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2016 Pancreatic Cancer: Global view

Abstract
Pancreatic cancer (PC) is the most aggressive type of 
common cancers, and in 2014, nearly 40000 patients 
died from the disease in the United States. Pancreatic 
ductal adenocarcinoma, which accounts for the 
majority of PC cases, is characterized by an intense 
stromal desmoplastic reaction surrounding the cancer 
cells. Cancer-associated fibroblasts (CAFs) are the 
main effector cells in the desmoplastic reaction, and 
pancreatic stellate cells are the most important source 
of CAFs. However, other important components of 
the PC stroma are inflammatory cells and endothelial 
cells. The aim of this review is to describe the complex 
interplay between PC cells and the cellular and non-
cellular components of the tumour stroma. Published 
data have indicated that the desmoplastic stroma 
protects PC cells against chemotherapy and radiation 
therapy and that it might promote the proliferation 
and migration of PC cells. However, in animal studies, 
experimental depletion of the desmoplastic stroma 
and CAFs has led to more aggressive cancers. Hence, 
the precise role of the tumour stroma in PC remains 
to be elucidated. However, it is likely that a context-
dependent therapeutic modification, rather than 
pure depletion, of the PC stroma holds potential for 
the development of new treatment strategies for PC 
patients.
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Core tip: Pancreatic cancer (PC), the most aggressive 
type of common cancers, is characterized by a limited 



using genetically engineered mouse models (GEMMs) 
and human tissue, it was hypothesized that ADM 
might progress and contribute to the development 
of PanINs[12,13]. In support of the ADM hypothesis, 
ADM-associated atypical flat lesions were found to be 
the most likely PDAC precursor in KrasG12D/+, Ptf1a-
Creex1/+ GEMMs and in patients with family histories of 
PDAC, but not in sporadic PDAC[4]. In sporadic PDAC, 
however, tubular complexes and mucinous tubular 
complexes were frequently found.

Studies using PC animal models, especially GEMMs, 
have contributed to the understanding of PDAC 
progression[14,15]. GEMMs are considered superior to 
xenograft models, in which PC tumours are formed when 
human PC cells are introduced into immunocompromised 
mice. In GEMMs of PC, endogenous expression of K-ras 
is switched on in the progenitor cells of the mouse 
pancreas[16]. Such molecular modifications result in 
progression to invasive PC through distinct stages of ductal 
lesions that mimic human PanINs. Human 3-dimensional 
(3D) organotypic models have contributed to the 
characterization of tumour-stroma crosstalk in PC[17,18]. 
The organotypic model is a simplified representation of 
the complex in vivo 3D microenvironment. Organotypic 
models are relatively easy manipulated, and they 
constitute a useful tool for the systematic examination of 
anticancer therapies. 

The most common symptoms in patients with 
PC are asthenia, anorexia, weight loss, icterus, and 
abdominal pain[19]. The majority of PC patients are 
diagnosed in the late stage of disease, when surgical 
resection is no longer an option. Currently, effective 
screening tools to detect premalignant or early stages 
of the disease are not available. Both inherent and 
environmental factors are key contributors to the 
development of PC[20]. Cigarette smoking is the most 
important predisposing factor. Up to 20%-25% of all 
PC cases can be attributed to smoking, and current 
smokers have a 2.2-fold higher risk of developing 
PC than people who have never smoked[21,22]. Other 
important risk factors include type 2 diabetes, chronic 
pancreatitis, and heavy alcohol consumption[23-27]. 
According to a meta-analysis of seven case-control and 
two cohort studies including 6568 patients, individuals 
with family histories of PC had a nearly 2-fold increased 
risk of developing PC[28]. Approximately 10% of all PC 
cases have a familial background, and BRCA2, PALP2, 
and p16 germline mutations have been associated 
with familial pancreatic cancer (FPC)[20,29,30]. FPC is 
defined as PC occurring in a patient with two or more 
first-degree relatives with PC[31,32]. FPC is inherited as 
an autosomal dominant trait with high penetrance 
in family members[33]. The risk of developing PC is 
very high in cases with hereditary pancreatitis, which 
is most often caused by mutations in the cationic 
trypsinogen gene (PRSS1)[34]. 

PDAC is distinguished from many other cancer types 
by the excessive amount of scar tissue (“desmoplasia”) 
that surrounds the malignant cells and occupies up to 
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response to chemotherapeutics, which are often 
directed against the PC cells. One of the histological 
hallmarks of PC is the extensive desmoplastic stromal 
reaction that surrounds the PC cells. The PC stroma 
is not simply a bystander of the neoplastic process 
but plays an active part in disease progression and 
metastasis. The PC cells, cancer-associated fibroblasts, 
inflammatory cells, endothelial cells, and the extra-
cellular matrix engage in a complex interplay, the 
modulation of which could hold potential for the future 
development of new PC therapies.

Nielsen MFB, Mortensen MB, Detlefsen S. Key players 
in pancreatic cancer-stroma interaction: Cancer-associated 
fibroblasts, endothelial and inflammatory cells. World J 
Gastroenterol 2016; 22(9): 2678-2700  Available from: URL: 
http://www.wjgnet.com/1007-9327/full/v22/i9/2678.htm  DOI: 
http://dx.doi.org/10.3748/wjg.v22.i9.2678

INTRODUCTION
In 2014, pancreatic cancer (PC) was the fourth leading 
cause of cancer-associated deaths in the United States, 
with 46420 estimated new cases and 39590 estimated 
deaths[1]. The 5-year PC survival rate is approximately 
5%, and surgical resection offers the only option for 
long-term survival[1]. However, even for patients who 
undergo surgery for localized disease, the 5-year 
survival rate is only approximately 20%[2]. 

Pancreatic ductal adenocarcinoma (PDAC) accounts 
for approximately 85% of all PCs, and most of the 
published data have indicated that PDAC arises from 
ductal epithelial cells[2,3]. However, an alternative 
hypothesis, called acinar-ductal metaplasia (ADM), 
suggests that PDAC arises from the centro-acinar 
acinar compartment (CAAC)[4]. According to a well-
established progression model for the development 
of PDAC, the normal duct epithelium progresses to 
invasive adenocarcinoma through histologically well-
defined stages of duct lesions, the so-called pancreatic 
intraepithelial neoplasias (PanINs)[5,6]. However, not 
all PanINs will progress to invasive cancer. The PanIN 
subsets are histologically distinctive and genetic 
alterations characteristic of invasive adenocarcinomas 
can be identified in early ductal lesions[5]. Molecular 
abnormalities, which include the overexpression of 
oncogenes (K-ras and HER2/neu) and the deletion 
of tumour-suppressor genes (p16, p53, DPC4, and 
BRCA2), accumulate during progression through the 
different PanIN stages[5,7]. In support of the credibility 
of this progression model, approximately two-thirds 
of somatic mutations have been found to be shared 
between PanINs and associated invasive carcinomas[8]. 
Animal models using rats and transgenic mice, 
however, found that so-called tubular complexes, which 
are thought to originate via ADM, might be important 
precursor lesions in PDAC[9-11]. In subsequent studies 



80% of the entire cancer nodule[35,36]. The desmoplastic 
stroma consists predominantly of cancer-associated 
fibroblasts (CAFs), inflammatory cells, small blood 
vessels, and extracellular matrix (ECM)[36] (Figure 1). 
Resistance to therapy is the most important clinical 
challenge in PC. The increased use of combination 
chemotherapy could benefit selected patients in both a 
palliative and neo-adjuvant setting, but this treatment 
strategy is non-specific and has no significant impact 
on long-term outcome. Numerous studies have now 
documented tumour-promoting functions of the 
key components of the tumour stroma, including 
CAFs, ECM, endothelial cells, and inflammatory cells. 
However, mouse studies focused on stromal depletion 
have illustrated a tumour-suppressing, rather than a 
tumour-promoting, role of the stromal compartment. 
Hence, the precise role of the tumour stroma is 
currently controversial, and the aim of this review is 
to assess the context-dependent role of the various 
stromal components in the development of PC, as well 
as their potential for the future development of new 
treatment strategies. 

