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Abstract 
Background Despite evidence from twin and family studies for an important contribution of 
genetic factors to both childhood and adult onset psychiatric disorders, identifying robustly 
associated specific DNA variants has proved challenging. In the pre-genomics era the genetic 
architecture (number, frequency and effect size of risk variants) of complex genetic disorders 
was unknown. Empirical evidence for the genetic architecture of psychiatric disorders is 
emerging from the genetic studies of the last five years. 
Methods and scope We review the methods investigating the polygenic nature of complex 
disorders. We provide mini-guides to genomic profile (or polygenic) risk scoring and to 
estimation of variance (or heritability) from common SNPs. We review results of applications of 
the methods to psychiatric disorders and related traits and consider how these methods inform 
on missing heritability, hidden heritability and still-missing heritability. 
Results Genome-wide genotyping and sequencing studies are providing evidence that 
psychiatric disorders are truly polygenic, that is they have a genetic architecture of many 
genetic variants, including risk variants that are both common and rare in the population. 
Sample sizes published to date are mostly underpowered to detect effect sizes of the 
magnitude presented by nature, and these effect sizes may be constrained by the biological 
validity of the diagnostic constructs. 
Conclusions Increasing the sample size for genome wide association studies of psychiatric 
disorders will lead to the identification of more associated genetic variants, as already found for 
schizophrenia. These loci provide the starting point of functional analyses that might eventually 
lead to new prevention and treatment options and to improved biological validity of diagnostic 
constructs. Polygenic analyses will contribute further to our understanding of complex genetic 
traits as sample sizes increase and as sample resources become richer in phenotypic 
descriptors, both in terms of clinical symptoms and of non-genetic risk factors. 

 
Key points: 
- Genome-wide association data provide evidence for the polygenic architecture of 

psychiatric disorders and traits, i.e. these traits are influenced by many genetic variants and 
affected individuals may carry a polygenic burden of risk alleles. 

- We provide mini-guides for polygenic methods of genomic profile (or polygenic) risk scoring 
and of estimation of variance (or heritability) from common SNPs. 

- Polygenic methods applied to currently available samples provide evidence that part of the 
missing heritability is just hidden and that with increasing sample sizes the number of 
genome-wide significant hits will substantially increase, as already achieved for 
schizophrenia. 

- The identification of genetic variants provides the starting point of functional analyses that 
might eventually lead to new prevention and treatment options and to improved biological 
validity of diagnostic constructs. 
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Introduction 
Twin and family studies have reported a significant contribution of genetic factors to both 
childhood and adulthood onset psychiatric symptoms and disorders, with heritability estimates 
in the range of 0.4-0.8 (Figure 1), implying that inherited DNA variants are important in the 
etiology of these disorders. Therefore, identification of specific genetic variants has been a 
research goal for some decades as a mechanism to gain insight into etiology. Recent advances 
in technology have allowed the systematic testing of genetic variants across the genome for 
association with traits measured on unrelated individuals. The aims and outcomes of these 
genome-wide association studies (GWAS) have been reviewed elsewhere1,2. Briefly, in GWAS 
the genetic variants tested are single nucleotide polymorphisms (SNPs) or large copy number 
variants (CNVs; submicroscopic insertions/deletions, usually > 100kb); this review considers 
analyses from the SNPs. Each SNP is tested for association with the trait, which is difference in 
mean score of a quantitative trait for the alternate SNP alleles, or differences in allele 
frequencies between cases and controls in the analysis of disease traits. The SNPs measured 
are common genetic variants with a minor allele frequency of at least 0.01 and mostly higher. 
About a 1 million independent association tests are conducted and hence, to avoid chance 
findings, the threshold for declaring significance of an association test is 0.05/1 million or 5x10-8 

(ref3). The correlation structure of the genome means that each SNP tested is correlated with 
many other DNA variants within a ~ 1MB region (linkage disequilibrium). Thus, an associated 
SNP is unlikely itself to be the risk conferring variant but tags a risk region for follow-up study.  
Given the disappointing results of association studies conducted prior to the GWAS era in which 
hypothesis driven candidate genes were tested, there were high hopes that the hypothesis-free 
systematic evaluation of the whole genome in GWAS would enable identification of genetic 
variants associated with psychiatric disorders (and other complex genetic traits). The first 
empirical data came from the GWAS of the Wellcome Trust Case Control Consortium (WTCCC)4 
that benchmarks the beginning of the GWAS era.  Across all seven disorders studied (including 
bipolar disorder) each of ~2000 cases with 3000 shared controls, 14 independent loci surpassed 
the significance threshold, but these loci explained only a small proportion of heritability. The 
first phase of GWAS for the major psychiatric disorders schizophrenia, bipolar disorder, major 
depressive disorder (MDD), autism spectrum disorders (ASD) and attention deficit hyperactivity 
disorder (ADHD) 4-10 showed a similar picture with few or no genome wide significant hits, 
indicating that common variants of large effect are not part of nature’s repertoire. All studies 
had excellent power to detect genetic variants with an odds ratio of 1.5 and a minor allele 
frequency of 0.2 and reasonable power to detect an effect with an odds ratio of 1.3. The 
absence of significant results raised the question whether common variants are of sufficient 
relevance in the development of psychiatric disorders to pursue with GWAS. Here we review 
methods that use GWAS to provide critical empirical evidence of an important polygenic 
contribution to common psychiatric disorders as was first proposed 45 years ago11. In this 
review, we first define heritability and related measures. We then consider the methods that 
have demonstrated the evidence of a polygenic contribution to the genetic architecture of 
complex traits, diseases and disorders including psychiatric disorders. Next, we review 
applications of these methods to psychiatric disorders and related phenotypes. Lastly, we draw 
conclusions and implications for future research. In this edition Thapar and Gordon contribute a 
Perspectives article providing further clinical interpretation of these methods12. 
 
Heritability  
Evidence for a genetic contribution to psychiatric disorders comes from the consistently 
reported increased risk of the disorder in relatives of those affected. However, such increased 
risks need to be interpreted with care, since close relatives share a common family 
environment so that the increased risk in relatives may also reflect non-genetic factors. 
Estimates of risks of disease in different types of relatives (e.g. monozygotic and dizygotic 
twins, first and second degree relatives) are needed to disentangle genetic from non-genetic 
factors. These risks to relatives are used to estimate heritability on the liability scale. Liability to 
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disease is a non-observable or latent, continuous variable with those ranking highest on liability 
being affected. Heritability on the liability scale, h2, quantifies the proportion of variance of 
liability to disease attributable to inherited genetic factors. Comparison of the relative 
importance of genetic factors for different disorders is more intuitive on this scale than 
comparison of risks to relatives. Figure 1 shows heritability for a range of psychiatric disorders. 
Non-genetic factors include identifiable (but perhaps not recorded) environmental factors or 
measurement error but also unidentifiable factors which form an intrinsic stochastic noise. 
Estimates of heritability on the liability scale depend on knowledge of baseline risk of disease in 
the population from which the twin and family cohorts are drawn, and estimates of baseline 
risk are often surprisingly difficult to pin down. They may also vary between populations, across 
ages and may depend on whether non-genetic factors have been recorded and included in the 
analysis. Hence, in reality heritability estimates should be viewed as pragmatic benchmarks 
representing evidence for low, moderate or high contributions of genetic effects.  

While heritability on the liability scale expresses the proportion of the variance in liability that is 
attributable to genetic factors, it tells nothing about the underlying genetic architecture of the 
disease in terms of number, frequency and effect sizes of individual causal variants, nor of the 
mode of action of causal loci (i.e. additive or non-additive). Under a polygenic model, the 
liability to disease reflects multiple genetic and non-genetic effects acting additively. Hence 
liabilities are assumed to be normally distributed because such a distribution results from many 
additively acting effects.  All individuals in the population carry some genetic risk variants and 
likely experience some non-genetic risk factors, but most individuals in the population are not 
affected  - disease status results when the cumulative load exceeds a burden of risk threshold.  

