level of toxicity
associated with folate-targeted therapy appears to be very low.*®
Recently, Low and colleagues developed a functional recombi-
nant antibody with high specificity to human FRP and
demonstrated that this antibody selectively binding to inflam-
matory monocytes and activated macrophages from the synovial
fluid of patients with rheumatoid arthritis.®' Furthermore, other
studies describe the development of dsFv anti-FRp-targeted
Pseudomonas exotoxin A (recombinant immunotoxin conjugat-
ed to a fragment of an anti-FRp antibody),** folate hapten-me-
diated immunotherapies®*** and anti-folates designed to bind
FR.% These data suggest that FRp therapies can be applied as a
research method for effective targeting of activated macrophages
during inflammatory disease progression. Furthermore, arthritic
joints are readily visualized with folate-targeted radiopharma-
ceuticals in patients with RA ('®F-polyethylene, PET tracer ®°
and glycol-folate *°™Tc-EC20, FolateScan’®), constituting a
good indication for a successful response to folate-targeted
immunotherapy in humans. Although each of the abovemen-
tioned approaches holds promise for yielding new therapeutic
options for RA patients, there have been few reports on the use of
FA for targeting nanoparticles, as delivery systems of therapeutic
agents to sites of inflammation.

Current RA therapy

The treatment of RA in the last years is characterized by a
firm evolution of new agents and new approaches.®” Progress in
knowledge about cellular and molecular mechanisms of RA and
the development of new therapies have changed the overview of
scientific community about RA. Discoveries concerning its
pathogenesis have led to the development of new agents with
specific molecular targets, which have transformed the prognosis
for numerous RA patients. Treatment paradigms in RA have
shifted dramatically from controlling symptoms (using nonste-
roidal anti-inflammatory drugs, NSAIDs, and corticosteroids) for
controlling the disease process with the suppression of
inflammation (disease-modifying antirheumatic drugs,
DMARDs, and biologics),*® in order to prevent joint damage.
These changes in RA management result from growing
evidences suggesting that early RA identification and treatment
with DMARDs leads to improved prognosis and outcomes.
Therefore the aims in RA management besides disease remission
also include an improved functional status. The new criteria for
the classification/diagnosis of RA proposed in 2010% reflect a
probabilistic method to RA diagnosis and are specifically useful
before the erosions that are typical of RA become detectable on
X-rays. They include four scored areas: symptom duration (< or
>6 weeks), number and type of joints involved, biomarkers of
inflammation (acute-phase reactants), and biomarkers of specific
autoimmunity (RF and ACPA).

Methotrexate (MTX) is the first line therapy indicated for the
treatment of RA, but other options include leflunomide,
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Figure 3. Algorithm based on the 2013 EULAR recommendations on RA management.

sulfasalazine, and hydroxychloroquine.”” MTX is an analogue of
folate and, hence, has structural and physiochemical properties
considerably similar to those of folate; it has two carboxyl groups
in its molecule and both of them are most completely dissociated
in the physiological conditions.”’ The mechanisms proposed to
explain the effects of MTX include (i) inhibition of proliferation
of the inflammatory synovial cells due to inhibition of purine and
pyrimidine synthesis; (ii) inhibition of the synthesis of
polyamines; (iii) changes in cellular redox state and reduction
in intracellular glutathione levels, leading to decreased macro-
phage and lymphocyte recruitment function and increased

apoptosis sensitivity; and (iv) inhibition of the enzyme
aminoimidazole carboxamide ribonucleotide (AICAR) transfor-
mylase, consequent elevation of AICAR cellular levels, resulting
inhibition of AMP deaminase and ultimately leading to an
increase in extracellular adenosine levels.®®

Patients receiving MTX therapy should be reexamined after
3 months of therapy for symptomatic improvement (Figure 3).
However, the toxicity associated with MTX administration can
be minimized if it is dosed correctly and monitored appropri-
ately. Major toxic effects, such as hepatic, pulmonary, renal and
bone marrow abnormalities, " require careful monitoring. Minor
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Figure 4. A schematic diagram of a PEG-grafted bilayer at low grafting concentration (mushroom regime) and a PEG-grafted bilayer at high grafting

concentration (brush regime).

toxic effects, such as stomatitis, malaise, nausea, diarrhea,
headaches and mild alopecia, are common but respond to folate
supplementation.®®”* Other effects include gastrointestinal or
bone marrow toxicity, pneumonitis, hepatotoxicity and cirrhosis.