CAFs AND The INTeRACTION beTweeN 
CAFs AND PC Cells
CAFs, originally known as carcinoma-associated 

fibroblasts[37], play a significant role in tumour growth 
and progression. These cells display a myofibroblast-
like phenotype, characterized by a spindle shape and 
the expression of α-smooth muscle actin (α-SMA). 
Functionally, CAFs are characterized by their production 
of a wide variety of ECM molecules and cytokines. 

origin of cancer-associated fibroblasts 
CAFs can originate from different cellular sources, 
including pancreatic stellate cells (PSCs), which are 
considered to be the most important source by far, 
and probably resident fibroblasts and bone marrow-
derived cells (BMDCs) (Figure 2)[38,39]. Epithelial cells, 
through epithelial-mesenchymal transition, have also 
been proposed as a cellular source of CAFs, but this 
hypothesis is still under debate[40,41].

PSCs: PSCs are the most important cellular source of 
CAFs in PC[39]. Additionally, PSCs are the main effector 
cells in the fibrotic process of chronic pancreatitis[42-45]. 
PSCs have much in common with hepatic stellate cells 
(HSCs) because they both store vitamin A and are both 
characterized by their stellate morphology. PSCs came 
into focus when they were isolated and cultured by two 
independent research groups in 1998[46,47]. However, 
retrospectively, it was probably the same vitamin 
A-storing cell described by Watari in mice and by Ikejiri 
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Figure 1  Desmoplastic reaction in pancreatic ductal adenocarcinoma. The normal exocrine pancreas consists of acini with acinar cells and pancreatic ducts lined 
by epithelial cells. Quiescent pancreatic stellate cells (qPSCs) and interlobular fibroblasts are located in the periacinar space. Only a few T cells are observed, and 
B lymphocytes, plasma cells, and eosinophilic and neutrophilic granulocytes are very rare. The extracellular matrix (ECM) is largely limited to thin interlobular septa 
and pancreatic ducts (A); In pancreatic ductal adenocarcinoma, cancer cells permeate the basal membrane of dysplastic pancreatic ducts and invade the surrounding 
tissue. This invasion is accompanied by a strong desmoplastic reaction in which cancer-associated fibroblasts (CAFs), arising mainly from quiescent PSCs, synthesize 
an abundance of ECM proteins. Lymphocytes, macrophages, and mast cells infiltrate the peritumoral stroma. There is an increased need for oxygen and nutrients, 
leading to increased angiogenesis (B). 
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Additionally, human aPSCs were deactivated when 
cultured on Matrigel and treated with N-acetylcysteine 
(NAC)[62]. NAC induced similar cell cycle arrest in 
activated HSCs through the mitogen-activated protein 
kinase (MAPK) kinase pathway[63]. 

Activated PSCs lose their vitamin A lipid vacuoles, 
develop a spindle-shaped morphology, and begin to 
express α-SMA[46,47]. They differ from their quiescent 
counterparts in that they proliferate and develop 
migratory and phagocytic properties[50,64]. The secreted 
proteomes of cultured qPSCs and aPSCs have been 
compared, utilizing an immortalized cell line derived 
from human PSCs[65]. Proteomic profiling identified 641 
unique proteins secreted by aPSC, compared to only 
46 unique proteins identified in qPSCs. These proteins 
were associated with proliferation, inflammation, ECM 
remodelling, cell motility, and invasion, supporting an 
active role for aPSCs in PC progression[65]. 

Bone marrow-derived cells: CAFs can arise from 
stem cells originating from the bone marrow[66-69]. 
Bone marrow-derived cells (BMDCs) were recruited 
to the pancreatic stroma in a rat model of acute 
pancreatitis induced by a choline-deficient/ethionine-
supplemented diet[70]. Tagged BMDCs from female 
mice were transplanted into male rats and contributed 
to the aPSC pool, as indicated by their expression 
of desmin and α-SMA. In an experimental chronic 
pancreatitis mouse model, BMDCs were tracked with 
green fluorescent protein on the Y-chromosome in 
sex-mismatched transplanted mice[66]. Desmin-positive 

in humans[48,49]. In the normal pancreas, quiescent PSCs 
(qPSCs) are located in the periacinar space, and in the 
rat pancreas, they constitute approximately 4% of all 
parenchymal cells[46,47]. qPSCs function as a storage site 
for vitamin A and might be involved in ECM turnover 
because they have the capacity to produce matrix 
metalloproteinases (MMPs)[50]. Numerous biomarkers 
for qPSCs have been reported[39], including desmin[46,47], 
nestin[51], vimentin[47], synemin[52], and glial fibrillary 
acidic protein (GFAP)[46], but some of these markers 
have been identified in rats only, and most of them 
are not entirely specific for qPSCs. Hence, entirely 
specific immunohistochemical biomarkers for human 
qPSCs applicable in routine diagnostics have yet to be 
identified. During tissue injury or carcinogenesis, qPSCs 
become activated, attaining a state called activated 
PSCs (aPSCs), and they develop a myofibroblast-like 
phenotype[39] (Figure 3). There are several factors that 
activate qPSCs, such as platelet-derived growth factor 
(PDGF), transforming growth factor beta (TGFβ)[53,54], 
tumour necrosis factor alpha (TNFα), and interleukins 
1, 6, and 10 (IL-1, IL6 and IL10)[55]. PSCs express 
receptors for most of these cytokines in chronic 
pancreatitis, as well as in PDAC[44,45,56,57]. Activated PSCs, 
in turn, produce PDGF and TGFβ, which contribute 
to autocrine signalling[58,59]. Cultured rat qPSCs are 
activated by alcohol derivatives and oxidative stress, 
which could explain the fibrotic reaction in alcoholic 
chronic pancreatitis[60]. This activation is a reversible 
process because incubation of PSCs with trans-retinol 
retinoic acid induced quiescence in aPSCs in vitro[61]. 
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Figure 2  Cellular sources to cancer-associated fibroblasts in pancreatic ductal adenocarcinoma. Pancreatic stellate cells (PSCs) constitute the most important 
cellular source of cancer-associated fibroblasts (CAFs) in pancreatic cancer. In the normal pancreas, quiescent PSCs (qPSCs) have a periacinar location. When 
activated by cytokines or oxidative stress, they develop a myofibroblast-like phenotype. Resident periductal and interlobular fibroblasts can also contribute to the CAF 
population. Moreover, several studies have indicated that bone marrow-derived cells (BMDCs) are recruited to the pancreas during tissue injury, where they gain CAF-
like properties. It could also be speculated that epithelial cells, through epithelial-mesenchymal transition (EMT), could be a source of CAFs. 
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BMDCs engrafted to the pancreas and contributed to 
approximately 5% of all PSCs. A fraction of the bone 
marrow-derived cells expressed α-SMA, indicating 
that BMDCs had been activated and had contributed 
to tissue repair[66]. In another study, BMDCs were 
transplanted from male β-actin-EGFP mice into female 
C57/BL6 mice, which were divided into two groups. 
One group had caerulein-induced chronic pancreatitis 
and the other had dimethylbenzanthracene (DMBA)-
induced PC. The engrafted BMDCs contributed to the 
population of aPSCs in fibrotic areas in both groups[67]. 
Similar observations had already been made in rats 
in a 2009 study[71]. Chronic pancreatitis is a risk factor 
for the development of PC[26], and based on the above 
studies, it is tempting to speculate that BMDCs might 
contribute to the CAF population in human PC.

It has been documented that BMDCs with a 
fibrocyte precursor phenotype (CD45+, collagen 1+) 
circulate in the peripheral blood before engrafting 
to the fibrotic pancreas[68,72]. In the pancreas, as 
well as other organs, mature fibrocytes transform 
into myofibroblasts and participate in fibrogenesis 
by producing ECM and MMPs[68,73,74]. When BMDCs 
from male mice were injected into the tail veins of 
female mice, followed by induction of pancreatic 
fibrosis with cerulein, CD45+ fibrocytes harbouring 
the Y-chromosome circulated in the peripheral 
blood, indicating that they represented transplanted 
BMDCs[68]. These circulating fibrocytes functionally 
contributed to pancreatic fibrosis by differentiating 
into myofibroblasts[68]. Using a similar approach 
with induced pancreatic insulinomas in mice, donor-
derived fibrocytes were found in the stroma of these 
tumours[72]. 