Missing heritability in GWAS 
GWAS identify associations between SNPs and disease. Reported results from association 
analyses include risk allele frequency (RAF), effect size (expressed for disease as the odds ratio, 
OR) and p-value of association. The contribution of these genetic variants to variance can be 
calculated on the liability scale13-15 to allow direct comparison of the contribution to risk of each 
locus on the same scale as heritability is reported. Assuming independence, the contribution of 
each genome-wide significant (GWS) locus can be summed to determine the proportion of 
variance in liability explained by these loci together, thus quantifying the effects of all genome-

wide significant SNPs. This is denoted by ℎ𝐺𝑊𝑆
2 .  

Given the stringent significance threshold applied, the ability to detect risk loci (i.e., the power) 
depends on whether the sample size is sufficient given the effect sizes. When the first GWAS 
were planned the distribution of expected effect sizes was unknown and sample sizes were 
powered to detect OR > ~1.3. As mentioned above, these GWAS yielded few GWS results with 

ℎ𝐺𝑊𝑆
2  much less than h2. This difference has been termed “missing heritability”16. As sample 

sizes have increased, the number of GWS variants have increased for both quantitative traits 
and diseases (see Fig 2 in Visscher et al2) providing empirical evidence that common variants do 
play a role in complex genetic traits. Currently, GWS variants explain < 0.02 of variance for 
bipolar disorder, MDD, ADHD and ASD and ~0.07 for schizophrenia. An exception is Alzheimer’s 
disease in which ~0.18 of variance is explained, but this is mostly attributable to variants of the 
APOE gene, identified in the pre-GWAS era. 

The observed increase in number of significant results for the traits for which larger sample 
sizes have been accumulated, implies that the earlier studies were underpowered to detect the 
variants given their effect sizes. However, given that collection of larger samples is time 
consuming and expensive, can we be sure that the same will be true for other traits? We 
describe two methods that were developed to investigate the polygenic architecture of traits 
using data sets that are currently available.  Although these data sets may be underpowered to 
detect the individual small effects as GWS they can provide evidence for contributions of 
common variants of small effect sizes as explained in the sections below by also taking into 
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account contributions from SNPs that do not reach genome-wide significance. These analyses 
increase our understanding of the genetic architecture of traits to which they are applied and 
provide empirical evidence to help decisions about future experimental design.  

Genomic profile risk scoring 
Many GWAS that report no or few GWS associated SNPs show more small p-values of 
association than expected by chance. This tell-tale sign of a polygenic genetic architecture 
provided stimulus for the development of methods that capture this signature. The first such 
method was profile scoring (see Box 1). Briefly, in its standard application, a GWAS is 
conducted in a sample denoted the “discovery” sample. The risk alleles and their effect sizes 
are then used to generate genomic profile risk scores (GPRSs) in an independent “target” 
sample, using SNPs whose p-values in the discovery sample are below some threshold (Box 1 
step 5). A GPRS is calculated for each individual in the target sample as the sum of the count of 
risk alleles weighted by the effect size (log odds ratio for case-control) in the discovery sample.  
The profile score is evaluated through regression of the target phenotype on the GPRS after 
accounting for other known covariates. The target phenotype could differ from the phenotype 
in the discovery sample, allowing cross-phenotype analyses as we discuss later. In association 
analysis, the aim is to identify specific associated variants and the stringent threshold for 
declaring significance of individual SNPs is important, providing confidence that the identified 
variants are true positives. This is important because specific (and costly) follow-up studies are 
directed at loci that surpass this cut-off and hence false positives cannot be tolerated. In 
contrast, GPRS analyses aim to provide insight in the genetic architecture using evidence for 
association from variants that do not pass the stringent threshold of association. As the 
threshold of discovery sample p-value increases, the number of SNPs included in the GPRS 
increases and hence the ratio of false: true positives increases. However, profile score analyses 
can tolerate inclusion of some false positives since, on balance, useful information from the 
true positives may still contribute. Selection of SNPs into profile scores is therefore based on 
much less stringent p-value thresholds than in association analysis of single variants, and in 
principle all SNPs could be included into the score (see Box 1 sample size considerations). 
 
For quantitative traits, the variance of the phenotype explained by the GPRS is expressed by the 
regression R2, that is, the squared correlation between the trait and the GPRS. Given the size of 

target samples, a small R2 can be highly significant. For disease traits, following Purcell et al8, 
the scaled pseudo-R2 from logistic regression, Nagelkerke’s R2 (NR2) is often reported. However, 
the NR2 is difficult to benchmark since it depends on the proportion of cases in the target 
sample, and is not on the liability scale, so cannot be directly compared to heritability 
estimated from twin or family data. Alternative statistics of efficacy of risk prediction are 
described and compared by Lee et al17 and include variance explained on the liability scale, 
which can be directly compared to h2.  
 
Factors that can bias GPRS results have been discussed in detail elsewhere18. An important 
consideration is the delineation of the discovery and target samples. They should be 
independently collected and exclude close relatives. Another issue is the choice of SNPs used in 
the GPRS. SNPs located within the same genomic region are more likely to be inherited 
together i.e., the alleles are correlated and the SNPs are in linkage disequilibrium  (LD). In 
practice, the most common strategy, following the initial publication8, is to prune SNPs based 
on a p-value informed clumping algorithm and to choose a relatively stringent LD threshold (say 
r2 < 0.2 across 500 kb). Clumping aims to select SNPs so that the most associated SNP in the 
region is selected into the SNP profile set. However, this is not an optimal strategy as the LD 
threshold selected is somewhat arbitrary so that multiple SNPs may be retained that show 
association generated by the same causal variant and at the same time correlated SNPs with 
associations driven by independent causal variants may be excluded.  
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We have described the GPRS method as it is most frequently applied in the psychiatric research 
literature. The method is simple, robust and intuitive. However, other strategies for creation of 
individual risks may be more optimal (e.g.,19,20). A full discussion of these methods is beyond 
the scope of this review. 
 
Estimating variance explained by all SNPs   
In standard association analysis the effect of SNPs are tested one at a time. Since the number of 
genome-wide SNPs is currently greater than the number of individuals in the study and since 
correlated SNPs will show correlated association results, simple addition of variance explained 
by each SNP may overestimate the true total variance explained by all SNPs. This can be 
overcome by LD pruning of the SNP set, but the choice of LD threshold will be arbitrary and can 
influence the results. Therefore, other methods have been developed that analyse all SNPs 

simultaneously, first for quantitative traits21-25, and later extended to disease traits26. These 
methods have been called GREML27 (for genomic-relationship-matrix restricted maximum 
likelihood) and are implemented in the software GCTA28, see Box 2. Briefly, the method uses 
the genome-wide markers to estimate the genetic similarity between individuals in the study 

who are conventionally unrelated. The variance explained by all SNPs (ℎ𝑆𝑁𝑃
2 ) is estimated to be 

greater than zero when genetically more similar individuals are phenotypically more similar, or 
in a case-control design when cases are genetically more similar to each other than they are to 
controls. Stringent QC26 is needed to ensure that artefacts do not bias the estimates, a problem 
much more likely in analysis of disease traits than quantitative traits. As part of the QC process 
closely related individuals are removed. These are detected from the genotype data as large 
genetic similarities between pairs of individuals. Removal of close relatives ensures that 
estimates reflect the tagging of causal variants through population LD. If more closely related 
individuals were to be included the estimate would reflect the much higher LD in family 

members. Moreover, by using only individuals conventionally unrelated the estimates of ℎ𝑆𝑁𝑃
2  

are unlikely to be contaminated by common environmental effects that can bias estimates of 
heritability from family data.  
 

In GREML, contributions from any specific locus are not evaluated. A significant ℎ𝑆𝑁𝑃
2  when few 

genome-wide significant associated SNPs have been identified provides direct empirical 
support from currently available data that increasing sample size is a worthy research objective. 

We emphasise that ℎ𝑆𝑁𝑃
2  is not expected to be as large as h2, since ℎ𝑆𝑁𝑃

2  only reflects variants 
correlated with the common SNPs included on genome-wide SNP chips. This is because it is not 
possible for rare and uncommon genetic variants to be highly correlated with common SNPs29 

and so their contribution to ℎ𝑆𝑁𝑃
2 is limited. In contrast, rare and uncommon variants are shared 

between family members and so contribute to estimates of h2 recognising that different 

families may have different rare variants segregating. The difference between ℎ𝑆𝑁𝑃
2  and h2 can 

provide insight into genetic architecture in terms of the relative importance of common 
variants, which may differ between traits (Figure 1). 
 