If patients are MTX intolerant or have moderate or high
disease activity after 3 to 6 months of therapy another DMARD
should be used or added, or alternatively biologic agents.”* In
RA therapy biological agents used are anti-TNF-o molecules,
responsible for the neutralization of TNF-a, the master regulator
of RA immunopathogenesis. Anti-TNF-« agents fall into three
structural categories: anti-TNF-a IgG antibodies (the monoclo-
nal antibodies (mAbs) infliximab, adalimumab, and golimumab),
PEGylated Fab’ fragments (certolizumab), and modified
TNE-R2 receptors (etanercept).®®’> Furthermore, biological
agents include an inhibitor of T-cell costimulation (fusion
protein composed of the Fc region of the immunoglobulin IgG1
fused to the extracellular domain of CTLA-4, abatacept), an
agent leading to B-cell depletion (chimeric monoclonal antibody
against the protein CD20, rituximab) and the IL-6 receptor
(TL-6R)-blocking monoclonal antibody (tocilizumab), as well as
the IL-1 inhibitor (anakinra).®” The implementation of these
effective biological agents has been accompanied by ongoing
health economic discussions regarding the implementation of
these highly effective, but accordingly, highly priced drugs in the
standard treatment guidelines of rheumatic diseases.’® Despite
their high clinical effectiveness, the cost efficacy of biologicals is
questionable bearing in mind that this therapy costs are 20-200
fold compared to traditional DMARDs.””

Stealth nanoparticles

The application of nanotechnology in healthcare is an
emerging area and the process of replacing traditional therapies
has already begun.’® Efficient drug delivery is one of the most
prominent problems confronted by the biotechnological and
pharmaceutical industries. Therefore, nanotechnology can re-
purpose the utilization of the myriad existing drugs produced by
these industries.”® Nanotechnology focuses on formulating

therapeutic agents in biocompatible nanocarriers. Nanoparticles
applied as drug delivery systems are submicron-sized particles,
devices, or systems that can be made using a variety of materials.
These materials include polymers (polymeric nanoparticles,
micelles, or dendrimers), lipids (liposomes), viruses (viral
nanoparticles), organometallic compound (nanotubes) and even
inorganic compounds (gold nanoparticles, quantum dots).

Nanoparticle drug delivery systems constitute one of the most
widely researched methods for improving circulation time,
bioavailability and targeting of several therapeutic agents.
Therefore, nanoparticles offer many advantages over free drug
administration. Remarking, nanoparticles are capable of: (i)
encapsulate and protect drugs from degradation or deactivation
before to reaching target site in vivo, (ii) improve targeting over
free drugs via presentation of tissue-specific targeting ligands,
(iii) offer controlled drug release by altering nanoparticle
composition, and (iv) be produced in large, reproducible,
batches.”® For all these reasons, nanoparticles hold the potential
to be the ideal drug delivery carrier. However, the rapid clearance
of nanoparticles from blood and limited targeting to specific
tissues has prevented the widespread application of nanoparticles
in the clinic.®

Application of unmodified nanoparticles is limited by their
rapid recognition by macrophages of the MPS®'"** within few
hours of administration.®® The main sites of nanoparticle
clearance are liver and spleen, where macrophages are in direct
contact with the bloodstream.®® Numerous interesting ap-
proaches for design and engineering of long circulating
nanoparticles have been described. However, the surface
stabilization of nanoparticles with a range of nonionic surfactants
or polymeric macromolecules has proved to be one of the most
successful approaches for keeping the particles in the blood for
long periods of time.**% PEG has unique physical properties,
being commonly used to improve the stability and biological
performance of colloidal drug carriers. The grafting of PEG to
the surface of a colloidal carrier is clearly shown to extend the
circulation lifetime of the vehicle.®® The ability of PEG to fulfil
this role has been attributed mostly to its physical properties such
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Figure 5. Influence of stealth degree in specificity of folate target nanoparticles to FR{3 activated macrophages.