Resident fibroblasts: Resident (local) fibroblasts are 

an important CAF source in many types of cancers[75]. 
Fibroblasts are abundant in connective tissue, pro-
ducing ECM and contributing to tissue homeostasis. 
They are of mesodermal origin and characterized by 
their spindle shape and extended cell processes[76,77]. 
One challenge in studying fibroblasts is the lack of 
specific molecular markers. Fibroblasts from different 
body sites display a diverse transcriptional pattern, as 
shown in the gene expression profiles of 50 primary 
human fibroblast cultures obtained at 10 different sites 
from 16 donors[78]. Fibroblast-specific protein 1 (FSP-1) 
seems to be the most useful marker for fibroblasts in 
vivo[76,77,79]. In the mouse pancreas, FSP-1 expression 
has been identified in interlobular fibroblasts[80], as well 
as in in dendritic cells[81] and aPSCs[80]. In PDAC, FSP-1 
has been documented in both human and mouse 
CAFs[82,83] as well as in human PC cells[84,85]. The above 
studies demonstrate that FSP-1 is not a totally specific 
marker for resident pancreatic fibroblasts. High FSP-1 
expression in human PDAC has been associated with 
increased invasion and shorter survival[84-86]. 

Upon tissue damage, cell necrosis/apoptosis leads 
to the release of inflammatory cytokines (e.g., TGFβ1 
and PDGF) and chemokines from local inflammatory 
cells, endothelial cells, or mesenchymal cells[87,88]. 
Subsequently, resident fibroblasts are activated, and 
they proliferate and differentiate into myofibroblasts, 
thereby contributing to the CAF pool. However, this 
process has not yet been documented in human PDAC, 
in which qPSCs seem to be by far the most important 
source of CAFs[39]. 

CAFs stimulate the proliferation and migration of 
pancreatic cancer cells 
CAFs and PDAC cells mutually promote each other’s 
proliferation and differentiation. Supernatants from 
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Figure 3  Activation of quiescent pancreatic stellate cells in pancreatic cancer. In the normal pancreas, pancreatic stellate cells are in the quiescent state 
(qPSCs) and located in the periacinar space. They have a stellate morphology and contain vitamin A lipid vacuoles. During carcinogenesis, they become activated 
(aPSCs). aPSCs are the most important cellular source of cancer-associated fibroblasts (CAFs) in PC. CAFs, characterized by a spindle-shaped morphology, are the 
main effector cells in the desmoplastic reaction, and they synthesize extracellular matrix (ECM) proteins. Further, they produce the growth factors and cytokines that 
promote cancer cell proliferation and migration.
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cultured PDAC cells induced the proliferation and 
production of ECM proteins in PSCs[89]. Conversely, CAF 
culture media induced the proliferation and migration 
of PDAC cells, and the growth rate of PDAC cells was 
markedly increased when PSCs were co-injected into 
nude mice[89-91]. 

To mimic the in vivo crosstalk between PC cells 
and stromal cells, 3D cell cultures of human PC cells 
and immortalized PSCs were cultured on Matrigel 
and collagen, simulating the in vivo PDAC micro-
environment[92]. Under these conditions, PSCs modulated 
the expression of adhesion molecules on the cancer 
cells, increasing their invasiveness, in association with 
the downregulation of E-cadherin and the upregulation 
of β-catenin[92]. These findings suggest that PSCs could 
play an important role in PC metastasis. Another study 
co-cultured PSCs with PDAC cells using conventional 
cell cultures[93]. The epithelial markers E-cadherin, 
cytokeratin 19, and β-catenin were downregulated 
in PDAC; the mesenchymal markers vimentin and 
snail were upregulated; and cancer cell migration 
was increased[93]. In an orthotopic xenograft mouse 
model, in which male human PSCs were co-injected 
with female PDAC cells into the pancreases of female 
mice, PSCs followed the PC cells to the metastatic sites, 
suggesting that PSCs could play a role in the settlement 
of metastatic PDAC cells[94]. 

CAFs protect cancer cells against chemoradiation 
therapy 
In addition to their role as promoters of PC cell 
proliferation and migration, CAFs have also been 
shown to protect PC cells from chemotherapy and 
radiation therapy (CRT). Hwang et al[90] isolated 
human PSCs from resected PC samples and developed 
an immortalized cell line. When the in vitro effects 
of PSC-conditioned media on PC cell survival were 
assessed in the presence of gemcitabine (100 μmol/L) 
or radiation therapy (100-Gy), components in the PSC 
media protected the PC cells against apoptosis[90]. 
Using monocultures or direct co-culture of PC cells with 
PSCs, PC cell survival during radiation was increased in 
the presence of PSCs[91,95]. This radioprotective effect 
of PSCs was significantly reduced using antibodies 
blocking β1-integrin signalling[91]. However, in this 
study, it was not confirmed that PSC-conditioned 
media displayed radioprotective properties, and it 
was suggested that direct contact between PSCs and 
the PDAC cells was necessary[91]. The ability of PSCs 
to radioprotect PC cells in vivo was demonstrated 
in xenograft models in which nude mice received 
subcutaneous injections of human PC cells alone or 
together with human PSCs[91,95]. Tumour growth was 
delayed as a response to radiation in both cases, but 
the response was less pronounced in tumours formed 
from both PC cells and PSCs than in tumours formed 
from PC cells alone[91,95]. Cultured human tumour-
derived PSCs, obtained from fine-needle aspirates, had 

a more activated phenotype after exposure to CRT, 
compared to PSCs isolated prior to CRT[96].

Depletion and modulation of CAFs in the PDAC stroma
Based upon the above observations, one would 
assume that a decrease in the CAF population 
would result in a concomitant decrease in PC cell 
proliferation/migration and an increased response 
to CRT. Data regarding the consequences of CAF 
depletion in the PDAC stroma have, however, been 
conflicting. The effect of gemcitabine was examined 
in KrasLSL.G12D/+;p53R172H/+;PdxCretg/+ (KPC) 
mice depleted of desmoplastic stroma and CAFs[97]. 
The KPC mouse is a frequently applied GEMM, 
expressing endogenous mutant Kras and p53 alleles 
in pancreatic cells and developing pancreatic tumours 
that morphologically closely resemble human PC[97]. 
Like their human counterparts, the KPC mouse 
tumours also have a poor response to gemcitabine. In 
control KPC mice, only two of 17 tumours responded 
to gemcitabine treatment, and this finding is similar to 
clinical results in human PDAC patients, in whom the 
response rate is 5% to 10%. When applying IPI-926, 
an inhibitor of the sonic hedgehog (shh) pathway, 
depletion of the desmoplastic stroma and of α-SMA 
positive CAFs was observed. This finding resulted in 
increased vascularization and more effective drug 
delivery, with improved overall survival. These data 
suggest that depletion of stromal tissue and CAFs in 
PDAC stimulated angiogenesis and enhanced drug 
delivery[97]. This finding could explain why inhibitors 
of angiogenesis have failed to significantly improve 
outcomes in PC, as approaches would potentially result 
in the decreased delivery of chemotherapeutic agents. 
Recently, IPI-926 was applied in a phase I study in 
combination with oxaliplatin, irinotecan, fluorouracil, 
and leucovorin (FOLFIRINOX) (Table 1)[98]. The study 
was closed early because a separate phase Ⅱ trial of 
IPI-926 plus gemcitabine indicated a shorter median 
survival in patients receiving this treatment. 

The desmoplastic stroma, however, does not only 
form a barrier that reduces tumour perfusion and 
hampers the effect of chemotherapeutic treatment. 
Recent data, based on studies on GEMMs, have 
indicated that the desmoplastic stroma, as a whole, 
might reduce the ability of PDAC cells to invade the 
surrounding tissue and metastasize[99-101]. When PKT 
(Ptf1acre/+; LSL-KrasG12D/+; Tgfbr2flox/flox) mice developing 
spontaneous PC were depleted of α-SMA-positive 
myofibroblasts, more invasive tumours developed 
and survival was reduced[99]. In agreement with these 
findings in mice, immunohistochemical scoring of 
interstitial α-SMA positive cells from 53 resected PDAC 
specimens revealed that small numbers of α-SMA 
positive cells were associated with shorter survival[99]. 
Stromal depletion by deleting shh was examined in 
the PKCY mouse model, resulting in earlier tumour 
development and decreased survival[100]. In subsequent 
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experiments, shh deletion resulted in a significantly 
reduced stroma and the reduction of α-SMA positive 
myofibroblasts. 