A bivariate model30 allows estimation of the SNP-heritability of two traits and the SNP-
correlation (rg-SNP) between them. Some thought is needed for the interpretation of the SNP-
correlation. Firstly, the correlation reflects the average genome-wide relationship between two 
disorders. For example, a zero SNP-correlation could result either from no relationship at all 
between the disorders, or from positive correlations at some genomic locations cancelled out 
by negative correlations at other locations. Calculating correlations for different functional 
categories of SNPs could identify genomic locations that show different directions of sharing 
between disorders. Secondly, the extent to which the SNP-correlation reflects the genetic 
correlation estimated from family data depends on the unknown underlying genetic 
architecture as to whether the SNP-correlation estimated from common SNPs is the same as 
the correlation across the whole allelic spectrum. The SNP-coheritability (i.e. rg-SNPhSNP-1hSNP-2) 
allows direct comparison of the relationship between disorders on the same scale as the SNP-
heritabilities. Bivariate methods can be applied to data sets in which all individuals are 
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measured for both traits, but in this case inflation of estimates of genetic sharing by sharing of 
environmental risk factors may be difficult to avoid. More interesting is the application of 
bivariate methods to independent data sets each measured for a different trait, so that sharing 
between individuals reflects only genetic factors30. 
 

While the methods that estimate ℎ𝑆𝑁𝑃
2  from genome-wide SNP data considered jointly in a 

single analysis are statistically optimal, the analyses can be time consuming and 
computationally demanding due to the calculation of genomic relationship matrices. Moreover, 
the large sample sizes required often involve sharing of genotype data among research groups, 
which is not always possible (see sample size notes in Box 2). Therefore, approximate methods 
based on association summary statistics (of RAF, OR, p-value, sample size) are appealing. Under 
a polygenic model, test statistics of association are expected to be inflated compared to the 

distribution of test statistics in the absence of association, and ℎ𝑆𝑁𝑃
2  can be estimated directly 

from the mean test statistic14,31-33 as well as from the results of GPRS association testing32. As 
discussed above, biases due to artefacts are a particular concern for case-control studies. When 

estimating ℎ𝑆𝑁𝑃
2  from the SNP data, QC strategies can investigate the potential of biases, but 

such strategies are not available for analyses based on summary statistics and so the potential 
for biases in these results should be recognised. The relationship between GPRS and GREML 
results are discussed in Box 3. Studies that apply multiple methods can help evaluate the 
validity of approximate methods.  

Power and sample size 
Prior to undertaking a polygenic analysis a power calculation establishes boundaries of what 
can be achieved. In GPRS, power depends on both the sample size of the discovery and target 
samples. Firstly, detecting a variance explained as being significantly different from zero 
depends on the sample size of the target sample. Secondly, the ability of the GPRS to explain 
variance in the target sample depends on the underlying genetic architecture of the disorder 
(unknown and not in our control) and on the sample size of the discovery sample to estimate 
accurately individual SNP effects. Once target sample sizes reach a reasonable size there is little 
to be gained in increasing them as they already have excellent power to detect a variance 
explained as different from zero. In contrast, increasing the discovery sample size will continue 
to increase the variance explained and the GPRS for each individual become more accurate, 
which is advantageous for other analyses (e.g. relating GPRS to sub-phenotypes). Only when 
researchers have access to genotype data for all samples can a choice be made about division 
into discovery and target samples. Dudbridge34 provides a power calculator for GPRS and also a 
pragmatic rule of thumb under circumstances when the split into discovery and target can be 
chosen:  discovery and target samples should be of equal size until the target sample is ~2000 
cases and 2000 controls, and then the additional samples should be included into the discovery 
sample.  
 
For GREML, power can be estimated from an online calculator35 in which sample size (number 

of pairwise relationships) can directly predict the standard error of the estimate of ℎ𝑆𝑁𝑃
2  which 

is independent of the magnitude of the estimate. For a quantitative trait a sample size of 4500 
is needed to have 80% power to detect ℎ𝑆𝑁𝑃

2  of 0.2 as being significantly different from zero. 
For case–control studies, power also depends on the proportion of cases in the sample and the 
risk of disease in the population. Samples of 4500 with equal proportion of cases and controls 

have at least 80% power to detect ℎ𝑆𝑁𝑃
2  of 0.2 as being significantly different from zero for 

disorders of disease risk 0.1 or less. In bivariate analyses the s.e. of the correlation depends on 
both the magnitude of the SNP-heritabilities for the two disorders and the magnitude of the 
correlation, as a rough rule of thumb samples of at least 5000 are needed for each of the two 
disorders for  ℎ𝑆𝑁𝑃

2  of 0.2 and SNP-correlation of 0.2.   
 
Polygenic analyses in psychiatry 
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There are three broad applications of polygenic analyses in psychiatry: single disorder analyses, 
cross disorder analyses and sub-phenotype analyses.  Here we review the results of studies 
using any one of these applications. Studies were identified in Web of Knowledge 
(www.webofknowledge.com) by searching for studies that cited Purcell et al8, Yang et al21, Lee 
et al26.  
 
Single disorder analyses 
Amongst the psychiatric disorders, schizophrenia is the flagship disorder achieving larger 
samples more quickly than the other disorders. In 2008, GWAS for schizophrenia8,9 were 
published with sample sizes of ~3000 cases and identified only 1 genome-wide significant 
association (and also an excess of large rare copy number variants in cases36,37). At this point 
many considered GWAS in psychiatry a failure38. Polygenic analysis methods were central in 
demonstrating that the first phase of GWAS were underpowered, which propelled the drive for 
larger sample sizes that is now starting to pay off. We first consider polygenic results for 
schizophrenia and illustrate the relationship between the GPRS and GREML methods. 
 
The first application of GPRS used the International Schizophrenia Consortium (ISC) data as the 
discovery sample and the Molecular Genetics of Schizophrenia (MGS) cohort as the target 
sample and gave a NR2 of 0.032, which through simulation was shown to be consistent with 

ℎ𝑆𝑁𝑃
2  of 0.34, i.e.,34% of the variance in liability to schizophrenia is explained by many common 

SNPs of small effect. The approximation method34 applied to these GPRS results gives ℎ𝑆𝑁𝑃
2  =  

0.29. Application of GREML to the ISC data generated a direct estimate of ℎ𝑆𝑁𝑃
2   = 0.33  

(reducing to ℎ𝑆𝑁𝑃
2   = 0.27 after stringent QC). These results are discussed in detail in Box 3 and 

demonstrate some robustness in that different methods (although underpinned by similar 
theory) generate convergent results. The NR2 of 0.032 is modest since many SNPs included in 
the GPRS do not contribute and only add noise. The simulations conducted by the ISC8 (their 
Figure S8) suggested that as sample size increased there would be a better separation of true 
and false positives and an increase of NR2. Application of GPRS using the Psychiatric Genomics 
Consortium data as discovery (8832 cases, 12067 controls) and the independent Swedish 
Schizophrenia sample as target (5001 cases, 6243 controls) generated NR2=0.06, with maximum 
NR2 achieved using SNPs with p-value threshold < 0.3, very much in line with predictions from 
the ISC simulations. 
 
Table 1 and Supplementary Table 2 give an overview of other studies that investigated the 
polygenic architecture of psychiatric traits and disorders using GPRS. The studies show a rather 
consistent pattern over the various phenotypes with significant predictions but low explained 
variance (between 0.001 and 0.03). The results, to date, are mostly less significant than in the 
schizophrenia studies, which reflects the more limited sample sizes available.   

