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Abstract We investigate the effects of realistic oceanic

initial conditions on a set of decadal climate predictions

performed with a state-of-the-art coupled ocean-atmo-

sphere general circulation model. The decadal predictions

are performed in both retrospective (hindcast) and forecast

modes. Specifically, the full set of prediction experiments

consists of 3-member ensembles of 30-year simulations,

starting at 5-year intervals from 1960 to 2005, using his-

torical radiative forcing conditions for the 1960–2005

period, followed by RCP4.5 scenario settings for the

2006–2035 period. The ocean initial states are provided by

ocean reanalyses differing by assimilation methods and

assimilated data, but obtained with the same ocean model.

The use of alternative ocean reanalyses yields the required

perturbation of the full three-dimensional ocean state

aimed at generating the ensemble members spread. A full-

value initialization technique is adopted. The predictive

skill of the system appears to be driven to large extent by

trends in the radiative forcing. However, after detrending, a

residual skill over specific regions of the ocean emerges in

the near-term. Specifically, natural fluctuations in the North

Atlantic sea-surface temperature (SST) associated with

large-scale multi-decadal variability modes are predictable

in the 2–5 year range. This is consistent with significant

predictive skill found in the Atlantic meridional overturn-

ing circulation over a similar timescale. The dependency of

forecast skill on ocean initialization is analysed, revealing a

strong impact of details of ocean data assimilation products

on the system predictive skill. This points to the need of

reducing the large uncertainties that currently affect global

ocean reanalyses, in the perspective of providing reliable

near-term climate predictions.
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1 Introduction

Understanding the sources of predictability in the coupled

ocean-atmosphere system over different temporal scales

has always represented a primary goal in both theoretical

and operational geophysical fluid dynamics. Numerical

weather predictions and century-scale climate projections

encompass the tails of a wide range of phenomena,

involving very different sets of interactions between vari-

ous components of the climate system. If the former is a

pure initial value problem, whose predictive skill crucially

depends on the knowledge of the initial state of the

atmosphere (with the ocean evolution playing a minor

role), the latter is a boundary value problem, with the

expected changes in the chemical composition of the

atmosphere (and in particular of those compounds that

affect the radiative balance of the Earth) determining most

of the predictability of the climatic system over multi-

decadal and centennial scales. Seasonal and decadal
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predictions lie somewhat in between. On the seasonal

timescale, changes in greenhouse gases and aerosols can be

assumed to play a negligible role on the climate evolution,

influenced mainly by the initial state of the ocean, whereas

decadal predictions appear to be a rather hybrid problem,

where both initial and boundary (radiative forcing) condi-

tions play an equally important role (Meehl et al. 2009). As

such, the decadal range is crucial in that over this timescale

both natural unforced fluctuations and anthropogenically

driven changes are competing factors in shaping the cli-

mate variability at both global and regional scales. The

slowly evolving ocean is a major driver of internal vari-

ability over decadal timescales. Low frequency variability

of the thermohaline circulation, particularly active in the

North Atlantic sector, as well as the large thermal inertia of

the ocean, in turn leading to long-lasting upper ocean heat

content anomalies, introduce decadal-scale memory in the

climatic system.

Pioneering works (Griffies and Bryan 1997; Boer 2000;

Pohlmann et al. 2004) based on simple model-only

frameworks, investigated the predictability of the coupled

ocean-atmosphere system, highlighting the central role

played by ocean dynamics. Specifically, these experiments

identified the North Atlantic and the Southern Ocean (and

to a lesser extent the North and tropical Pacific) as regions

where decadal predictability may be found. A major out-

come of these efforts was to underline the relevance of the

information embedded in the initial conditions of a

dynamical model for predicting a significant fraction of the

total internal variability. These promising results paved the

way for more sophisticated approaches to decadal predic-

tions. Recently, a number of initiatives have been under-

taken aimed at providing more robust estimates of decadal

predictability by constraining the initial conditions of the

coupled system with the observed state of the ocean and

atmosphere (Smith et al. 2007; Keenlyside et al. 2008;

Pohlmann et al. 2009; Doblas-Reyes et al. 2011a). Initial-

izing a coupled model with realistic conditions represents a

significant step forward compared to previous long-term

climate simulations , such as those performed for the

Intergovernmental Panel on Climate Change Fourth

Assessment Report (IPCC AR4), where the emphasis was

on the forced response of the climate system to external

(anthropogenic and natural) drivers. The awareness that a

proper initialization procedure may enhance the predictive

skill of a coupled model over multi-annual and longer

timescales has led the climate science community to

expand the former set of standard IPCC scenario simula-

tions so as to include decadal predictions as part of the

upcoming Coupled Model Intercomparison Project Phase 5

(CMIP5) effort (Meehl et al. 2009).