When primary human cancer-associated PSCs were 
treated with the Vitamin D analogue calcipotriol, lipid 
droplet formation increased and α-SMA expression 
decreased, resulting in the induction of quiescence in 
CAFs[102]. To examine the clinical potential of vitamin 
D receptor activation, calcipotriol was administered 
to KPC mice together with gemcitabine, resulting in 
significant reduction of tumour size in 70% of mice, 
while the intratumoral concentration of gemcitabine 
triphosphate, the active metabolite of gemcitabine, 
increased by 500%. The median survival was increased 
by 57%, supporting the possibility that stromal 
reprogramming to a more quiescent state, rather than 
its total ablation, is efficient in PC[102]. Notably, this 
study indicated that deactivation of CAFs increased 
the susceptibility of PC cells to chemotherapy. Based 
on these assumptions, Gundewar et al[103] identified 
a new agent that could potentially inhibit the anti-
therapeutic effects of CAFs. These authors were able 
to inhibit the proliferation of immortalized human 
PSCs when cultured with L49H37, a synthetic 
analogue of curcumin. The L49H37-treated cells were 
retained in the G0/G1 phase, possibly due to elevated 
phosphorylation of ERK1/2 and the downregulation of 
p21. 

Taken together, the above studies illustrate the 
complex role of the desmoplastic tumour stroma 
in the progression of PC. Most of the initial studies 
indicated that the desmoplasia and the cells producing 
it hampered the effect of chemotherapy and promoted 
PDAC cell proliferation and metastasis. More recent 
studies, however, have supported the idea that the 
desmoplastic stroma might form a barrier that reduces 
the invasion of PDAC cells. Hence, the role of the 
desmoplasia seems to be context-dependent. Induction 
of quiescence in CAFs, leading to modulation of the 
tumour stroma rather than ablation, could be the most 
promising approach for the future development of 
treatments targeting tumour desmoplasia in PC.

Prognostic value of CAF markers
High “stromal activity”, i.e., elevated expression of 
α-SMA-positive CAFs in the stroma surrounding the 
cancer cells, had a negative prognostic impact in 
PDAC patients, as shown in a study of 233 resected 
PDAC specimens[104]. The significance of high α-SMA 
expression in the PDAC tumour stroma was later 
supported by a study of 162 patients[105]. However, 
as mentioned above, depletion of α-SMA-positive 
myofibroblasts in the PDAC stroma of PKT mice was 
associated with shorter survival[99]. Large amounts of 
secreted protein acidic and rich in cysteine (SPARC), 
an alternative CAF marker in PDAC, had negative 
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Table 1  Important clinical trials describing drugs that target components of the pancreatic cancer stroma

Clinical trial Target Drug Results

Bramhall et al[138], 2002 ECM Marimastat: MMP inhibitor No survival advantage was found in patients receiving marimastat in 
combination with gemcitabine compared to patients receiving gemcitabine 

alone
Moore et al[137], 2003 ECM Bay 12-9566: MMP inhibitor Phase Ⅲ trial was closed early because Bay12-9566 treatment was inferior 

to gemcitabine treatment
Strimpakos et al[141], 2013 ECM PEGPH20: degradation of 

hyaluronan
Phase Ⅰb trial of PEGPH20 administration in combination with 

gemcitabine showed no significant toxicity. Phase Ⅱ trials are warranted
Lutz et al[217], 2011; 
Laheru et al[218], 2008

Immune cells GVAX: GM-CSF-based 
immunotherapy 

Phase Ⅱ trial showed that GM-CSF-based immunotherapy was a safe 
immunotherapeutic approach in combination with chemoradiation 

therapy. Phase Ⅱ, multicentre trials are warranted
Royal et al[192], 2010 Immune cells Ipilimumab: CTLA-4 inhibitor Phase Ⅱ trial of administration of ipilimumab did not show an acceptable 

response as a single-agent therapy
Le et al[219], 2013 Immune cells Ipilimumab + GVAX Phase Ⅰb trial of ipilimumab in combination with GVAX demonstrated 

an improvement in overall survival compared to patients receiving 
ipilimumab alone. Phase Ⅱ trials are warranted

Brahmer et al[194], 2012 Immune cells BMS-936559: PDL1 inhibitor Phase Ⅰ trial found no objective response in PC patients receiving 
BMS-936559 treatment

Beatty et al[168], 2013 Immune cells CP-870893: CD40 agonist Phase Ⅰ trial showed that CP-870,893 was well-tolerated in combination 
with gemcitabine in patients with advanced PDAC, and immune activation 

was observed. Phase Ⅱ trials are warranted
Ko et al[98], 2015 Stromal 

depletion
IPI-926 (saridegib): hedgehog 

inhibitor
Phase Ⅰb trial administered IPI-926 in combination with FOLFIRINOX. 
The study was closed early because a separate trial documented that the 

patients experienced a shorter median survival
Kindler et al[210], 2010 Angiogenesis Bevacizumab: VEGF-A inhibitor Phase Ⅲ trial of bevacizumab in combination with gemcitabine 

did not improve overall survival compared to patients receiving 
gemcitabine alone

Kindler et al[211], 2011 Angiogenesis Axitinib: inhibitor of VEGF 
receptors 1, 2 and 3

Phase Ⅲ trial of axitinib in combination with gemcitabine did not improve 
overall survival compared to patients receiving gemcitabine alone

ECM: Extracellular matrix; MMPs: Matrix metalloproteinases; VEGF: Vascular endothelial growth factor; PC: Pancreatic cancer; PDAC: Pancreatic ductal 
adenocarcinoma.
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prognostic value in PDAC[106-109]. Immunohistochemical 
characterization of 299 PDAC resection specimens 
revealed that patients labelled positive for stromal 
SPARC had a median survival of 15 mo, compared to 30 
mo for patients with no stromal SPARC expression[109]. 
Immunohistochemical characterization of SPARC 
expression in PC biopsy specimens from 58 non-
resectable patients prior to CRT revealed that patient 
survival was inversely correlated with stromal SPARC 
expression[108]. High SPARC expression, however, had 
a negative prognostic impact only in patients treated 
with adjuvant gemcitabine after resection but not in 
adjuvant treatment-naive patients[107].

The desmoplastic stroma in PDAC is not a homo-
geneous tissue. Different stromal compartments can be 
more or less active, and the distribution and frequency 
of different cell types vary in them. The desmoplastic 
stromal compartments were classified based on in situ 
hybridization experiments on human PDAC tissues[110]. 
Messenger RNA expression of 12 genes was scored 
in the entire tumour stroma, called the panstroma, 
compared to the stroma in the immediate vicinity 
of the cancer cells, called the juxtatumoral stroma. 
Three genes (apolipoprotein C-1, apolipoprotein D and 
MMP11) were observed in the juxtatumoral stroma but 
not in stromal cells located distantly from the cancer 
cells. Further, α-2 macroglobulin was localized to non-
neoplastic endothelial cells and the juxtatumoral stroma 
but not to the peripheral stroma. It was suggested 
that the juxtatumoral stroma plays a more active role 
in the invasive process in PDAC[110]. The expression 
of the above-mentioned genes in PDAC was further 
evaluated in seven PCs associated with intraductal 
papillary mucinous neoplasms (IPMNs), of which two 
were colloid carcinomas, two were tubular carcinomas, 
and three were mixed colloid/tubular carcinomas[111]. 
The three genes were expressed in the juxtatumoral 
stroma in all areas with tubular carcinoma, but no 
expression was observed in the juxtatumoral stroma 
of the two colloid carcinomas. This study also included 
eight PDAC specimens, two of which had liver meta-
stases. Apolipoprotein C-1 and apolipoprotein D, but 
not MMP11, were also expressed focally in one of the 
metastases[111]. These data indicate that the three 
juxtatumoral markers could be of specific importance for 
the invasion of pancreatobiliary-type adenocarcinomas 
but not necessarily for the implantation of metastatic PC 
cells in the liver.

Alpha-SMA is routinely used to identify aPSCs 
and CAFs in PDAC. However, different subsets of 
CAFs might be present in the PC stroma[82,112]. Mouse 
models of PC (Rip1Tag2 mice) and breast cancer 
(4T1 cells injected into BALB/c mice) harboured 
CAF subpopulations, in which FSP1-positive CAFs in 
particular showed only minimal overlap with other 
CAF markers, such as neuron-glial antigen 2 (NG2), 
α-SMA, and PDFGRβ[82]. A CD10-positive subpopulation 
of CAFs was identified in human PDAC specimens[112]. 

They were localized juxtatumorally, in close proximity 
to PDAC cells in 28 of 83 specimens, and these 
patients had significantly shorter survival. Additional 
studies focusing on the possible different roles of CAF 
subpopulations would be of great interest, as such 
studies have the potential to cast additional light on 
the suggested context-dependent functional roles of 
CAFs in PDAC. 