Univariate GREML analyses show that the variance explained by all SNPs (ℎ𝑆𝑁𝑃
2 )(Figure 1, 

Supplementary Table 1) is mostly estimated at around 0.2 or higher for psychiatric disorders. 
Further insight into the genetic architecture is achieved by partitioning ℎ𝑆𝑁𝑃

2  based on SNP 
annotation such as based on chromosome, function and minor allele frequency39. Partitioning 
by chromosome confirmed the polygenic model with variance attributable to each 
chromosome being proportional to chromosome length. In contrast, for Alzheimer disease40 
significantly more variance was attributable to the chromosome 19, the genomic location of 
APOE. The variance explained by the subsets of SNPs based on minor allele frequency bin 
indicated that the variance attributable to SNPs must be explained, at least in part, by common 
causal variants (rather than common SNPs tagging only rare causal variants)39. Finally, SNPs in 
and around genes that are preferentially expressed in the brain explain a larger proportion of 
the variance than expected based on the proportion of the genome that they represent (0.3 of 
the variance explained versus 0.2 of the genome represented)39,41. Variance partitioning has 
been applied to schizophrenia39, bipolar disorder41, ASD42,43, all generating qualitatively similar 
results. Application to Tourette Syndrome (TS) and OCD44 using the same control set for each 

http://www.webofknowledge.com/
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disorder provided evidence for a different genetic architecture between the disorders in which 

less common variants contributed more to ℎ𝑆𝑁𝑃
2  for TS than for OCD. 

 

For psychiatric related quantitative traits the trend is towards smaller estimates of ℎ𝑆𝑁𝑃
2  

compared to the psychiatric disorders. Analysis of a wide range of quantitative traits measured 
in ~2500 unrelated children from the Twins Early Development Study (TEDS) 45-47 showed 

significant ℎ𝑆𝑁𝑃
2  for height, weight and cognitive ability in line with those reported from other 

studies, but negligible ℎ𝑆𝑁𝑃
2  for childhood behavioural traits (anxiety, depression, hyperactivity, 

conduct) despite substantial estimates of heritability using the family data from which the 

samples were drawn. Similarly, estimates of ℎ𝑆𝑁𝑃
2  for neuroticism and extraversion from 

samples of ~12,000 unrelated individuals were 0.06 (s.e. 0.03) and 0.12 (s.e. 0.03) 
respectively48. These results may point to quantitative behavioral traits being composite 
genetic traits, such that family members score similarly (hence substantial estimates of 
heritability) but that different families may score similarly but for different genetically 

determined reasons (hence low estimates of ℎ𝑆𝑁𝑃
2 ). More data sets are needed to explore this 

further, since other studies show higher estimates but with high standard errors, e.g., 0.26 (s.e. 
0.12, meta-analysis of three sample estimates) for preschool internalising symptoms49 and 0.18 
(s.e. 0.07) for quantitative scores of social communication skills measured in a community 
sample43. The finding for social communication skills, related to ASD, is especially noteworthy 
given the evidence for the involvement of rare variants in ASD50. These results show that 
common variants are also of importance is ASD42. 

Bivariate analyses can be applied to two data sets of the same disorder, such analyses generate 

three estimates of ℎ𝑆𝑁𝑃
2 , one from each subset and one estimated between subsets (from the 

co-heritability). The estimate from the two samples combined into a single sample will be a 
weighted average of these three values.  Such analyses explore the heterogeneity of GWAS 
data sets within a disorder, which can be summarised through the SNP-correlation. This 
correlation is expected to be 1 when the two data sets are of the same disorder and sampled 
from the same homogeneous population. SNP-correlations less than 1 could imply inflation of 
ℎ𝑆𝑁𝑃

2  from each data set relative to the ℎ𝑆𝑁𝑃
2  estimated between data sets reflecting 

genotyping artefacts or else data set specific variants. When PGC data sets were split into 
either 2-3 subsets, heterogeneity between estimates was much more evident for bipolar 
disorder, MDD, and ADHD than for schizophrenia and ASD (as shown by SNP-correlations Figure 
2). Future studies designed to understand this observation that may reflect genetic and 
phenotypic heterogeneity implicit in diagnostic class may be critical to maximise power in 
GWAS (since the observed heterogeneity will also impact association analysis). Analyses have 
also been conducted for data of the same disorder from different ethnicities (Figure 2), for 
example the SNP-correlation between schizophrenia in European American ancestry vs African 
American ancestry was 0.63 (s.e. 0.22)51 compared to the correlation of 0.83 (s.e. 0.09) 
between the European ISC and the European American MGS samples51. Likewise SNP-
correlation between Chinese and European ADHD samples was estimated to be 0.39 (s.e. 0.15) 
compared to 0.71 (s.e. 0.17) between European ADHD sub-sets52. These analyses demonstrate 
that there are likely ancient common variants contributing to the etiology of these disorders, 
even though different LD structure and recent population specific causal variants generate 
lower correlations between ancestries than between sample subsets of the same ancestry.  In 
general, these results provided strong support for a polygenic contribution to psychiatric 
disorders. 

Cross-disorder analysis 
The first application of cross-disorder polygenic analyses was with the International 
Schizophrenia Consortium as the discovery sample and the WTCCC bipolar disorder sample as 
the target8, generating a NR2 of 0.01 (ref4) with p-value of 1*10-12.  Importantly the 
schizophrenia discovery sample did not significantly explain any variance in the other six non-
psychiatric WTCCC traits, which all used the same set of controls. Genome-wide sharing 
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between the schizophrenia and bipolar disorder cases is implicated. GPRS and bivariate GREML 
results have been reported between all five disorders in the Psychiatric Genomics Consortium 
study41,53. Applying the quantitative genetics theory34 (Box 3) to the GPRS results provides 
estimates of the genetic correlation that agree well with the GREML results (Figure 3).  
 
Studies investigating the overlap between disorders using GPRS are summarized in Table 2 and 
Supplementary Table 3. On the whole, genetic relationships between disorders implied from 
GPRS and bivariate GREML agree in broad terms with expectations from twin and family 
studies, i.e., most studies show genetic overlap between disorders. However, some cross-
disorder results are unexpected or inconsistent.  For example, the genetic correlation of 0.43 
between schizophrenia and MDD was surprising for many, but when translated to the expected 
increased risk to first-degree relatives of 1.6, this was found to be highly consistent with a 
meta-analysis of results from family studies (OR 1.5, 95% CI 1.2-1.8)41. That a genetic 
correlation of 0.43 translates into a modest increased risk to relatives may seem surprising but 
is a direct reflection that MDD is a common disorder. We discussed above that it is difficult to 
benchmark the genetic contribution to disease from risks to relatives. The lack of genetic 
overlap between ADHD and ASD (and also between these disorders and other disorders) from 
the GPRS and bivariate GREML analyses was unexpected since family studies point to a shared 
genetic background for ASD, ADHD and bipolar disorder54-57. As discussed above, sample sizes 
can impact on GPRS results and sample sizes for ADHD and ASD samples are small relative to 
other disorders. For example, GPRS generated from a schizophrenia discovery sample and 
applied to ASD target sample was not significant in the Vorstman et al58, but did reach 
significance (p<0.05) when additional samples had accumulated41.  In principle, GREML results 
should be unbiased regardless of sample size, with the standard error of the estimate 

decreasing with sample size. However, as discussed above, the estimates of ℎ𝑆𝑁𝑃
2  between and 

within subsets showed more heterogeneity between subsets for some disorders (Figure 2) than 
expected from the standard errors, which could imply phenotypic or genetic heterogeneity or 
artefacts and these could impact the GPRS and bivariate GREML results. Interestingly, GPRS 
analysis using the PGC schizophrenia and/or bipolar disorder sets as discovery samples and 727 
ADHD cases and 2067 controls as target sample found the most significant association when 
SNPs with association p-value < 0.5 for both schizophrenia and bipolar disorder were used to 
generate the profile score SNP list59.  These results point to important sharing of genetic risk 
factors between the disorders. However, the more significant result from the combined 
disorder discovery sample may also reflect increased power for disorder-shared variants 
through larger sample size. More data is needed to fully understand the relationship between 
disorders. 
 
GPRS applied to personality traits to explore relationship with psychiatric disorders such as 
anxiety/depression and bipolar disorder suggest that neuroticism is related to 
anxiety/depression disorders or related traits (as expected from family studies), although 
results are somewhat inconsistent60. For extraversion, the picture is more complicated. 
Extraversion polygenic scores were found to positively predict bipolar disorder and 
psychological distress60,61, but also to negatively predict anxiety/depression or related traits. 
The latter is more in line with the negative phenotypic correlation between extraversion and 
anxiety, depression and bipolar disorder61,62. However, extraversion is related to a manic prone 
illness course in bipolar disorder62. Again, sample size seems to influence the variation in 
results. 
 