In this paper, the decadal predictive skill of the

model developed at the Centro Euro-Mediterraneo per i

Cambiamenti Climatici (CMCC-CM) is assessed. The

predictability associated with the slowly evolving ocean

state is investigated by initializing the model using

dynamically balanced ocean reanalyses obtained through

data assimilation techniques. The uncertainties associated

with our knowledge of the ocean state are sampled by using

different ocean reanalyses, all based on the same ocean

dynamical model but different assimilation methodologies

and observations. These perturbing elements (assimilated

data amount and assimilation technique) are shown

to produce a sufficiently large spread of the initialized

simulations.

The paper is structured as follows. The dynamical model

and the experimental design adopted to perform the dec-

adal prediction experiments are described in Sect. 2.

Details on ocean reanalyses used to initialize the dynamical

model are given in Sect. 3. The sea surface temperature

forecast skill score is discussed in Sect. 4, while forecast

skill over land is discussed in Sect. 5. An evaluation of the

predictive skill for specific climate variability indices is

described in Sects. 6 (Atlantic SST Variability), 7 (Atlantic

Meridional Overturning Circulation) and 8 (Pacific Dec-

adal Oscillation). Summary and conclusions are reported

in Sect. 9.

2 Model, experimental design and verification methods

The dynamical model used to perform the decadal predic-

tion experiments is the global coupled general circulation

model developed at the Centro Euro-Mediterraneo per i

Cambiamenti Climatici (CMCC-CM; Scoccimarro et al.

2011). The atmospheric component is ECHAM5 (Roeckner

et al. 2003) with a T159 horizontal resolution (corre-

sponding to approximately 80 Km) and 31 hybrid sigma-

pressure levels in the vertical with a top at 10 hPa. The

ocean component is the OPA8.2 model (Madec et al. 1998)

in the ORCA2 global configuration, solving primitive

equations on a tripolar grid, with 2 poles in the Northern

Hemisphere. The resolution is 2� 9 2�L31 with a meridi-

onal refinement near the Equator approaching a minimum

0.5� grid spacing. The ocean model does also include the

Louvain-La-Neuve (LIM) model for the dynamics and

thermodynamics of sea-ice (Fichefet and Morales-Maqueda

1999).

The full set of prediction experiments consists of

3-member ensembles of 10 or 30-year simulations, ini-

tialized on the 1st of January and the 1st of November for

years 1960–2005 with a 5-year spacing, yielding 20 dif-

ferent start-dates. CMIP5 historical radiative forcing con-

ditions, including greenhouse gases (GHG), aerosols,

ozone and solar irradiance variability, are used for the

1960–2005 period, followed by RCP4.5 scenario settings
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for the 2006–2035 period. No volcanic aerosols effect is

included in the model forcing. The ocean state is initialized

using full-values from three different ocean reanalyses (see

Sect. 3), the sea-ice is initialized through a model clima-

tology, while the atmospheric initial states are derived from

a control simulation performed with historical twentieth

century radiative forcing conditions.

It is important to underline that, in the present configu-

ration of the decadal prediction system, only one ensemble

member is generated for a selected ocean reanalysis. While

the use of different ocean reanalyses allows an efficient

sampling of the uncertainties in the ocean initial conditions

associated with ocean data assimilation schemes and

observational data, here no sampling is provided of the

uncertainties related to the atmospheric and land surface

initial states. The combined perturbation of ocean (through

an ensemble of ocean syntheses), atmosphere and land

surface conditions has been recently applied in a seasonal

prediction study (Zhu et al. 2012) showing the potential

benefits for the overall skill of a climate prediction system.

Due to the specific design adopted for this set of

experiments, the informative content associated with the

real world dynamical status resides entirely in the ocean

initial conditions (estimated through the use of ocean rea-

nalyses). Thus, in this work we will be mainly focusing

on oceanic state variables. Although predictive skill over

land may eventually arise in the system through ocean-

amosphere ‘‘bridges’’ involving teleconnection patterns

(see Sect. 5), a detailed analysis of interannual-to-decadal

predictability over continental areas is outside the scope of

this paper.

In the following analyses we mainly use anomaly cor-

relation as a predictive skill evaluation measure. Correla-

tions are computed over lead-times 1, 2–5 and 6–9 years,

for equally sub-sampled predictions and observations.

Because the full-value initialization approach is affected

by the long-term adjustment of the system towards its own

mean state, a drift removal procedure is applied to model

data by subtracting the average forecast from the individual

raw forecasts. This procedure allows for the decontami-

nation of model data from spurious non-physical trends.

Assuming that negative correlations are physically mean-

ingless, a simple one-sided Student’s t-test is used to verify

statistical significance.

In addition to anomaly correlations, a deterministic

metric based on the mean squared skill score (Murphy

1988) is used to assess whether the initialization of SST

hindcasts leads to more accurate predictions with respect to

an uninitialized climate simulation. For this purpose, a

historical simulation performed with the CMCC-CM model

following the CMIP5 protocol, using an arbitrary initiali-

zation and the same boundary conditions adopted for the

predictions, is used as a reference forecast.