ROle OF sTROMAl eCM COMPONeNTs 
IN The DeVelOPMeNT AND 
PROGRessION OF PC
The desmoplastic stroma in PDAC contains large amo-
unts of ECM molecules (Figure 4). CAFs are responsible 
for ECM synthesis in PDAC. Many ECM proteins have 
been described in PDAC, including fibronectin[53,113], 
laminin[53,113,114], tenascin C[115], hyaluronan[116-119], 
collagen I[47,53,114,120,121], collagen Ⅲ[53,114], collagen Ⅳ
[114,122,123], and collagen XIA[124,125].

Increased PC cell death was observed in vitro when 
cancer cells were detached from the ECM, whereas 
survival was increased when cancer cells were 
cultured with laminin or fibronectin[126]. In PC resection 
specimens, samples with high stromal activity and 
low collagen deposition were associated with shorter 
patient survival, whereas the opposite was true for 
samples with low stromal activity and high collagen 
deposition[104]. 

Collagens Ⅰ and Ⅳ induce PC cell migration and 
metastasis[127,128]. The human PC cell lines BxPC-3 and 
Panc-1 became more motile when cultured on collagen 
I-coated dishes, compared to non-, fibronectin-, or 
laminin-I-coated plates[127]. The migratory properties 
were accompanied by a more mesenchymal phenotype, 
due to upregulation of N-cadherin, vimentin, and 
snail[127,129]. Collagen I-induced PC cell migration was 
demolished after treatment with an inhibitor of c-Jun 
NH2-terminal kinase (JNK). Inhibition of other signalling 
pathways, however, did not influence collagen I-induced 
migration[129]. 

MMPs and degradation of ECM in PC
ECM breakdown is considered a mandatory step in 
the processes of tumour invasion and metastasis[130]. 
The family of matrix metalloproteinases (MMPs) are 
the enzymes that are most responsible for degrading 
ECM proteins[131]. ECM turnover is a highly dynamic 
process, and ECM components are constantly syn-
thesized, predominantly by fibroblasts, and broken 
down by MMPs. The different MMPs share a similar 
domain structure, and their activity is regulated by 
tissue inhibitors of metalloproteinases (TIMPs)[131]. The 
expression of mRNAs encoding ECM-degrading MMPs 
was examined in human PC specimens[132]. MMP-2 and 
MMP-9 were elevated compared to the normal pancreas, 
and by in situ hybridization, they were particularly 
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Figure 4  Main components 
of the tumour stroma in pan
creatic cancer. A: Pancreatic 
cancer (PC) cells, arranged 
in small groups and duct-like 
structures, are surrounded 
by desmoplastic stroma (HE 
staining); B: PC cells strongly 
express maspin (maspin im-
munostain ing);  C:  Using a 
Sirius red stain, the collagen 
f ibres of  the desmoplast ic 
stroma are highl ighted;  D: 
Numerous α-smooth muscle 
actin-positive cancer-associated 
fibroblasts are observed; E: 
Tumour-infiltrating macrophages 
(CD163 immunostaining); F: 
T cells (CD3 immunostaining) 
are shown; G: Additionally, a 
few mast cells (tryptase im-
munostaining); H: neutrophilic 
granulocytes (myeloperoxidase 
immunostaining) are present; 
I: Several newly formed small 
blood vessels are located in the 
desmoplastic stroma (CD31 
immunostaining).
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located in PC cells and spindle-shaped stromal cells 
(CAFs/aPSCs)[132]. Expression of these MMPs and of 
MMP13 was later observed in cultured rat PSCs. MMP2 
expression was significantly increased when PSCs were 
culture-activated or stimulated with TGF-β1 and IL-6[50]. 

Koshiba et al[133] examined the role of MMP-2 in 
human PC resection specimens using gelatine zymo-
graphy. The MMP-2 activation ratio was significantly 
higher than in the normal pancreas, and the ratio was 
significantly higher in high tumour stage specimens 
(pT3) and in patients with lymph node and distant 
metastases compared to pT1 tumours without meta-
stasis. Hence, the upregulation of MMP-2 might play a 
significant role in tumour invasion and metastasis[133]. 
However, no correlation has been observed between 
MMP-2 expression and overall survival[134,135]. The 
prognostic role of MMP2 was not confirmed in a 
later study that examined the immunohistochemical 
expression of MMPs 1-3, 7-9, 11, 12, and 14 in 
resection specimens[136]. Instead, high expression of 
MMP7 in particular as well as MMP11 was found to 
be associated with a poor prognosis. Administration 
of MMP inhibitors, either alone or in combination with 
gemcitabine, to patients with advanced PDAC has not 
shown promising results (Table 1)[137,138]. 

ECM deposition increases fluid pressure and impairs 
drug delivery 
The interstitial fluid pressure (IFP) in organs is typically 
lower than or at the same level as the intravascular 
pressure in terminal blood vessels, thereby allowing 
the delivery and diffusion of solutes and fluid. High IFP 
might explain the limited delivery of chemotherapeutic 
drugs into cancer nodules[117,139]. In KPC mice, the 
ECM compound hyaluronan was present in large 
amounts in the juxtatumoral stroma and was also 
deposited around early precursor lesions of PC[116]. 
The IFP was significantly increased, and hyaluronan 
contributed to the increase in IFP in PC tumours, as 
indicated after implanting matrices with PC cells and 
different concentrations of hyaluronan. Conversely, 
the IFP was decreased after treatment with PEGPH20, 
a hyaluronan-degrading enzyme[116]. The increase in 
IFP was associated with vascular collapses, further 
contributing to reduced tumour perfusion. PEGPH20 
was able to restore functional perfusion of the collapsed 
vascular structures. Overall, survival improved after the 
treatment of tumour-bearing mice with a combination 
of PEGPH20 and gemcitabine[116,118]. Importantly, 
increased drug delivery to the tumour cells does not 
necessarily guarantee an increased drug response. 
When gemcitabine was administered to KPC mice in 
combination with 3,4,5,6-tetrahydrouridine (THU), 
an inhibitor of the gemcitabine-inactivating properties 
of cytidine deaminase, a significantly increased 
concentration of the active gemcitabine metabolite 
was observed in both plasma and tumour biopsies[140]. 
Surprisingly, higher concentrations of active gemcitabine 

did not significantly reduce tumour volumes in 
mice treated with gemcitabine + THU compared 
to gemcitabine only. Phase Ⅰ trials of PEGPH20 
administration in combination with gemcitabine have 
been performed, and no significant toxicity has been 
observed (Table 1)[141]. Therefore, phase Ⅱ trials are 
currently planned[141]. 

ROle OF eMT IN MeTAsTATIC PC 
Epithelial-mesenchymal transition (EMT), originally 
called epithelial-mesenchymal transformation[142], is 
characterized by the loss of epithelial properties and 
the acquisition of a mesenchymal phenotype. Epithelial 
cell markers, such as E-cadherin, are downregulated, 
while the expression of mesenchymal cell markers, 
such as vimentin, is increased[143,144]. Three types of 
EMT have been defined: type 1 is associated with 
implantation of the fertilized ovum, the following 
embryogenesis, and development of organs, type 2 
with tissue regeneration and fibrotic processes, and 
type 3 with cancer progression and metastasis[145]. 
The importance of type 3 EMT in the development of 
metastases in human PC is still debated, and most 
studies have been performed on animals and cultured 
human cells[146]. Snail and slug, two transcription 
factors that repress E-cadherin, were expressed in 
human PC tissues but not in normal epithelial cells[147]. 
E-cadherin, fibronectin and vimentin expression 
was characterized in 34 PC resection specimens 
using immunohistochemistry[148]. In a subgroup of 
these specimens, PC cells expressed vimentin and 
fibronectin and showed downregulation of E-cadherin. 
These patients had decreased survival, indicating that 
EMT might be related to a more aggressive cancer 
type[148]. PKCY mice (Pdx1-Cre; KrasG12D; p53fl/+; 
RosaYFP) mimic human PDAC in that they develop 
PanINs, primary tumours, and metastases with a 
morphology similar to that in humans[144]. Further, 
the pancreatic epithelial cells in PKCY mice could be 
tracked (YFP+-labelled cells). PC cells that underwent 
EMT could be identified by their expression of zinc 
finger E-box-binding homeobox (Zeb1) and the loss 
of E-cadherin. Zeb1 is an activator of EMT, promoting 
tumorigenesis[149]. Of the YFP+-labelled cells in the 
PKCY tumours, 42% underwent EMT[144]. Interestingly, 
EMT could be observed in PanINs before the onset 
of tumour formation because YFP+ Zeb1+ cells were 
already present in 8- to 10-wk-old PKCY mice, when 
no histological evidence of PDAC was present. At 
the same stage, circulating pancreatic epithelial cells 
(YFP+ cells) could be observed in the blood by flow 
cytometry, and YFP+ cells had seeded to the liver 
in some PanIN mice. Circulating pancreatic tumour 
cells from both PanIN and PDAC mice maintained 
a mesenchymal phenotype, as indicated by the 
expression of Zeb1 and reduced expression of E-cad, 
CK19, and EpCAM[144].
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Is EMT associated with the initiation of a stem cell 
program? 
The presence and function of specialized tumour-
initiating cells, the so-called cancer stem cells (CSCs), 
have been controversial[150]. CSCs are defined as 
malignant cells with stem cell properties, that is, the 
ability to undergo self-renewal and the potential to 
differentiate into all of the cell types corresponding 
to the original tumour. It has been hypothesized that 
EMT precedes the acquisition of stem cells traits[151,152]. 
In PC, support for this hypothesis has been found in 
several studies[153-156]. Immunohistochemical aldehyde 
dehydrogenase (ALDH) expression was detected in 
90 of 269 PC resection specimens and was related to 
reduced overall survival[153]. ALDH-positive PC cells 
were more tumorigenic than ALDH-negative cells in 
vitro as well as when injected subcutaneously into the 
flanks of athymic mice[153].