Sub-type analysis 
In addition to shared genetic risk across diagnostic classes, heterogeneity within diagnostic 
classes is well-recognised in psychiatry. It is appealing to attempt to use genome-wide 
association data to explore if genetic heterogeneity underpins the phenotypic heterogeneity. 
Currently, such analyses are often limited by sample size (Table 3, Supplementary Table 4), and 
to date most applications have been on schizophrenia subtypes. Limited sample sizes have 
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prohibited GREML analyses, to date. We anticipate that sub-type analyses will become more 
common in the future and GPRS provides a mechanism to use the power of a larger discovery 
sample recorded only for case-control status to probe differences between subtypes recorded 
in smaller samples of the same or different disorder. Extending such analyses to larger samples 
requires consistent phenotypes across samples, which may be a problem. For example, many 
subtypes of schizophrenia have been proposed based on cognitive deficit, symptom profiles or 
treatment resistance. But, to date, GPRS results for schizophrenia subtyping do not show a 
clear pattern (Table 3), which may reflect, in part, heterogeneity of the discovery sample. The 
most interpretable application of sub-type analysis is between one disorder (say schizophrenia 
since it currently has the most powerful discovery sample) and sub-types of another disorder. 
Applications between one disorder and subtypes of the same disorder may be more difficult to 
interpret. For example, if the PGC schizophrenia sample is used as a discovery sample to 
compare polygenic risk scores in independent samples of cognitive deficit vs cognitive normal 
cases or between clozapine treated (usually treatment resistant) and non-clozapine cases the 
detailed interpretation depends on the proportion of these subtypes in the discovery sample, 
which is likely unknown. Nonetheless, some interpretation is possible and, for example, GPRS 
scores from an ADHD discovery samples were higher in target samples of ADHD cases with 
conduct disorders vs ADHD samples without conduct disorder63, implying some genetic basis 
for differences in the etiology of these classes. Interestingly, application of ADHD GPRS in a 
population sample of children measured at 7 and 10 years for ADHD related traits provided 
empirical evidence for the hypothesis that hat ADHD represents the extreme end of traits 
present in the general population64. 

Discussion 
Why are common loci of small effect important? 
Other than for schizophrenia, the number of genome-wide significant DNA variants identified 
for psychiatric disorders or related traits is few, to date. The success for schizophrenia is largely 
explained by greater sample size which was achieved by combining data across >50 studies65. 
Indeed, no single locus had been robustly associated with schizophrenia when sample sizes 
were similar to those currently available for many other psychiatric disorders. The trajectory of 
GWAS discovery for schizophrenia, which increased from 1 locus66,67 to 7 (ref 68) to 22 (ref 69) to 
62 (ref 70) to >100 (ref65) as the number of cases increased from ~3K to 36K, is not dissimilar to 
that of other (non-psychiatric) diseases71.  Whereas, the first 3K cases identified only 1 risk 
variant, the last 3K cases added to make the total of 36K cases identified ~40 additional loci65. 
This success was predicted from polygenic analyses applied to the data sets that found only 1 
locus8,39. The same polygenic analyses applied to other psychiatric disorders imply that 
common SNPs explain a significant proportion of variance implying that current sample sizes 
are underpowered to detect the effect sizes that exist in nature, and that more individually 
associated loci for these disorders will be identified as sample size increases. However, 
collection of larger samples is time consuming and expensive, so why is it important to identify 
common loci of small effect? 
 
First, although verified GWAS effects are usually small individually, their cumulative effect is 
not. Second, there is evidence that loci found to harbour common alleles of small effect for 
schizophrenia are also enriched for rare mutations of larger effect in whole exome sequencing 
studies in schizophrenia (e.g. voltage-gated calcium channel genes)72. Convergent results from 
GWAS and sequencing can help to prioritise genes for follow-up studies73.  Third, small effect 
size may partly reflect the heterogeneity of the diagnostic construct that is imposed from a 
diagnostic system based on self-report and clinical observation. As sample sizes and genomic 
technology improve, the genomics era has the potential to identify more biologically based 
diagnostic constructs for which effect sizes may be larger. Fourth, there are now many 
examples of diseases for which GWAS hits are for known drug targets74,75 or identify relevant 
biology76,77. For example, genes identified through GWAS associated with variation in LDL levels 
are the targets of statins78 and those associated with rheumatoid arthritis are the targets of 
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known drugs that are effective therapies for this disease79. Similar insights may be forthcoming 
in psychiatric disorders, because identified loci for schizophrenia include known targets of 
existing antipsychotics65. These examples indicate that although GWAS loci have small effect 
sizes, they may help identify targets for novel therapeutics78, or may identify existing drugs that 
can be repurposed for treatment of diseases that they were not initially developed to treat75,80. 
For these reasons identification of common variants of small effect is a worthy goal and 
polygenic methods provide strong guidance based on currently available data that increasing 
sample size will identify more associated variants in future. To maximise the value of new 
sample collections they should be accompanied by more detailed clinical data. 
 
Implications for nosology 
The results from the cross disorder analyses are an important outcome of polygenic methods, 
providing direct empirical evidence for genetic relationships between disorders. These results 
will contribute to nosology. The genome-wide era provides a new paradigm to explore the 
genetic relationship between disorders. In the pre-genomics era genetic relationships between 
disorders could only be determined by collection of large cohorts of families measured for the 
two disorders. Low population risk, variable age of onset, ascertainment biases and 
confounding with family environment make such data difficult to collect. For examples where 
the genetic relationship between disorders has been investigated through twin and family 
studies, the results generally converge with the latest results obtained with polygenic methods 
(see citations in41). This supports further use of genome-wide SNPs to explore the genetic 
relationship between case-control samples collected independently for pairs of disorders. 
Another approach to explore the genetic overlap between disorders is the conditional false 
discovery rate (cFDR) method81 in which the search space for associated SNPs in the target 
sample is limited to SNPs associated to some threshold in the discovery sample.  In this way, 
more true-positive associated SNPs surpass the stringent level of association significance. In 
contrast to GPRS and bivariate GREML methods, cFDR is agnostic to direction of effect and so 
considers a more general pleiotropy in which the same SNPs but different risk alleles can be 
identified. Lastly, as discussed above and below, increased sample size accompanied by 
consistent clinical data and advances in genomic technology have the potential to add 
knowledge to both shared genetic factors across disorders and heterogeneity within disorders 
to create more biologically valid diagnostic constructs. 
 
Where to find the still-missing heritability 
The polygenic analyses have been successful in identifying “hidden heritability”, i.e. the 

increase from  ℎ𝐺𝑊𝑆
2  to ℎ𝑆𝑁𝑃

2 . In theory, with sufficiently large sample size, ℎ𝐺𝑊𝑆
2  can become as 

large as ℎ𝑆𝑁𝑃
2 . However, the “still-missing” heritability, i.e. the difference between ℎ𝑆𝑁𝑃

2  and h2 
remains substantial for psychiatric disorders and, indeed, for most other complex traits (at least 
half) is still missing. It is important to note that it is not necessary to explain all heritability when 
the goal is to open new biological research doors that may impact treatment, and indeed it is 
likely to be impossible to do so. None-the-less, seeking further insight for the still-missing 
heritability may also provide important guidance of future research directions. In human 
populations, part of the still-missing heritability may simply reflect overestimation of h2 since 
typical human family designs for estimation of heritability use very close relatives (e.g., full 
siblings and twins) who share non-additive gene combinations and a common environment 
 and these confounding factors can be difficult to separate82,83. The difference between 
estimates of h2 from family data and the “true” h2 has been termed “phantom heritability”84 
when the difference is attributable to non-additive genetic variance, but our ability to quantify 
this based on realistically collectable data is limited. Others have argued that the contribution 
from non-additive genetic variance to complex traits is likely limited85,86  and that presence of 
important epistasis and small epistatic variance are not inconsistent87. Empirical support 
comes from the study of gene transcription levels for which significant, replicated epistatic 
effects have been identified but these explain only one-tenth of the variance compared to 
additive variance88. 
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The extent to which gene-environment interaction (GxE) or G and E correlation inflate 
estimates of heritability from twin and family studies is unknown. Nonetheless, it seems 
intuitive that exposure to environmental risk factors increases risk of disease only in those that 
are already genetically susceptible and hence SNP effect sizes may differ in cases stratified by 
environmental exposure. However, GxE studies to date are limited by a dearth of samples that 
are informative for G and consistently recorded E89. For this reason, studies of candidate GxE 
interactions in psychiatry have generally lacked replication and the field is plagued by 
publication bias towards studies with positive results90. Polygenic risk scores analyses provide a 
novel paradigm to quantify GxE91,9293. 
 