as unlimited water solubility, large excluded volume and high
degree of conformational entropy.*® Although some describe the
reduction or prevention of protein adsorption,®” there is little
evidence that the presence of PEG at the surface of a vehicle
actually reduces total serum protein binding.*® Others have
shown that the steric barrier that PEG provides prevents
aggregation of colloidal carriers and thus enhances their stability
8 More recently, some studies have suggested a “dysopsoniza-
tion” phenomenon where PEG actually promotes binding of
certain proteins that then act to mask the vehicle.”® In a recent
study we demonstrate a decrease internalization of PEGylated
nanoparticles by activated MPS macrophages, which could be
used for the development of drug delivery systems with
improved qualities for systemic administration like intravenous
application.”’ To remark that, the degree of macrophage uptake
depends on the concentration of PEG in liposomes: a
concentration of 10% PEG decreased uptake by macrophages
to 13%, unlike 90% is observed for liposomes with 5% PEG. We
showed that increasing PEG concentration clearly improved the
stealth degree of nanoparticles, as the internalization of
nanoparticles by macrophages is greatly reduced. This is in
good agreement with the current scaling models for polymers at
interfaces, which predict a mushroom-brush transition in PEG
conformation at 5% of PEG-lipid, when PEG coils start to repel
each other and extend out from the surface on which they are
grafted.®® The polymer density determines the regime: if the
polymer density is low it is said to be in the mushroom regime,
when the graft density is high the polymers are said to be in the
brush regime (Figure 4).%

Nanoparticle populations bearing a predominant surface of
PEG molecules as high brush configuration are most resistant to
phagocytosis and poorly activated the human complement
system. In opposition, those populations with a predominant
surface PEG in a mushroom regime are potent activators of the
complement system and are prone to phagocytosis.”> Therefore,
surface heterogeneity explains why liposomes with 5% PEG are

rapidly internalized by macrophages, while the presence of 10%
PEG reduces significantly their internalization. When we tested
PEG concentration to improve the delivery specificity of folate
based nanoparticles to activated FR{3-expressing macrophages,
we verify that PEG at 10% greatly improved the stealth degree of
the liposomal nanoparticles, thereby reducing the non-specific
uptake, and promoted the specificity of FA-mediated targeting.**
We also measured the uptake of liposomal nanoparticles with the
improved PEG formulation in the monocytic cell line THP-1
with and without the overexpression of human FRB. Compared
to control, liposomal nanoparticles with folate were highly
internalized in THP-1 cells retrovirally transformed with FRp in
comparison with the wild-type THP-1 cells that weakly express
FRp showing minimal uptake similar to the Jurkat T cells used as
a negative control (Figure 5).%*

Furthermore, our results (unpublished data) demonstrate that
to contrast to MTX, the liposomes are selectively retained in
plasma and are not subject to immediate absorption and filtering
by the main organs (Figure 6). This means that the liposomes can
circulate to their peripheral target tissue and be bound there
instead of being non-selectively absorbed by the intestine, liver,
kidney and brain. In an ideal pharmacological system the
compound would be present at its target in low but stable
amounts sufficient to exert an effect. Excess amounts would then
be no longer available for the main metabolic organs, which are
anyway not involved in the pathological response.

After systemic administration, the nanoparticle drug delivery
system has to deliver the drug to the site of action. To achieve
this, the so-called “passive targeting” phenomenon can be
employed.”® The most common passive targeting strategy is the
Enhanced Permeability and Retention (EPR) effect exploited in
oncology field, which take advantage of the leaky vasculature of
tumor areas to enhance nanocarrier accumulation within the
interstitial space of tumors.’®”” The EPR phenomenon also
occurs in other diseases where inflammatory processes have
disrupted the permeability barrier of the vascular endothelium,
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Figure 6. Pharmacokinetics of MTX when provided as free drug dissolved in
serum, and encapsulated in liposomes. All materials were injected i.v. at a
dose of 0.6 mg/kg MTX.

such as in RA.”® Nanoparticles are retained in the extravascular
space with a large portion being taken up by macrophages in the
synovial layer.””