Well-described CSC markers in PC include CD24, 
CD44, and CD133[157,158]. Human PC cells with a CD24+, 
CD44+, epithelial-specific antigen (ESA)+ phenotype 
were 100 times more tumorigenic than CD24-, CD44-, 
ESA- PC cells when subcutaneously injected into NOD/
SCID mice[157]. Similarly, 500 patient-derived CD133+ 
pancreatic CSCs were capable of inducing orthotopic 
tumours in athymic mice, whereas 106 CD133- tumour 
cells did not form any tumours[158]. The expression of 
CD24, CD44, and CD133 relative to EMT was examined 
in cell cultures, as well as PC resection specimens[154]. 
The expression of vimentin was correlated positively, 
and E-cadherin was correlated negatively with the 
expression of CD24, C44, and CD133, thus supporting 
the theory that type 3 EMT might be correlated 
with the initiation of a stem cell program in PC[154]. 
Vimentin and urokinase-type plasminogen activator 
receptor expression was correlated with CD24 and 
CD44 expression in PC resection specimens[155]. Given 
the upregulation of mesenchymal markers in PC 
cells, a functional role of CD133 in PC tumorigenesis 
was suggested[156]. In vitro knockdown of CD133 
with shRNA in the highly migratory human PC cell 
line Capan1M9 (CD133high) generated the cell line 
shCD133M9, which showed reduced expression of 
mesenchymal factors, such as slug, N-cadherin, and 
fibronectin. Moreover, when injected orthotopically into 
nude mice, shCD133M9 cells were less invasive and 
produced fewer metastases[156].

relationship of the tumour microenvironment with 
cancer stem cells
Nodal and activin are secreted proteins that belong to 
the TGFβ superfamily, and they are strongly expressed 
in pancreatic CSCs and PSCs[159]. Inhibition of the 
nodal/activin pathway reversed CSC self-renewal and 
tumorigenesis[159]. In a later study, CSCs from human 
PDAC xenografts were isolated by sphere formation 
assay, and conditioned media from the cancer cells 
promoted nodal and activin A expression in PSCs[160]. 

Conversely, conditioned media from PSCs resulted in 
only a small increase in activin expression in PC cells. 
However, conditioned media from PSCs resulted in 
increased invasiveness of CSCs through nodal/activin 
signalling[160]. It was proposed that PSCs might form 
a niche for CSCs, promoting invasiveness and self-
renewal through nodal/activin signalling. 

In 3D indirect co-cultures with different human 
PC cell lines, PSCs enhanced the CSC phenotype, as 
indicated by increased sphere formation and CSC 
markers[95]. In this model, each sphere was believed 
to derive from one single cell. In a xenograft model, 
human PC cells were transplanted into mice alone or 
with human PSCs, inducing CD24 and CD326 (EpCAM). 
The stemness-promoting effect of PSCs was in part 
attributed to TGFβ signalling because TGFβ neutralizing 
antibodies inhibited CSC sphere formation ability and 
downregulated EMT markers[95]. 

Macrophages might also potentiate CSC features 
in PC[161]. When human sphere-derived CSC-enriched 
PC cells were injected into nude mice, tumour growth 
accelerated when co-injected with macrophages. In 
subsequent co-culture studies in trans-wells, microarray 
analyses showed upregulation of human cationic 
antimicrobial protein 18 (hCAP-18) and its cleavage 
product leucine leucine-37 (LL-37) in macrophages. 
The expression of hCAP-18/LL-37 in human PDAC 
was increased compared to the normal pancreas. 
Serial staining showed that hCAP-18/LL-37 was mainly 
expressed in CD68+ macrophages. When CRAMP 
(the murine homologue of hCAP-18/LL-37)-knockout 
bone marrow mononuclear cells were transplanted 
into irradiated KPC mice, tumour formation was less 
pronounced than in bone marrow cells from wild-
type mice[161]. Further, when CSCs were transplanted 
into wild-type or CRAMP-knockdown mice, tumour 
formation and CD133 expression were significantly 
reduced. Chemoresistance in CSCs increased following 
rLL-37 treatment, in addition to gemcitabine or 
abraxane, and increased CD133+ cells were observed. 
Exposure of M1 macrophages to CSC-conditioned media 
increased polarization towards the M2 phenotype and 
upregulation of LL37. This effect could be abolished by 
blocking nodal/activin/TGF-β1 signalling[161]. Inhibition 
of the LL37 receptors FPR2 and P2X7R reduced the 
ability of LL37 treated sphere-derived PDAC cells to 
form colonies and to invade in vitro, and CD133+ cells 
were reduced in number, suggesting that LL37 inhibition 
could have therapeutic potential. In KPC mice, LL37 
receptor inhibitors resulted in decreases in circulating 
tumour cell numbers and liver metastases[161]. 

ROle OF INFlAMMATORy Cells IN The 
DeVelOPMeNT AND PROGRessION OF 
PC
The desmoplastic stroma in PDAC contains large 
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numbers of inflammatory cells - mainly macrophages, 
T cells, mast cells, and neutrophilic granulocytes 
(Figure 4). Inflammatory cells play multiple opposing 
roles in the progression of PDAC, and as a whole, 
they represent a double-edged sword in the biology 
of PC. Some inflammatory cells, particularly cytotoxic 
CD8+ T cells, act anti-carcinogenically by eliminating 
PC cells[162]. Others, particularly M2 macrophages, 
contribute to tumour progression by the synthesis of 
angiogenic and proliferation-promoting cytokines and 
chemokines[163,164].

The evolving PC-related immune reaction was 
characterized in KrasG12D mice[165]. These mice express a 
single mutant Kras allele in progenitor cells and develop 
early PanIN lesions, followed by the progression through 
all of the PanIN stages and finally invasive lesions that 
metastasize. Morphologically, these lesions are similar 
to their counterparts in the human pancreas[16,165]. 
The pre-invasive PanIN lesions in KrasG12D mice were 
accompanied by the upregulation of CD45-positive 
leukocytes in the surrounding stroma[165]. In the early 
PanIN lesions, the immune response was dominated 
by immunosuppressive cells, such as macrophages 
(CD11b+), regulatory T cells (Tregs, Foxp3+), and 
myeloid-derived suppressor cells (MDSCs, Gr1+, 
CD11b+), but no effector T cell activity was observed, 
and CD8+ T cells were scarce. Increased CD8+ T cells 
were only found in a subset of advanced cancers[165]. 
CD40 belongs to the superfamily of TNF receptors, 
and it is expressed in a wide variety of cells, including 
monocytes, macrophages, B cells, dendritic cells, 
fibroblasts, endothelial cells, and epithelial cells[166]. 
CD40 activation is involved in the development of a 
T cell-dependent antitumour response[167]. In human 
PDAC and GEMMs of PC, activation of CD40 by agonist 
antibodies increased the effect of gemcitabine[167], 
mediated through CD40-activated macrophages 
(F4/80+) in the tumour stroma. In a subsequent phase 
I study, CP-870,893, a monoclonal antibody specific for 
the agonist CD40, was well tolerated in combination 
with gemcitabine in patients with advanced PDAC, and 
immune activation was observed (Table 1)[168]. This 
promising finding calls for phase Ⅱ studies. 