3 Ocean reanalyses

The three reanalyses used to initialize the ocean differ in

the data assimilation method used. One of them is per-

formed with an Optimal Interpolation (OI) scheme and the

other two with a three-dimensional variational data

assimilation system (3DVAR1 and 3DVAR2), which in

turn varies in the specification of the background-error

vertical covariances. Both the analysis methods include a

three-dimensional bivariate correction of temperature and

salinity fields. The OPA8.2 ocean general circulation

model is used in all of the reanalyses, with the same res-

olution and configuration as used in the coupled model.

Surface forcing fields are taken from the European Center

for Medium-Range Weather Forecasts (ECMWF) ERA-40

atmospheric reanalyses (Uppala et al. 2005) until Decem-

ber 2001, and from January 2002 onwards from the EC-

MWF operational analyses and forecasts.

The OI scheme is based on the System for Ocean

Forecasting and Analysis (SOFA) assimilation package

(De Mey and Benkiran 2002), which was implemented for

the global ocean by Bellucci et al. (2007). It consists of an

OI performed on the reduced-order space of the ten dom-

inant vertical empirical orthogonal functions (EOFs). EOFs

are season-dependent, and were calculated from an

assimilation-blind model hindcast, at full model horizontal

resolution and without any spatial filtering; this strategy

was proved to lead to the best verification skill scores

(Masina et al. 2011). Horizontal correlations are assumed

to be Gaussian, with a constant correlation length-scale

equal to 300 Km. The OI system assimilates all the

observations from the EN3v2a data set of the ENSEM-

BLES project (Ingleby and Hudlleston 2007). The 3DVAR

reanalyses use the OceanVar variational assimilation sys-

tem (Dobricic and Pinardi 2008), in its global ocean

implementation (Storto et al. 2011b). Like the OI, vertical

covariances are modeled by 10-mode seasonal bivariate

EOFs of temperature and salinity. Horizontal correlations

are obtained by applying a four-iteration first order recur-

sive filter, with horizontally homogeneous and vertically

varying correlation length-scales. Along with the in-situ

observations from the EN3v2a data set, the 3DVAR rea-

nalyses also assimilate along-track, sea-level anomaly

(SLA) observations provided by AVISO (Le Traon et al.

1998) over the period 1992—onwards. Note that expend-

able bathythermographs (XBT) fall rates are corrected

according to Wijffels et al. (2008) within the 3DVAR

reanalyses. A local hydrostatic adjustment scheme is used

for the SLA assimilation, by means of which the sea-level

anomaly increment is covariated in vertical profiles of

temperature and salinity increments (Storto et al. 2011b).

The two 3DVAR reanalyses differ only in the method used

to calculate the background-error covariances. In 3DVAR1,
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the model variability is assumed to reproduce reasonably

well the background error covariances. Consequently, the

vertical EOFs are the same ones as those in the OI analysis.

In 3DVAR2, vertical EOFs were computed from the dif-

ferences between the members of an ensemble variational

assimilation experiment and its ensemble mean, with the

aim of representing the model error evolution rather than

the model variability. The ensemble method (Storto et al.

2011a; see also Storto and Randriamampianina 2010, for a

theoretical explanation) allows a better simulation of the

true error evolution of both the data assimilation and the

forecast model steps. The spread among the ensemble

members was obtained by perturbing the observations, the

surface forcing fields and the non-advective terms of the

state variable tendencies (Palmer et al. 2009).

4 Sea surface temperature skill

In the present section, global mean and local SST forecast

skill is evaluated using HadISST temperatures (Rayner

et al. 2003) as a verification data set.

Figure 1 shows the time series of global mean SST

anomalies (with respect to 1960–1990 baseline) in obser-

vations and ensemble mean predictions, with the latter

averaged over lead times 1, 2–5 and 6–9 years. Most of the

interannual variability in the observed global SST record

can be traced back to El Niño-Southern Oscillation

(ENSO) modulation and episodic volcanic eruptions, while

the longer term variability is dictated by the upward trend

associated with increasing GHGs concentrations in the

atmosphere. The effect of initialization is clearly reflected

in the 1-year lead time hindcasts, (correlated with equally

sub-sampled SST observations at 0.91; Fig. 2), while

slightly lower skill in the 2–5 years range emerges

(r = 0.86), in contrast with the larger (r = 0.93) score for

the 6–9 years range (Fig. 2). The poor sampling of the

observed state, related to the small number of start dates, is

most likely responsible for the relatively lower skill shown

for the 2–5 year near term. In particular, ENSO events are

dramatically under-sampled due to the particular selection

of start dates, as no major ENSO episode occurs during the

years selected for initialization. This leads to a lack of

coherence between the interannual fluctuations in hindcast

and observed global SSTs. In the longer 6–9 year range,

predicted SSTs show a much reduced variance at interan-

nual timescale, with prevailing variability related to chan-

ges in the external radiative forcing, leading in turn to the

large correlation with the observed record.