Folate-targeted nanoparticles

In the last years, two key studies describe the use of
folate-nanoparticles to specific targeting of FR{3 macrophages
and improve MTX clinical benefit in arthritic mice (Table 2).
Thomas T. and colleagues describe in 2011 the development of a
folate-conjugated dendrimers to target macrophages in inflam-
matory disease of arthritis.”” The poly(amidoamine) (PAMAM)
dendrimer (generation 5 [G5]) nanoparticle covalently conju-
gated to polyvalent FA shown to be bound and internalized in a
receptor-specific manner into both FR3-expressing macrophage
cell lines and primary mouse macrophages. Furthermore, the
conjugate G5-FA-MTX acted as a potent anti-inflammatory
agent and reduced arthritis-induced parameters of inflammation
such as ankle swelling, paw volume, cartilage damage, bone
resorption, and body weight decrease. Although dendrimers have
been studied as drug delivery systems, some concerns remain
regarding their safety for therapeutic use. In particular, the
conjugation of ligands and therapeutic agents at the dendrimer
surface do not protect them from degradation or deactivation
prior to reaching target site in vivo. Furthermore, although the
dendrimer from higher generations have some primary surface
amino groups to conjugation, they limit broadly the molecules of
ligands and therapeutic agents. Additionally, it was known that
the size and charge of PAMAM dendrimers influence their
cytotoxicity. The higher-generation (G4-G8) PAMAM dendri-
mers exhibit toxicity due to their high cationic charge density.'*
Finally, as described above, unmodified nanoparticles do not
survive long in circulation, but instead are removed by
macrophages of the RES. The dendrimers developed in this
study are not stealth. This critical point could, at least in part,
justify the incomplete inhibition of free FA to prevent
target-dendrimers uptake by FR3-expressing macrophages.

More recently, we report the encapsulation of MTX in a new
liposomal formulation using a hydrophobic fragment of
surfactant protein conjugated to a linker and folate to enhance
their tolerance and efficacy.”* Liposomes have gained extensive

Table 2
Comparison of two folate-nanoparticles to specific targeting of FRP
macrophages studied to therapy of arthritic mice.
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Drug protection No Yes
At surface Encapsulation
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Toxicity High Low
High cationic charge density
Stealth No Yes

PEGylation

attention as carriers for a wide range of drugs due to being both
nontoxic and biodegradable as they are composed of substances
naturally occurring in biological membranes.'®! Biologically
active materials encapsulated within liposomes are protected to a
varying extent from immediate dilution or degradation, which
makes them good drug delivery systems for the transport of
bioactive compounds to pathologically affected organs.'®*!'*?
The unique ability of liposomes to entrap drugs both in an
aqueous and a lipid phase makes such delivery systems attractive
for hydrophilic and hydrophobic drugs.'® Our delivery system
proved to be more efficient than classic systems where the FA is
linked to liposomes by PEG.'” The combination of all
complementary characteristics of these tailored liposomes,
including their small size, lack of cytotoxicity and their specific
targeting of FRa-expressing cells'®’, led us to evaluate the
efficiency of this system to treat RA, by targeting FR2 present at
the surface of activated macrophages. The presence of 10% PEG
greatly improved the stealth degree of the liposomes, thereby
reducing the non-specific uptake, and promoted the specificity of
FA-mediated targeting. To test the specificity of these new
liposomes in a pathological context, arthritis was induced in mice
(CIA model), and the results shown that liposomes strongly
accumulated in their joints (Figure 7, A4).** Furthermore, the
analysis of cell populations from inflamed joints of arthritic mice
revealed that macrophages expressing high levels of FR are
more prone to uptake FR-targeted than the non-targeted
liposomes.

To prove the ability of our liposomal formulation as drug
delivery system, liposomes encapsulating MTX were adminis-
tered in arthritic mice, before disease onset. Complete prophy-
lactic efficacy was observed in mice treated with FA-target
liposomes encapsulating MTX, where mice did not shown any
clinical signs of arthritis (Figure 7, B). Comparatively, when the
drug was injected in a soluble form it only had a marginal effect
and did not prevent the development of arthritis (Figure 7, B).
This fact leads us to believe that encapsulation of MTX in our
proposed formulation offers a cost effective way to treat arthritis
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and delay or reduce MTX intolerance. The results presented here
might have an important implication in clinical practice, where
available biological therapies could be delayed or completely
replaced by the proposed MTX liposomal formulations tested in
this work. It brings new hope to a large number of patients who
become intolerant to MTX and require much more expensive
treatments with biological agents.