Part of the still-missing heritability must reflect genomic variants not well tagged by SNPs16,21. 
Since the SNPs on SNP chips are chosen because both their alleles are common they cannot be 
in high r2 linkage disequilibrium with a causal variant with one rare allele.  A very large number 
of rare variants are needed to explain the still-missing heritability, since such variants 
individually explain a very small proportion of the variance. For example, a locus with risk allele 
frequency 0.0001 and heterozygous relative risk (RR) of 10 explains approximately the same 
proportion of variance in liability as a locus with allele frequency 0.5 and RR 1.06. It is notable 
that the relative importance of small structural variants to genomic variation is currently not 
well documented and since recurrent tandem repeat polymorphisms are known to modulate a 
range of biological functions94,95 these may represent an example of an important, but as yet 
unprobed, source of disease associated variation.  
 
Disorder heterogeneity is a possible explanation for still-missing heritability of particular 
relevance to psychiatric disorders. One aspect of disorder heterogeneity may be reflected by 
lower estimates of heritabilities of psychiatric disorders from large national registries than from 
clinically ascertained cohorts. For example, estimates of h2 for schizophrenia and bipolar 
disorder were 0.64 (95% CI 0.62-0.68) and 0.59 (0.56-0.62) from the Swedish national data96, 
0.67 (0.64–0.71), 0.62 (0.58–0.65) estimated from reported summary statistics of Danish 
national data97, compared to estimates from meta-analysis of clinically ascertained studies98,99 
of 0.81 (0.73-0.90) and 0.85 (0.73-0.93). The lower estimates from national data may reflect, in 
part, differences in diagnostic criteria that may be more relevant to the large samples brought 
together for genome-wide genotyping, whereas careful and consistent diagnostic practice is 
likely to be used in the clinical samples ascertained for estimation of heritability. However, 
another aspect of diagnostic heterogeneity may be that biologically different disorders are 
labelled the same given the clinically available symptom data. For illustrative purposes, 
consider a non-psychiatric paradigm. Crohn’s disease and ulcerative colitis are both forms of 
inflammatory bowel disease (IBD) and based on patient symptoms and clinical observation it is 
difficult to discriminate between them. It is only in the last forty-odd years, with the advent of 
colonoscopy, that differential diagnosis has become possible. GWAS have identified 163 IBD 
loci, the vast majority of which have odds ratio in the same direction for both disorders100. 
Despite the strong common biological mechanisms, many of the risk alleles have significantly 
different effect sizes between the disorders, and it is notable that two risk alleles for Crohn’s 
Disease (in PTPN22 and NOD2) are significantly protective for ulcerative colitis. In other words 
these loci would not be identified or would be identified with reduced odds ratio in association 
analysis of IBD. The parallels with psychiatric disorders are clear (although the differences may 
be more subtle), currently we may not have the phenotypic benchmarks to allow subtype 
distinction of disorders and hence variants that differentiate between subtypes may be 
obscured. The genomics era has allowed good progress in subtyping of cancers (e.g., ER +ve/ER 
–ve  and over-expression of HER2 as a breast-cancer subtype101,102 or K-ras mutations in 
colorectal cancer and EGFR mutations in lung cancer, reviewed in103), however other branches 
of medicine are able to supply measures of phenotypic heterogeneity in the tissue of relevance 
for mapping onto the genetic heterogeneity. Lack of access to brain tissue will make progress 
slower in psychiatry. It is well recognised that affected family members tend to have more 
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similar symptom profiles than with other affected individuals104-106, implying that if association 
analyses were limited to a subset of individuals with similar symptom profiles effect sizes of 
individual variants may be higher.  In other words, the current disease classification might 
obscure different subtypes and identifying the subtypes that currently cannot be differentiated 
is an important goal of psychiatric genomics. Especially of relevance in child psychiatry is the 
heterogeneity in course of psychiatric disorders from childhood into adolescence and then 
adulthood. One apparent example is ADHD for which symptoms can persist into adulthood, but 
can also decline107. It is yet unknown whether this difference in course represents genetically 
heterogeneous sub-types.  Another issue is the transition of childhood symptoms into a range 
of other adulthood disorders, recently studied in the context of SNPs suggestively associated 
with adulthood mood and psychotic disorders investigated in childhood ADHD and ASD and 
internalizing symptoms at age 3 (ref49). In summary, the most tangible way forward to gain a 
more complete picture of still-missing heritability are large samples informative for G, E and 
clinical symptoms. 
 
Recommendations for polygenic analyses 
In this review we have considered the polygenic methods most commonly applied to 
psychiatric disorders and traits, namely GPRS and GREML. The GPRS results interpreted through 
simulation8 and theory34 generate estimates of ℎ𝑆𝑁𝑃

2  consistent with those from GREML. That 
three different methods generate consistent results provides some support for the robustness 
of the estimates, although of course they are detecting the same underlying signal and make 

some similar assumptions. GREML estimates of ℎ𝑆𝑁𝑃
2  and SNP-correlations from genome-wide 

SNP data considered jointly in a single analysis are statistically optimal, are robust to 
perturbations in underlying assumptions and explicit test for inflation by artefacts. The 
robustness of the method to underlying assumptions has been tested in detail108,109. As sample 
sizes increases even more interesting partitioning of variance based on annotation of SNPs will 
become possible. However, application of GREML requires access to genome-wide genotypes 
for all samples, which is not always possible, whereas GPRS requires genome-wide genotypes 
only for the target sample. Moreover, GREML is orders of magnitude more demanding in 
computing resources than GPRS. The validity of the approximate method34 needs to be tested 
further to determine if any assumptions impact results compared to those calculated from the 
statistically more complete methods.  We recommend application of the GPRS plus the 
Dudbridge34 approximation alongside GREML estimates so that this can be fully evaluated. 
Application of the Dudbridge approximation to published GPRS results is difficult because not 
all the needed input parameters have been reported. A potential pitfall is that, currently, it is 
not possible to determine if there is overlap between discovery and target sample when only 
summary statistics are available for the discovery sample and overlap would serve to inflate 
results18. However, as a rule of thumb if application of GPRS shows no significant variance 
explained then there is little point in bothering with more refined analyses. However, if GPRS 
analyses provide evidence for an important polygenic component then GREML analyses use 
data in the optimal way. For example, integration of functional annotation into GPRS methods 
is limited because arbitrary decisions are made about which SNPs out of sets of correlated SNPs 
are retained in the analysis. In GREML analyses the correlation structure between SNPs is 
accounted for, and hence the data drives how variance is attributed to different functional 
classes110.  

 
 
Current and future value of genomic risk predictors 
GPRSs and individual estimated genetic values (a by-product of GREML analysis, Box 2 step 7) 
are risk prediction scores for individuals. These are currently not of diagnostic value and indeed 
a genetic predictor alone will always have limited predictive value when the heritability is less 
than 1 (ref111). Even as sample sizes increase their utility will be limited to identification of high-
risk strata that may contain the majority of individuals who are or become affected, even 
though the majority of individuals in the high-risk strata may not be affected (i.e., high 
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sensitivity, low specificity)32,112. However, predictive ability will increase if non-genetic risk 
factors are combined with the genetic predictors. Moreover, genetic studies may lead to the 
identification of other biomarkers, such as proteomic biomarkers113, through discovery of novel 
pathways. The challenge in psychiatry is not the classification into cases vs controls, but into 
treatment relevant subsets amongst individuals presenting in prodromal phase of their disorder 
trajectory114. Despite these challenges predictors may be a tangible outcome of the genomics 
era, as understanding of biological mechansims are not needed for classifiers to have clinical 
utility114. 
 