SST predictability associated with specific initialization

reanalyses (OI, 3DVAR1 and 3DVAR2) is contrasted with

the ensemble mean in Fig. 2. The ensemble-mean SSTs

show an improved skill with respect to most of the

individual members, without systematically outperforming

the single forecasts. All correlation values shown in Fig. 2

are statistically significant at the 95 % level, according to a

Student t test.

In order to quantify the predictive skill at sub-basins

scale, the local forecast skill for sea surface temperatures is

examined. The predictive skill for annual mean SST at

different lead-times is evaluated via anomaly correlation

coefficient (ACC) patterns, for the period 1960–2010. ACC

patterns for SST at lead times 2–5 and 6–9 years, are

shown in Fig. 3. According to a regular one-sided t test,
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HadISST (grey monthly mean; thick blue low-pass filtered with a
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used to assess the statistical significance, correlations larger

than 0.4 are significant at the 95 % level, for 18-points

correlations (2–5 and 6–9 years). Thus, in the near-term

(2–5 year lead times) SSTs display predictive skill over

wide regions of the world oceans, in particular over the

Indian Ocean, the extra-tropical North and South Atlantic,

and over the western North Pacific. In the long term

(6–9 year lead times), predictive skill is even larger than in

the 2–5 year range, something that is consistent with the

large score displayed by the global mean SST signal

(Fig. 2).

In order to disentangle the relative contribution of the

upward trend in the anthropogenic radiative forcing from

the unforced variability on the overall SST skill score,

ACC is re-computed after removing local SST tendencies

from both observations and model results (Fig. 3, bottom

panels). After detrending, ACC patterns show a much

lower skill, both in the near and long term, with statistically

significant residual skill in the near 2–5 year range over

extensive regions of the North Atlantic basin, Southern

ocean and North Pacific basins. The low skill featured by

the equatorial Eastern Pacific may be possibly attributed

to the afore-mentioned lack of predictive skill associated

with ENSO events. This result is consistent with the low

skill shown by the corresponding full-field ACC pattern

(Fig. 3, top-left panel) over the same region.

In the longer 6–9 years term, local forecast skill exceeds

the 95 % significance threshold over most of the North

Atlantic area and for wide regions in the extra-tropical

North Pacific. Interestingly, the equatorial Eastern Pacific,

showing no skill in the near range, exhibits a skill ‘‘re-

emergence’’ in the 6–9 years term. A similar feature was

found in the ENSEMBLES multi-model decadal prediction

system (van Oldenborgh et al. 2012).

In order to assess whether the initialization of the

hindcasts leads to more accurate predictions with respect to

an uninitialized climate simulation (i.e., a projection ini-

tialized with an arbitrary initial state and performed for the

same time period of the predictions using identical forcing

conditions) a deterministic metric, based on the mean

squared skill score (MSSS) was used (Murphy 1988). The

MSSS is based on the mean squared error (MSE):

MSEðY ;XÞ ¼ 1

n

Xn

j¼1

ðYj � XjÞ2 ð1Þ

where Yj and Xj are the forecast and observed values at lead

times j = 1,n years, respectively. The MSE can be

calculated for both the initialized decadal hindcasts

and for the uninitialized hindcasts (MSEy and MSEw,

respectively). Then, the MSSS is defined as:

MSSS ¼ 1� MSEy

MSEw
ð2Þ

Thus, positive MSSS values indicate that the

initialization supplies added value to the prediction, with

respect to a simply forced simulation. For an ideally perfect

forecast, MSEy is zero, and MSSS is 1. However, MSSS

can take negative values, in case the error associated with

the prediction is larger than for the uninitialized simulation.

Here we diagnose the MSSS for SST using a CMIP5

Fig. 3 Anomaly correlation

coefficient of SST hindcasts for

years 2–5 (left) and 6–9 (right),
with (top) and without (bottom)

trend. Correlations larger than

0.4 are statistically significant at

the 95 % level according to a

one-sided Student’s t test
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historical simulation, spanning the same period of the

predictions, as a reference uninitialized forecast. All

hindcasts have been bias-corrected, prior to the MSSS

computation. The MSSS pattern (shown in Fig. 4) reveals

that, over most of the global ocean, the skill score is positive,

indicating that overall the initialization improves the model

predictive skill with respect to the uninitialized control

simulation. Enhanced skill is particularly pronounced

over the North Atlantic basin, south-eastern Pacific, and

extensive portions of the Southern Ocean. However, there

are wide areas (notably, the equatorial Pacific, south-west

Pacific, southern Indian Ocean as well as most of the Arctic)

featuring negative MSSS, indicating no improvements

associated with hindcast initialization. Comparing the

MSSS pattern with the ACC maps for SSTs (Fig. 3), there

are indications that the areas featuring negative anomaly

correlations, roughly coincide with regions characterized by

negative correlations, although a close comparison does not

apply in this case as the MSSS is computed using the whole

set of available lead times (1–10 years).