Perspectives and future directions

As summarized above, activated but not resting macrophages
express a FR3, which can be exploited to deliver folate-targeted
nanoparticles, as specific drug delivery systems to RA therapy.
However, specific targeting of activated macrophages constitutes
a big challenge, because they are phagocytic cells that internalize
any strange particle. Thus it is imperative a total stealth degree, to
avoid the clearance of nanoparticles by macrophages of the RES,
thereby reducing the non-specific uptake. We verify that, to
contrast to 5%, just 10% PEG ensures a proper stealth degree of
the liposomal nanoparticles and promoted the specificity of
FA-mediated targeting to FR(3 activated macrophages. Further-
more, in contrast to free forms, encapsulated drugs are
selectively retained in plasma and are not subject to immediate
absorption and filtering by the main organs, suggesting that
therapeutic agents would be present at its target in low but stable
amounts sufficient to exert an effect.

This fact is particularly important in RA, where the first line
therapy, MTX, presents several side effects, as potential toxicity
and possible depression of the bone marrow or leading to
hepatitis and liver function. Moreover, if patients are MTX
intolerant another DMARD should be used or added, or
alternatively biologic agents. However, the development of
biological substances for the treatment of rheumatic conditions
has been accompanied by ongoing health economic discussions
regarding the implementation of these highly effective, but
accordingly, highly priced drugs in the standard treatment
guidelines of rheumatic diseases. In this way, the recent
strategies of folate-targeted nanoparticles with MTX were

effective to improve inflammatory disease treatments while
decreasing the MTX side effects with an improved cost—benefit
ratio. Furthermore, these nanoparticles exhibit outstanding
pharmacokinetics relative to MTX in its current forms, which
may prevent side effects due to specific FA-mediated targeting.
The promising prophylactic results, obtained with liposomes
encapsulating MTX, encourage to do further studies to analyze
their therapeutic effect, after the disease onsets. MTX repurpos-
ing, an improvement by formulation, may have a number of
research and development advantages such as reduced time to
market, reduced development risk and cost (clinical safety and
efficacy data are established), and the improved probability of
success. Furthermore, folate-targeted nanoparticles open hope to
repurposing of myriads of drugs used in RA therapy give up due
their side effects. Besides of MTX, hydrophilic drug, FA-target
liposomes demonstrate to be efficient in the encapsulation of
hydrophobic drugs, like as celecoxib and carbon monoxide-r-
eleasing molecules (CORM)-2, and specific delivery them in
Caco-2 cancer cells.'” In addition, our unpublished results
demonstrate the success use of FA-targeted liposomes for
specific delivery of small interfering RNA to activated
macrophages. The effect of myeloid cell leukemia-1, Mcl-1,
small interfering RNA (essential for synovial macrophage
survival), either free or incorporated in liposomal formulation,
was tested in primary human macrophages and successful
inhibition of Mcl-1 expression was obtained.

Because the activated macrophages may contribute promi-
nently to many other autoimmune and inflammatory diseases,
these technologies may also be very useful for neglected patient
classes in a range of orphan auto-immune diseases, like
myasthenia gravis, primary biliary cirrhosis, Sjégren’s syn-
drome, Behcet’s disease, systemic lupus erythematosus, and
Graves’ disease. Some of these diseases also affect arthritis
patients who would be especially benefited. If elimination or
suppression of the activated macrophages can improve the
symptoms of these autoimmune diseases also, we believe that
folate-targeted nanoparticles, encapsulating other therapeutic
agents might someday be available for the management of
multiple unwanted inflammatory processes. Furthermore,
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activated macrophages are pivotal cells in tumor-associated
inflammation, a well-recognized hallmark of cancer
progression.'**'°7 Since FR is also overexpressed in many
cancer cells, it constitutes one of the more attractive cancer
molecular targets. In this way, folate-targeted nanoparticles also
open new clinical avenues for diagnosis and treatment of cancer.
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