Macrophages
Immunohistochemistry of 137 PC resection specimens 
revealed an increase in macrophage and mast cell 
frequencies in the PC stroma compared to the normal 
pancreas[169]. A systematic immunohistochemical 
analysis of infiltrating immune cells in the PC stroma 
was performed in 212 human resection specimens[170]. 
In 78% of the specimens, CD163+ or CD204+ M2 
macrophages dominated over HLA-DR+ and CD68+ 
M1 macrophages, in correlation with the infiltration 
of neutrophils (CD66b+), and both were negatively 
correlated with M1 macrophages. Univariate and 
multivariate survival analyses demonstrated that high 
levels of pan macrophages (CD68+), M2 macrophages, 

and neutrophils were associated with shorter survival, 
and a high ratio of M1 macrophages to pan-macrophages 
was associated with longer survival[170]. High levels 
of CD4+ T cells or CD8+ T cells were associated with 
longer survival, whereas a high ratio of Tregs (FOXP3+ 
and CD4+) to CD4+ T cells was associated with shorter 
survival. Infiltration of M2 phenotype macrophages 
(CD163+ and CD204+) had a stronger correlation with 
lymph node metastasis than pan-macrophages in 
pancreatic cancer resections[171,172]. Similarly, a large 
number of M2 macrophages was correlated with 
increased lymphatic vessel density and poor prognosis. 
Hence, M2 macrophages might indicate poor prognosis, 
in part due to increased lymph node metastases[171,172]. 
This connection could be partially explained by the 
production of vascular endothelial growth factor (VEGF)-C 
by macrophages, leading to an increase in the number of 
peritumoral lymph vessels[169,173,174].

Macrophage-stellate cell crosstalk plays an im-
portant role in PC fibrogenesis. Lipopolysaccharide 
(LPS)-activated macrophages induced ECM synthesis 
in cultured rat and human PSCs through TGF-β 
signalling[175]. Quiescent PSCs became activated 
when co-cultured with macrophages[176]. Conversely, 
macrophages increased their cytokine production in the 
presence of PSCs. PSCs isolated from patients (normal 
pancreas and PC) predominantly expressed Th2 
cytokines (IL4 and IL13) and promoted macrophage 
polarization towards M2[177]. Macrophages induced EMT 
in PC cells in co-culture experiments of PC cells with M2 
macrophages, through Toll-like receptor 4 (TLR4)/IL-10 
signalling[178]. Modulation of macrophage polarization 
from the immunosuppressive M2 phenotype to the 
tumour-inhibiting M1 phenotype could represent a 
novel strategy in the treatment of PC. Furthermore, 
the expression of histidine-rich glycoprotein (HRG) 
was increased in Panc02 mouse pancreatic tumour 
cells when transduced with a lentiviral vector encoding 
human HRG[179]. When implanted into WT mice, 
HRG+ orthotopic Panc02 pancreatic tumours grew 
slower and had fewer metastases, and these effects 
were mediated through the induction of macrophage 
polarization from M2 towards M1[179]. Macrophages 
might induce gemcitabine resistance in PC[180]. In 
an in vitro study in which PC cells were co-cultured 
with macrophages, PC cell apoptosis and caspase-3 
pathway activation were reduced during gemcitabine 
treatment in the presence of macrophages. Further, 
increased response to gemcitabine was observed in 
CCR2-/- mice, characterized by reduced macrophage 
infiltration and activation. Macrophages could induce 
gemcitabine resistance in a paracrine manner 
because they were associated with increased cytidine 
deaminase in PC cells[180].

Mast cells
Mast cells have mainly been assigned roles in allergy 
and autoimmunity, but they might also play a role in 
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PC biology. Mast cell infiltration has been observed 
in PC, and their numbers are correlated with the 
number of lymph node metastases[169]. Mast cells 
are increased in human PC specimens compared 
to the normal pancreas, and this increase is most 
pronounced in advanced grade tumours[181]. High mast 
cell infiltration held unfavourable prognostic value 
with reduced survival[181,182]. Mast cell distribution 
has been examined in two main PC compartments: 
the intratumoral compartment and peritumoral, non-
neoplastic tissue. Each of these compartments was 
further subdivided into central and border regions[183]. 
High mast cell counts in the intratumoral border zone 
only were associated with worse overall survival[183]. 

In mast cell cultures, the addition of conditioned 
media from PC cell cultures increased migratory mast 
cell activity, and mast cell-conditioned media induced 
PC cell proliferation and migration[181]. Using the 
genetically engineered K-rasG12V mouse model, which 
spontaneously develops chronic pancreatitis, PanINs, 
and invasive PC, mast cell infiltration was found to 
be an early event, occurring in chronic pancreatitis 
and early PanINs. Injection of PC cells into Kitw-sh/w-sh 

mast cell-depleted mice reduced tumour growth and 
increased survival. “Normal” tumour growth was 
restored when bone marrow-derived cultured mast 
cells were injected[182]. When mast cells were incubated 
with conditioned media from PC cells, PSCs, and ductal 
epithelial cells, only the medium from PC cells induced 
mast cell migration, and mast cell-conditioned media 
increased PC cell and PSC proliferation[184]. Additionally, 
co-cultures of mast cells with either PC cells or PSCs 
resulted in mast cell activation, and neutralization of 
IL-13 and tryptase suppressed PSC activation. Further, 
tumour-bearing mice treated with AMD3100, a CXCR4 
antagonist that mediates mast cell migration, resulted 
in a 50% decrease in tumour volume and increased 
overall survival[184]. 

These findings illustrate the potential importance of 
mast cells in PC progression and the possible benefit of 
the future development of mast cell-targeted therapies 
in PC. To date, however, such therapies do not play a 
role in clinical practice. Moreover, it has been reported 
in GEMMs in which mast cells were absent (Pdx1-
Flp; FSF-KrasG12D/+; Cpa3Cre mice) that the formation, 
number, and stage of PanINs at 9 mo of age were 
not different from Pdx1-Flp-FSF-KrasG12D/+ controls, 
which frequently showed mast cells; at 12 mo, PDAC 
formation was observed in both groups[185]. 

Lymphocytes 
In PC, regulatory T cells (Tregs, CD4+ and CD25+) 
are increased in peripheral blood, as well as in the 
tumour microenvironment[186]. Treg increment in 
the stroma induces immune invasion in PC because 
Tregs suppress the anticancer immune response 
through inhibitory cytokines, such as IL-10 and TGF-β, 
thereby influencing cytotoxic CD8+ T cell activity[186]. 

When the TGF-β-expressing PC cell line PAN02 was 
subcutaneously injected into C57BL/6 mice, CD4+ 
CD25+ Tregs in tumour-draining lymph nodes were 
increased[187]. When Rag-1-/- mice lacking CD4 and 
CD8 T cells were injected with CD4+ CD25- cells from 
normal mice, with or without a subsequent injection 
of PAN02 cells, elevation of Foxp3 signals (a specific 
marker for Tregs) was only observed in the tumour-
draining lymph nodes of PAN02 challenged mice. 
This outcome was inhibited by TGF-β neutralizing 
antibodies, suggesting that PC cells promote the 
upregulation of Tregs through TGF-β[187]. Furthermore, 
upregulation of addressins in intratumoral endothelial 
cells might selectively recruit Tregs, and Treg 
migration could be suppressed by selective addressin 
antagonism[188]. 

Lymphocyte infiltration of distinct stromal PC 
compartments varies: the frequencies of CD8+ T cells, 
FoxP3+ regulatory T cells, CD20+ B cells, and CD56+ 
natural killer cells in the juxtatumoral compartments 
were all very low compared to the frequencies in the 
panstroma[189]. In this tissue micro-array (TMA) study 
of PC resection specimens and other pancreatobiliary 
diseases, CD68+ macrophages, in contrast, were 
more frequent juxtatumorally. No significant variation 
was observed in the distribution of CD4+ T cells or 
neutrophils. Patients with more extensive juxtatumoral 
CD8+ T cell infiltration had improved survival[189]. PSCs, 
through cytokine and chemokine signalling, were 
shown to reduce the migration of CD8+ T cells to the 
juxtatumoral stromal compartment in PC, suggesting 
an immunosuppressive role of PSCs in PC. 