5 Forecast skill over continental areas

In order to evaluate the predictive skill of decadal hindcasts

over continental areas, ACC patterns for 2-m temperature

and precipitation over land are diagnosed, in the 2–5 and

6–9 years range. CRUTEM3 (Brohan et al. 2006) and

GPCC v4 (Schneider et al. 2008) data are used as obser-

vational reference for 2-m temperature and precipitation,

respectively.

Similarly to SSTs, the skill of near-surface temperature

is mainly determined by the long-term trend in the pre-

scribed boundary conditions, as can be inferred from the

dramatic loss of skill found after the detrending procedure

(Fig. 5). Anomaly correlations computed by including the

trend (Fig. 5, top panels), display positive correlations over

most of the land surface, to large extent exceeding the

95 % statistical significance threshold. The skill is negative

over parts of the south american continent, particularly

over Bolivia and surrounding areas. However, it must be

noticed that no trends are found in observations, over this

area (Fig. 3.9 in Trenberth et al. 2007).

After removing the trend (Fig. 5, bottom panels), resid-

ual skill is found over extensive continental areas. Part of

this signal, and specifically the enhanced predictability

found over the Mediterranean basin, Middle-East and North

America bear strong similarities with the teleconnection

pattern of the Atlantic Multidecadal Oscillation (Knight

et al. 2005; van Oldenborgh et al. 2012), suggesting that

predictability over land may arise from predictive skill over

neighboring oceanic areas. The predictability associated

with the natural multidecadal variability in the Atlantic

sector is further analysed in Sects. 6 and 7.

In Fig. 6, the anomaly correlations for precipitation over

land are displayed. Only the total skill (i.e., without

removing the trend) is shown, as trends in precipitation

represent a much smaller fraction of the total variability,

compared with surface temperatures. Predictive skill in

precipitation is generally low, with vast areas featuring

negative correlations, particularly in the 2–5 years range.

However, a few regions exhibit a spatially coherent pattern

of statistically significant skill, most notably the Sahel and

northern Scandinavia in the 6–9 years term. Aside from

these specific areas, the general outlook of the ACC pat-

terns for precipitation is extremely noisy, making the

identification of the processes which are relevant for pre-

dictability particularly difficult.
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In the following sections, a more detailed analysis is

carried out of the predictability associated with regional

climate variability indices in the Atlantic and Pacific

basins.

6 Atlantic multi-decadal variability

In the previous sections, the Atlantic sector emerged as a

region featuring a significant predictive skill, even after

removing local trends, indicating that natural, multi-annual

fluctuations may locally enhance the predictability of the

system. Figure 7 shows the time series of the Atlantic SST

Dipole (hereafter AD; Keenlyside et al. 2008) index, which

is here defined as the area-averaged SST difference over

(40–60N,60–10W) minus (10–40S,30W–10E), for obser-

vations (HadISST) and ensemble mean hindcast/forecast

simulations. The predicted AD index is shown for year 1,

years 2–5 and years 6–9. Predictive skill is evident not only

after 1 year (r = 0.74) but also over the near-term 2–5 year

range (r = 0.67), while in the longer 6–9 year term only

marginally significant skill is found (r = 0.38). Interest-

ingly, the reduced skill for longer lead-times appears to be

due to a delayed response of the predicted AD index,

causing the AD hindcast to be out of phase with respect to

observations. The above-mentioned lack of skill for the

longer 6–9 year range does not allow a proper forecast (i.e.,

referring to the decade starting on year 2011), since year

2005 is the latest start date. Nonetheless, it is interesting to

highlight the predicted persistency of the AD warm phase,

after 2010, consistent with the latest part of the observed

record.

Next we focus on the Atlantic Multidecadal Oscillation

(AMO) index (Schelsinger and Ramankutty 1994). Several

definitions of the AMO index can be found in the literature

(Enfield et al. 2001). A particularly thorny issue is the

discrimination of natural variability, arising from processes

internal to the Atlantic sub-system, from the global

anthropogenic warming signal. Trenberth and Shea (2006;

hereafter TS06) suggest a possible way to remove the

global warming signal from the AMO index, by subtracting

the global mean SST, thus leading to a revised AMO, freed

from the global warming signature (see also van Olden-

borgh et al. 2009 for an alternative AMO-detrending

Fig. 5 Same as Fig. 3, but for

2-m temperatures over land

Fig. 6 Same as Fig. 3, but for precipitation over land. Only total skill

is shown (trends included)
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procedure). Correlations for the AMO index using the

revised TS06 definition are shown in Fig. 8. The compar-

ison with the AD index shows slightly lower values for the

1-year lead time, but improved skill for years 2–5 and 6–9.

This result is consistent with findings of van Oldenborgh

et al. (2012), who also show an improved coherence

between observations and the predicted AMO index for the

2–5 year slower variations of the AMO.

Predictability in the Atlantic region is then assessed

against the specific data assimilation products used for the

initialization by separately evaluating the predictive skill

exhibited by OI and the two 3DVAR reanalyses, for both

AD and AMO indices. The analysis reveals that OI initial

conditions yield a generally lower skill (systematically

for AMO index) with respect to 3DVAR1 and 3DVAR2

(Fig. 8). Overall, the ensemble mean prediction displays

statistically significant correlation at all lead-times, in

several cases outperforming individual ensemble members.