Conclusions 
The genomics era has provided the empirical evidence that complex genetic diseases and 
disorders are indeed complex. The complexity can seem overwhelming but the genomic data 
has provided some traction. Only time will tell what the knowledge of the 100+ loci detected to 
date for schizophrenia65 will deliver in terms of prevention, diagnosis, prognosis and treatment 
option and whether the number of risk loci identified for other disorders will increase as 
predicted with increasing sample size. However, we conclude that polygenic analyses will 
contribute further to our understanding of complex genetic traits as sample sizes increase and 
as sample resources become richer in phenotypic descriptors, both in terms of clinical 
symptoms and of non-genetic risk factors.  
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Glossary 
 
Clumping – selection of SNPs based on association p-value and LD threshold between SNPs to 
generate a SNP set that includes the most associated SNP within LD regions. 
Complex genetic trait  - a trait or disease that tends to "run in families" but shows no clear 
pattern of inheritance and so is likely underpinned by multiple genetic and non-genetic factors  
Conventionally unrelated - Individuals from that are not closely related, for example more 
distantly related than 2nd cousins. 
Epistasis  - nonlinear interactions between segregating loci; when the phenotypic effect of the 
genotype at one locus depends on the genotype at another locus 
Epistatic variance – the variance partitioned out from the total genetic variance that is 
orthogonal to additive genetic variance, i.e., additive variance is the variance attributable to 
average effects and the epistatic variance is the variance attributable to deviations from 
average effects. Hence, epistasis contributes to both average effects and to deviations from 
additive effects and the presence of epistasis and small epistatic variance are not inconsistent. 
GREML- genomic-relationship-matrix restricted maximum likelihood; a method to estimate the 
variances of random effects from a mixed linear model in which the correlation structure 
between the genetic random effects is defined by the genomic relationship matrix calculated 
from SNPs. 
Linkage disequilibrium (LD)- Two alleles at different loci that occur together on a chromosome 
more often than would be predicted by random chance. 
Pleiotropy- the phenotypic effect of a genetic variant on more than one trait 
Polygenic – a genetic architecture of “many” genetic variants and includes risk variants that are 
both common and rare in the population. 
Population stratification - Structure within the sample due to differences in genetic ancestry 
among samples.  
Profile Score – a weighted sum of the number of risk alleles carried by an individual. The risk 
alleles and their effect sizes (the weights) are calculated from an independent sample. 
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Box 1 Mini Guide to Method: Genomic Profile Risk Scoring  
Method: 
1. Identify Discovery sample with genome-wide association analysis summary statistics  
2. Identify Target sample with genome-wide genotypes. The Target sample should not include 

individuals closely related to those in the Discovery sample. Results can be inflated if there 
is overlap between samples. 

3. Determine the list of SNPs in common between Discovery and Target samples  
4. Construct a clumped SNP list: association p-value informed removal of correlated SNPs, e.g. 

LD threshold of r2 < 0.2 across 500 kb. (e.g.,in the program  PLINK115: −clump-p1  1–clump-
p2  1–clump-r2 0.2–clump-kb 500) 

5. Limit SNP list to those with association p-value less than a defined threshold (often several 
thresholds are considered, i.e., <0.00001, 0.0001, 0.001, 0.01, 0.1, 0.2, 0.3 etc).  

6. Generate genomic profile scores in the target sample: e.g., sum of risk alleles weighted by 
Discovery sample log(odds ratio). (e.g., in PLINK: –score) 

7. Regression analysis: y= phenotype, x = profile score. Compare variance explained from the 
full model (with x) compared to a reduced model (covariates only). Check the sign of the 
regression coefficient to determine if the relationship between y and x is in the expected 
direction. 

 

 
 
Outcomes: 
1) Measure of association between Discovery and Target sample (R2, Nagelkerke’s R2, area 
under the receiver operating curve, proportion of variance explained on liability scale, see17) 
2) Genomic profile risk score values for each individual in the Target sample. These can be used 
in future experimental design, for example, imaging studies that compare those with high and 
low polygenic risk score. 
 
Sample size considerations: 
1) To maximise the test statistic of association between Discovery and Target, these samples 
should be of equal size32. Under realistic assumptions there is sufficient power to detect a 
significant proportion of variance explained when the Target sample is ~2000 individuals. A 
useful rule of thumb is then to make Discovery and Target samples of equal size until the Target 
sample is ~2000 individuals and then allocate additional samples to the Discovery sample to 
maximise the accuracy of the GPRS for individuals32. 
2) The p-value threshold (step 5) that maximises the variance explained in the Target sample 
depends on sample size of the Discovery sample and the underlying unknown genetic 
architecture. In discovery samples that are underpowered for a GWAS (for example, those that 
identify few genome-wide significant associations) it is not uncommon to find that predictive 
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ability in the target sample is maximised when a majority or all SNPs are included in the 
profiling SNP list. However, simulations (see Figure S8 in8) show that as discovery sample size 
increases the change in the pattern of the predictive ability of the SNP set at different p-value 
thresholds reflects the underlying genetic architecture (i.e., number, frequency spectrum, and 
effect size distribution of truly associated variants). The emerging empirical data confirms the 
simulations: lower p-value thresholds maximise predictive ability in the target sample as 
discovery samples increase69, reflecting that with larger sample sizes true positives become 
more enriched in the SNP sets with lower p-value thresholds.  
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Box 2: Mini Guide to method: Estimating variance explained by all SNPs    
Method: 
1. Identify data sets with genome-wide SNP genotypes. For bivariate analyses the same 

individuals or different sets of individuals can be measured for the two traits.  
2. Apply more stringent QC than for standard GWAS analysis 
3. Calculate the genome relationship matrix (GRM) – a matrix of genome-wide similarities 

between all pairs of individuals calculated from the genome-wide SNPs. (In the program 
GCTA28:  --make-grm). Multiple GRM can be made based on SNP annotation to allow 
partitioning of variance.  

4. Exclude one of each pair of individuals who are more related than chosen threshold – 
usually no more related than second cousins, so that estimates reflect the signal tagged by 
common variants through population level LD (e.g., in GCTA: --grm-cutoff 0.025) 

5. Estimate variance attributable to SNPs via residual maximum likelihood (REML) analysis 
from a linear mixed model with covariates (e.g., in GCTA: --reml). 

6. For case-control analysis transform the result to the liability scale (e.g., in GCTA: –
prevalence) 

7. Best Linear Unbiased Predictions of total genetic values for individuals on the 

untransformed scale can be derived (but not yet implemented in GCTA). 
 

 
 
 

 
Outcomes: 
From univariate analysis we estimate the proportion of variance attributable to SNPs or SNP-

heritability (sometimes called chip-heritability), ℎ𝑆𝑁𝑃
2 . From bivariate analyses we estimate SNP-

heritabilities for each of the two traits (ℎ𝑆𝑁𝑃−1
2 , ℎ𝑆𝑁𝑃−2

2 ), the SNP-genetic correlation between 
them (rg-SNP) and the coheritability between them rg-SNPhSNP-1hSNP-2. N.B. The correlation is 
independent of scale (i.e., is the same before and after transformation). If multiple GRM are 
fitted (step 3) then variance is partitioned according to SNP annotation (e.g. chromosome, 
frequency, function). 
 
Sample size considerations: 
Outcome estimates are unbiased, therefore as sample sizes increase the standard errors of the 
estimates decrease, but the estimates should not change given the bounds indicated by the 
standard errors. This assumes that all individuals are samples from the same idealised 
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genetically homogenous population, and excluding genotyping artefacts. If estimates change 
more than expected given the standard error then this assumption may be violated.   
 