Luminex multiplex immunoassays were used to 
examine the expression of cytokines and chemokines in 
cultured PC-derived PSC lines[190]. Compared to human 
foetal primary pancreatic fibroblasts, PSCs expressed 
high levels of the MDSC-promoting cytokines IL-6, 
VEGF, macrophage colony-stimulating factor (M-CSF), 
stromal cell-derived factor 1 (SDF-1), and monocyte 
chemoattractant protein-1 (MCP-1). In agreement, 
culture of peripheral blood mononuclear cells (PBMCs) 
with PSC supernatant promoted MDSC differentiation, 
which in turn reduced T cell proliferation. MDSCs 
expressed CD11b and CD33 and inhibited tumour-
specific immune responses by suppressing CD8+ T 
cells[190]. 

As indicated in the above sections, the PC tumour 
environment displays several immunosuppressive 
properties, which makes immunotherapeutic ap-
proaches challenging. Immune checkpoint therapy 
is a promising strategy that targets the endogenous, 
immunosuppressive regulatory pathways in T cells 
described above. Promising results have been obtained, 
for example, in the treatment of malignant melanoma, 
and three immune checkpoint agents have been 
approved for this disease by the United States Food and 
Drug Administration[191]. Similar strategies are under 
investigation for PC treatment, but so far have achieved 
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only limited success, for example, in a phase Ⅱ trial of 
the cytotoxic T lymphocyte antigen 4 (CTLA4)-blocking 
antibody ipilimumab (Table 1)[192]. PC cells express 
colony-stimulating factor 1 (CSF1), whereas the CSF1 
receptor (CSF1R) is predominantly expressed in the 
tumour stroma, and inhibition of CSF1R in a mouse 
model of PDAC resulted in the depletion of tumour-
associated macrophages, enhancement of cytotoxic T 
cell infiltration, and reduced tumour progression[193]. 
However, the effects of ipilimumab therapy in the 
phase Ⅱ trial were rather limited, which could be 
attributed to the synchronous induction of the T-cell 
checkpoint molecules CTLA4 and programmed death-
ligand 1 (PDL1). When PDAC mice were treated with 
a combination of CSF1R inhibitors and PDL1 receptor 
or CTLA4 antagonists, stronger tumour regression was 
observed when these drugs were used alone. Hence, 
CSF1/CSF1R inhibition might have the potential to 
improve the effects of checkpoint-based immunotherapy 
in PC[193]. A phase Ⅰ trial examined the effect of the 
PDL1-inhibiting antibody BMS-936559 in patients with 
selected advanced cancers, including PDAC[194]. No 
objective response in patients with pancreatic cancer 
was observed compared to patients with ovarian cancer, 
renal-cell cancer, melanoma, and non-small-cell lung 
cancer. 

ROle OF eNDOThelIAl Cells AND 
ANGIOGeNesIs IN The DeVelOPMeNT 
AND PROGRessION OF PC
In PC, as in many other cancers, the need for oxygen 
and nutrients increases during tumour growth, leading 
to the synthesis of new blood vessels through the 
proliferation of endothelial cells in the pre-existing 
blood vessels, a process called angiogenesis[195]. 
Simultaneously, proteolytic enzymes break down the 
ECM[196]. Despite this angiogenesis, direct intratumoral 
measurement of oxygenation has revealed significant 
intratumoral hypoxia in PC[197]. Hypoxic conditions 
have also been described in the tumour stroma, as 
evidenced by the upregulation of hypoxia-inducible 
factors in CAFs[198,199]. 

Angiogenesis in PC is regulated by a complex 
interplay between different cell types in the tumour 
stroma. Under hypoxic (0.75%-1% O2), compared to 
normoxic (21% O2), conditions, cultured PSCs increased 
their production of collagen Ⅰ and the proangiogenic 
vascular endothelial growth factor (VEGF)[200,201]. 
VEGF-synthesis in PSCs was also demonstrated 
by immunofluorescence in PC specimens[200]. Con-
ditioned media of hypoxia-cultured PSCs induced the 
proliferation and migration of endothelial cells and 
induced angiogenesis in vitro as well as in vivo in 
mice[200]. The proliferation of endothelial cells in cell 
cultures was increased by up to 47% after treatment 
with PSC supernatant, whereas PC cell supernatant 

reduced endothelial cell growth[201]. Furthermore, CD31 
was upregulated in primary tumours of BALB/c mice 
co-injected with human PC cells and human PSCs 
compared to mice injected with PC cells only[94]. In 
addition to PSCs, VEGF is predominantly expressed 
in PC cells and endothelial cells, as well as in tumour-
associated macrophages[202,203]. VEGF is an important 
unfavourable prognostic marker in PC[204]. Multivariate 
analyses have revealed a significant association 
between high VEGF and PC recurrence, and it has been 
suggested that VEGF-promoted metastasis might in 
part be the cause of this early recurrence[202,205].

TNP-470 is a synthetic analogue of the fungus-
derived bioactive agent fumagillin, which inhibits 
endothelial cell proliferation[206]. TNP-470 significantly 
reduced tumour size and spread in orthotopic xenograft 
models of PC in mice[207]. This early study indicated that 
therapies targeting angiogenesis have potential in PC. 
Administration of small doses of TNP-470 (30 mg/kg) 
or gemcitabine (50 mg/kg) alone had no significant 
effect, but a combination of these therapies reduced 
tumour growth and metastases and improved median 
survival[208]. In a phase Ⅱ clinical trial, the recombinant, 
humanized monoclonal VEGF antibody bevacizumab 
was administered in combination with gemcitabine to 
52 advanced-stage PC patients[209]. A response rate of 
21% and a median survival of 8.8 mo were observed, 
which were considered superior to gemcitabine alone. 
The following phase Ⅲ trial, using gemcitabine plus 
bevacizumab compared to gemcitabine plus placebo 
in 602 patients with advanced PC, unfortunately did 
not show any significant efficacy of this regimen, 
however (Table 1)[210]. Exploiting a similar strategy, 
inhibition of VEGF receptors with axitinib in combination 
with gemcitabine did not improve overall survival in a 
phase Ⅲ trial in patients with advanced PDAC[211]. In 
all, targeting VEGF signalling alone appears to be an 
ineffective strategy in the treatment of PDAC. 

ClINICAl IMPlICATIONs OF 
MODUlATING The PANCReATIC 
CANCeR sTROMA
The median survival after the diagnosis of PC is only 
8 mo[212]. Surgical resection offers the only hope 
for significantly prolonged survival, but even after 
surgery, the median survival is only 21 mo. Surgical 
resection can only be offered to approximately 20% of 
patients because the remaining patients present with 
advanced disease at the time of diagnosis. The current 
standard of care for PC patients is the nucleoside 
analogue gemcitabine[213]. However, the survival 
benefit of gemcitabine treatment is minimal, and 
better therapeutic strategies are needed. FOLFIRINOX 
was found to be associated with a survival advantage 
compared to gemcitabine in a clinical trial of metastatic 
PC[214]. Pre-clinical studies have indicated that therapies 
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targeting the pancreatic cancer stroma could offer hope 
for better prognoses for PC patients, but so far, it has 
not been possible to translate these promising results 
to a clinical setting[215,216]. In Table 1, we summarize 
important clinical trials describing drugs that target 
components of the pancreatic cancer stroma. 

CONClUsION
PC is one of the most aggressive known cancer types, 
and its management remains highly challenging. 
Gemcitabine, the standard chemotherapeutic drug used 
in PC, has only a limited effect on patient survival[213]. 
Therefore, new treatment strategies, targeting for 
example the PC stroma, are highly warranted. Because 
of the complex interplay of the central components 
of the tumour stroma - cancer-associated fibroblasts 
(CAFs), extracellular matrix, and inflammatory and 
endothelial cells - it is often ineffective to use a treatment 
strategy that blocks single isolated factors. Early studies 
suggested that large numbers of peritumoral CAFs 
indicated a poor prognosis in PC[104], whereas more 
recent data have indicated that the depletion of CAFs 
promotes tumour aggressiveness[99,100]. The significance 
of the desmoplastic stroma might be context-dependent 
during PC progression. Stromal reprogramming, such 
as the induction of quiescence in aPSCs/CAFs or the 
antagonism of stromal growth factors, rather than 
stromal depletion, could represent a more appropriate 
treatment strategy in PC. Such strategies might be 
effective only at certain stages of PC development and 
progression, and they might have to be combined 
with other approaches such as antiangiogenic or 
immunotherapeutic approaches.
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