This result, which is well-known from seasonal predictions,

appears to hold also for decadal predictions. The lack of

skill revealed by OI with respect to 3DVAR-initialized

predictions, points to some major deficiencies of the OI

method in constraining the initial state of the ocean,

although it is unclear whether this is related to the assim-

ilation method or the amount of the assimilated data. This

aspect is further investigated in the context of the pre-

dictability of the meridional overturning circulation (see

next section).

Summarizing, the Atlantic basin is confirmed to be a

region featuring large predictability, up to the 6–9 year

range.

7 Atlantic meridional overturning circulation

Low frequency fluctuations associated with the strength of

the slowly evolving global ocean conveyor represent a

potential source of predictability in the climate system. The

meridional mass transport across zonal sections in oceanic

basins, estimated through the meridional overturning

streamfunction, provides a dynamical proxy for the local

strength of the thermohaline circulation (THC). The

Atlantic component of the meridional overturning circu-

lation is particularly effective in transferring heat meridi-

onally, and as such plays an important role on the global

energy cycle. Interest in predicting the Atlantic meridional

overturning circulation is further supported by evidence of

a strong link with coordinated changes in the surface

temperature field of the Northern Hemisphere (Knight

et al. 2005; Collins et al. 2006).

Figure 9 shows the time series of the maximum Atlantic

meridional overturning circulation at 26N (hereafter MOC)

for each of the ocean reanalyses used to initialize the decadal

predictions. This particular latitude is selected because

several observational estimates exist based on transatlantic

zonal sections (Bryden et al. 2005; Cunningham et al. 2007)

and direct daily measures through the RAPID monitoring

system (Kanzow et al. 2008) at approximately the same

latitude. A striking feature emerging from this comparison is

the large uncertainty affecting both the mean state and the

variability of the MOC. The root-mean-square deviations
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between the different estimates of the MOC range between

2.4 Sv (3DVAR1 and 3DVAR2) and 4.1 Sv (OI and

3DVAR1), while cross-correlations vary between 0.55 (OI

and 3DVAR2) and 0.7 (3DVAR1 and 3DVAR2). The MOC

amplitude in 3DVAR reanalyses is more consistent with

existing direct observational estimates, compared to OI. The

largest discrepancies emerge during the 1990s, with the OI

undergoing a severe drop towards a weaker MOC state.

In order to disentangle the effects of the assimilated data

set from the assimilation method on the MOC evolution, an

additional reanalysis is shown (3DVAR1 NoSLA), where

the 3DVAR1 scheme is used to assimilate in-situ temper-

ature and salinity data, but no altimetry data. This addi-

tional reanalysis was run from 1992 onwards. The

comparison with 3DVAR1 (Fig. 9) displays a relatively

small enhancement in the MOC amplitude (1–2 Sv) but no

substantial changes in the MOC variability. Overall, the

impact of SLA assimilation on MOC appears to play a

second order role, suggesting that the major differences

between MOC estimates are determined by the assimilation

method. This result is further corroborated by additional

analyses performed on the meridional overturning mean

states in the different ocean reanalyses (not shown).

Summarizing, the reanalyses show a broad agreement in

reproducing a decrease in the MOC from the 1990s

onward, that is partly consistent with the few available

observations (although the large uncertainties affecting the

MOC direct estimates should be carefully considered; see

in particular, the year 2004 estimates) and reconstructions

based on ocean syntheses (Pohlmann et al. 2012).

While, in principle, data assimilation is expected to

contribute to a reduction of the uncertainties affecting the

estimate of the ocean state, compared to model or obser-

vational estimates alone, this seems not to be the case for

the MOC (Balmaseda et al. 2007). A large spread affecting

the 26N Atlantic overturning in ECMWF ORAS3 and

NEMOVAR reanalyses (similar to the one featured by the

present set of ocean reanalyses) is reported in Balmaseda

et al. (2010; see their Fig. 4). The reasons behind this

behavior of the MOC are not well understood, although

Balmaseda et al. found some indication of a MOC strength

dependency on the specific treatment of ocean data near the

coastlines.

The detected MOC discrepancies in the reanalyses

highlight the large spread of the perturbations imposed to

the initial state of oceanic dynamical fields when different

data assimilation products are used to initialize the ocean

component of the coupled model. The large uncertainties

displayed by the Atlantic MOC remind us that identifying

the true field for this specific component of the ocean

circulation is not straightforward. This is a well-known

problem in all the existing reanalyses of the global ocean

(Balmaseda et al. 2010; Kröger et al. 2012; Muñoz et al.

2011). For this reason, in the following analysis, the

ensemble members initialized with a specific ocean

reanalysis will be treated as a distinct data set. Thus, MOC

predictability for each sub-set will be verified against the

corresponding initialization ocean data assimilation

product.