It is not ideal to undertake meta-analysis of estimates from individual samples rather than 

analysing the total sample together. The s.e of ℎ𝑆𝑁𝑃
2  from a total sample of 10,000 but meta-

analysed from five estimates each of 2000 is 0.072 compared to the s.e of 0.032 when all 
10,000 samples are analysed together. This is because the genetic relationships between 
individuals in different sub-samples are not used in meta-analysis.  
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Box 3. The relationship between GPRS and GREML 
GPRS and GREML can be applied to the same data sets and both can provide evidence for a 
polygenic contribution to the trait or a shared polygenic relationship between traits that is 
tagged by the common SNPs. Necessarily the methods must be tapping into the same signal 
provided by the data.  In the first application of GPRS in the study of the International 
Schizophrenia Consortium (ISC), extensive simulations were undertaken in order to understand 
the likely underlying genetic architecture that could generate the observed results. The 
simulations showed that a range of underlying genetic architectures (in terms of number, 
frequency and effect size of causal variants) could have generated the observed GPRS results in 
which the ISC Discovery sample (3322 cases, 3587 controls) generated a Nagelkerke’s R2 of 
0.032 p-value of 2x10-28 in the Molecular Genetics of Schizophrenia (MGS, 2687 cases, 2656 
controls) target sample based on SNPs with p-value threshold 0.5 out of 74062 LD-pruned SNPs. 
However, all simulation genetic architectures that were consistent with the empirical results 

pointed to a ℎ𝑆𝑁𝑃
2  of 0.34. Application of GREML to the ISC data generated a direct estimate of 

ℎ𝑆𝑁𝑃
2   = 0.33 (95% CI 0.24-0.42) Supplementary Table 2 in ref39), reducing to ℎ𝑆𝑁𝑃

2   = 0.27 (95% 
CI 0.21-0.33) after stringent QC, designed to reduce the chances that the reported estimate is 
inflated by artefacts such as population stratification. These results demonstrate the 
relationship between GPRS and GREML via simulation. Using regression theory and, for case-
control studies the liability threshold model, Dudbridge34 provided the theoretical framework 

to directly estimate  ℎ𝑆𝑁𝑃
2  from same disorder applications of GPRS and rg-SNP from cross-

disorder applications of GPRS.  For example, using the ISC sample characteristics as described 
above, his R code calculator “estimateVg2FromP” (p=2e-28, n1=3322+3587, nsnp=74062, 
n2=2687+2656, vg1=0, corr=1, plower=0, pupper=0.5, weighted=T, binary=T, prevalence1=.01, 
prevalence2=.01, sampling1=3322/(3322+3587), sampling2=2687/(2687+2656), lambdaS1=NA, 

lambdaS2=NA, nullfraction=0, shrinkage=F, logrisk=F) generates an estimate of ℎ𝑆𝑁𝑃
2  = 0.287 

(95% CI 0.236 - 0.337). 
 
We applied the “estimateCorrFromP” calculator to the GPRS results from the Psychiatric 
Genomics Consortium Cross Disorder Group (PGC-CDG) analyses53 (their Figure 3 and Table S5, 
see Table S6). The estimated SNP-correlation is compared to the direct GREML estimate of the 
SNP-correlation (Figure 3) and shows good agreement, particularly in terms of benchmarking 
high, medium or low correlation. In this example, the application of the Dudbridge 
approximation is optimised as an input to the calculation of ℎ𝑆𝑁𝑃

2  for which the GREML 
estimates are used. The validity of the approximate method34 needs to be tested further to 
determine if any assumptions impact results compared to those calculated from the statistically 
more complete methods.   
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Table 1: Studies using GPRS with discovery and target samples of the same trait (univariate 
analysis). Above: adult psychiatric disorders, below psychiatric disorders usually diagnosed 
during childhood. 
 

Phenotype Reference 

Alcohol dependence 65 

Bipolar disorder 116,117 

Cloninger’s temperament scales: harm avoidance, novelty 
seeking, reward dependence, persistence 

97 

Major depressive disorder 118 

Neuroticism and extraversion 60 

Panic disorder 119 

Schizophrenia 8,120-123 

ADHD 63 

Autism spectrum disorders 124 

Behavioral disinhibition, alcohol use, drug use, nicotine 
use/dependence 

125 

See Table S2 for more details 
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Table 2: Overlap in genetic risk factors between two different disorders/traits, GPRS studies 
 

Discovery: Target Phenotypes Evidence for genetic overlap Reference 

BD: BD with family history, brain 
activation during sentence 
completion test 

BD activation in anterior cingulated cortex and the 
right amygdala across case and control groups. 

117 

MDD: anxiety MDD genetic factors overlap with anxiety 118 

MDD or BD: white matter integrity MDD with white matter integrity 126 

MDD: brain structure MDD and reduced cortical thickness of the 
amygdala-medial prefrontal cortex  

127 

Extraversion or neuroticism: 
anxiety, MDD or psychological 
distress 

Mixed results with nominal significance reflecting 
sample size  

60 

5 personality traits:  MDD or BD Neuroticism with MDD. 
Extraversion BD 

61 

Schizophrenia: BD Schizophrenia with BD 8 

5 Psychiatric disorders 
(schizophrenia, BD, MDD, ADHD 
and ASD each uses as discovery 
and target 

Schizophrenia with BD, MDD and ASD  
BD with MDD and ASD. 
(All reciprocal) 

53,58 

Behavioral disinhibition, alcohol 
use, drug use, nicotine 
use/dependence 

Shared genetic factors 125 

Schizophrenia and/or BD: ADHD GPRS from schizophrenia associated with ADHD 
but stronger association when discovery was 
schizophrenia and bipolar disorder  

59 

BD: Bipolar disorder. MDD: Major depressive disorder. ASD: Autism spectrum disorder. See 
Table S3 for more details. 
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Table 3: Overlap in genetic risk factors between disorders/traits and subtypes, GPRS studies 

Discovery: Target Phenotypes Evidence for overlap Reference 

ADHD: ADHD with/without 
conduct disorder 

Polygenic risk scores are higher in those with conduct 
disorder 

63 

ADHD: ADHD-related traits in 
a population sample 

ADHD explained significant variance in the traits 
measured in a population sample implying that ADHD is 
represents the extreme end of traits present in the 
general population 

64 

Schizophrenia: schizophrenia 
spectrum including 
unaffected relatives 

Significant prediction with the most significant result for 
the narrow phenotype and the less significant result for 
being an unaffected relative 

128 

3 schizophrenia symptom 
dimensions: schizophrenia 

Negative/disorganized dimension is most associated 
with schizophrenia 

129 

Schizophrenia: bipolar 
subtypes 

Schizophrenia derived GPRS discriminate between 
schizoaffective bipolar disorder and non schizoaffective 
bipolar disorder but not between bipolar disorder with 
and without psychosis 

130 

Schizophrenia: positive, 
negative, disorganization, 
mania and depression 
symptom dimensions.  

Schizophrenia GPRS are associated with all symptom 
dimensions in case vs control analysis, but not for 
symptom dimensions within case or control sample 
separately.  

120 

Schizophrenia: schizophrenia 
+ schizoaffective disorder + 
psychotic bipolar disorder 

Schizophrenia GPRS are associated with a broad 
psychosis phenotype 

128 

See Table S4 for more details 
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Figure 1. Heritability of liability from family studies and GREML SNP-heritability for 
psychiatric disorders and related traits. 
 

 
For more details and references see Table S1. For heritabilities the bars show a mixture 
of 95% confidence intervals from meta-analysis and of reported ranges. For SNP-
heritabilities the 95%CI are approximated as the estimate ± 1.96 s.e. OCD: Obsessive 
compulsive disorder. ADHD: Attention deficit hyperactivity disorder.  
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Figure 2. Quantifying the genetic relationship between independent data sets through 
the SNP-correlation41,44,51,52.  

 
 
 
For 95%CI are approximated as the estimate ± 1.96 s.e. See Table S5 for more details. 
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Figure 3. Relationship between SNP correlation estimated from GREML and published 
in41 and SNP-correlation estimated from the Dudbridge method34 using the GPRS 
results published in53, discovery disorder: target disorder. The same data were used 
(black triangles) except for analyses using ADHD (grey circles) for which more data was 
used in41. Dotted line y=x. Correlation between GREML and Dubridge estimates = 0.88. 
See Table S6 for more details. The Dudbridge correlation estimates are calculated using 
univariate GREML estimates of SNP heritability. 
 

 
ADHD: attention deficit hyperactivity disorder, ASD: autism spectrum disorder, BPD: bipolar 
disorder,  MDD: Major Depressive Disorder, SCZ: Schizophrenia.  