In Fig. 10, the Atlantic MOC at 26N for each initiali-

zation reanalysis and the corresponding predictions aver-

aged over lead-times 1, 2–5 and 6–9 years are shown. The

comparison highlights the large sensitivity of predicted

MOC to the specific ocean initialization data set. In par-

ticular, OI-initialized hindcasts exhibit a systematic upward

drift in the 2–5 years transient after initialization, which is

virtually absent in the 3DVAR-initialized predictions. An

analysis of the MOC average forecast for each prediction

set reveals that the detected upward drift in the 2–5 year

lead time range is caused by an initialization shock, which

is considerably larger in the OI set compared to 3DVAR

(not shown). Overall, hindcasts initialized with 3DVAR

reanalyses show a fairly good consistency with their

reanalysis counterpart in the 2–5 year range, skillfully

capturing the low frequency variability at multi-annual

scales. In the 6–9 year range, MOC values are affected by

the long term adjustment towards the model climatology

(13–14 Sv). After drift removal (performed by subtracting

the average forecast from each raw forecast), the residual

MOC probability density functions in the initialized runs

exhibit a much narrower range of values compared to

ocean reanalyses (Fig. 11). A similar underestimation of

MOC variance in model simulations with respect to ocean
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data assimilation products is reported in Balmaseda et al.

(2007) for ECMWF operational ocean reanalyses.

In Fig. 12, the anomaly correlation between predicted

and ‘‘observed’’ (i.e., from reanalyses) annual mean MOC

at several lead times and across latitudes is shown, for each

initialization set. Compared to OI, the 3DVAR-initialized

predictions display an overall longer term predictability

skill (up to 3–4 years, versus 1–2 years in OI) and for a

wider range of latitudes. In turn, 3DVAR2, when con-

trasted to 3DVAR1, shows a lower skill in the northern

North Atlantic (north of 50N), but larger skill south of the

Equator.

Interestingly, MOC and AMO display a largely consis-

tent level of predictability, both showing predictive skill in

the 2–5 years range, particularly under 3DVAR initializa-

tion. This result is in agreement with a well-documented

low frequency co-variability of the Atlantic SST field and

MOC, found in both models and proxy-based observational

reconstructions (Delworth and Mann 2000; Knight et al.

2005; Collins et al. 2006). In the widely accepted paradigm

of the MOC being a major driver of the Atlantic SST multi-

decadal variability, the initialization of the meridional

overturning circulation turns out to be a crucial aspect for

skilful decadal predictions in the Atlantic sector.
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8 Pacific decadal oscillation

Predictability skill in the North Pacific region is assessed

against the dominant pattern of internal variability over the

Pacific area, the so-called Pacific Decadal Oscillation

(PDO). PDO is a winter time climate variability mode

(Mantua et al. 1997) featuring a large-scale covariance

pattern, involving mid-latitude and tropical regions in the

North Pacific, with fluctuations at decadal and inter-dec-

adal time scales. Following Mantua et al. (1997) we define

a PDO index based on the leading Empirical Orthogonal

Function/Principal Component (EOF1/PC1) of winter-

mean (January–February–March;JFM) SST, north of 20N.

In the present analysis, only January-initialized predictions

were used, as these have been integrated for 30 years,

unlike November-initialized simulations which were

mainly integrated for 10 years only. Since 10 years are not

sufficient to constrain a decadal-scale variability signal,

only the longer 30-years subset of simulations was used for

detecting the PDO signature. It should be emphasized that

PDO does not always emerge as the dominant EOF in the

simulated North Pacific SSTs, but rather as the second

variability mode (EOF2). For those specific cases, the

corresponding PC2 was used as a proxy of the PDO index.

Hindcast/forecast of the PDO index for different start

dates is shown in Fig. 13, for ensemble mean SSTs.

A simple visual inspection reveals a rapid loss of coher-

ency between the observed and predicted PDO signal. This

is further confirmed by correlation between observed and

ensemble-mean PDO index at several lead-times (Fig. 14),

showing significant correlation (around 0.9) only for 1-year

lead time, followed by an abrupt decay below statistically

significant levels for longer lead times. When predictive

skill is evaluated against different initialization data sets

(Fig. 14) large differences are found between OI and

3DVAR initialization experiments. In particular, OI shows

the lowest skill scores (never reaching statistical signifi-

cance), while 3DVAR2 displays a rather counter-intuitive

behavior, with the highest score in the long 6–9 years term.

The ensemble-mean procedure enhances the predictive

skill for the 1-year and, partly, for the 2–5 year lead times,

but not in the longer time range. The overall poor predic-

tive capability associated with the PDO in the multi-annual
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range is consistent with the relatively low skill score found

in the ACC patterns over wide areas of the North Pacific

sector (Figs. 3, 4). Mochizuki et al. (2010) show a simi-

larly low SST predictability in the extratropical North

Pacific, but a sensibly larger skill when vertically averaged

temperatures over the top 300 m are considered (their

Fig. 2). The rapid loss of skill featured by the PDO index

for lead times longer than 1 year has also been found in an

ongoing analysis of CMIP5 models (Kim 2011, personal

communication).

9 Summary and conclusions

The skill of a set of CMIP5 near-term predictions per-

formed with a state-of-the-art ocean-atmosphere general

circulation model (OAGCM) has been analysed. In par-

ticular, the predictive skill dependency on ocean initiali-

zation has been examined by using three distinct ocean

reanalyses as initialization data set, differing in the data

assimilation methodology and the amount of the assimi-

lated observations. A large fraction of SST skill is

accounted for by the global upward trend in surface tem-

peratures, while contributions to near-term predictability

from ENSO are virtually absent due to the poor sampling

of the historical record (few starting dates which acciden-

tally miss most of the major ENSO episodes in the

1960–2005 period). Since no volcanic activity is included

in the model forcing, any residual skill (i.e. computed after

removing the linear trend from both the predictions and the

observations) must be mainly associated with initialization,

although some spurious skill caused by the non-linearity of

the actual trend may still exist (see van Oldenborgh et al.
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2012 for a detailed discussion on this issue). Statistically

significant predictability after detrending is found over

extensive regions of the North Atlantic both in the near

(2–5 year) and long (6–9 year) term. Some skill re-emer-

gence in the equatorial Pacific, together with enhanced

predictability in the northern North Pacific is also found in

the 6–9 years range. The ACC patterns for SSTs from the

present set of predictions reveal strong analogies with a

similar analysis made for the ENSEMBLES multi-model

set (van Oldenborgh et al. 2012; Doblas-Reyes et al.

2011b) showing that, to a large extent, there is consistency

in the predictive capabilities displayed by a wide range of

climate models. The skill score patterns for detrended SSTs

provide a spatial mapping of predictability associated with

the unforced component of climate variability driven by

natural fluctuations, which can be ascribed solely to the

internal dynamics of the climate system. The emerging

picture corroborates a feature revealed in model-only

potential predictability studies (Boer 2000) as well as

in realistically initialized decadal predictions efforts

(Pohlmann et al. 2009; Keenlyside et al. 2008; van

Oldenborgh et al. 2011). Both approaches indicate the

North Atlantic as a region exhibiting enhanced predict-

ability at multi-annual time scales. Consistent with this

finding, indices of Atlantic multidecadal variability,

including an interhemispheric Atlantic SST dipole index,

and a detrended version of the AMO index, are skilfully

predicted in the 2–5 year range, and (marginally, for the

dipole index) in the 6–9 year range, by model hindcasts.

According to a widely accepted paradigm based on model

evidence and theoretical speculation (Knight et al. 2005),

AMO appears to be related to coherent changes in the

Atlantic THC. In this study, the Atlantic MOC shows a

degree of predictability up to 3–4 years over a wide range

of latitudes. Thus an overall self-consistent picture emerges

from this study, connecting the predictive skill of (detr-

ended) North Atlantic SSTs with predictability of internal

variability modes involving large-scale coherent SST and

THC changes in the Atlantic sector.

A substantial asymmetry appears when contrasting the

predictive skill in the Atlantic area with the North Pacific,

the latter (evaluated through the PDO index) showing no

skill beyond 1 year lead time. This result may point to

model deficiencies in representing the essential processes

underlying decadal fluctuations in the extra-tropical North

Pacific. To the extent that PDO is an ENSO-driven process

(Newman et al. 2003), misrepresentations of tropical-

extratropical interactions may negatively affect the internal

variability over the North Pacific region in the coupled

model (Cherchi et al. 2012).

The envisaged predictive capabilities beyond the

anthropogenic trend, involving the slow dynamics of

unforced components of climate variability, support the

usefulness of model initialization practices aimed at per-

forming reliable decadal predictions (within the predict-

ability limits that are inherent to the specific dynamical

model in use; Branstator and Teng 2010). Appropriately

constraining the initial state of the dynamical model

becomes crucial in limiting the error growth associated

with the chaotic nature of the climate system. Here, an

ensemble of three ocean reanalyses, based on different data

assimilation techniques and assimilated datasets, was used

with the purpose of initializing 3-member ensemble hind-

casts/forecasts and thus providing the initial state pertur-

bations that are needed for generating an ensemble

members spread. Ranking climate predictions on the basis

of the specific initialization reanalysis reveals a strong

predictive skill dependency on the ocean data assimilation

product used to constrain the oceanic initial conditions. In

particular hints of an improved predictive skill associated

with 3DVAR1 and 3DVAR2 initializations, compared to

OI, have been found. On the other hand, no significant

differences were found when contrasting the two 3DVAR

implementations. This result suggests that the details

regarding the background error parameterization have little

effect on the simulated evolution of the climate state, both

methods providing equivalent (as fas as predictability is

concerned) representations of the initial state of the ocean.

Bearing in mind that OI only assimilates in-situ tempera-

ture and salinity profiles, while 3DVAR reanalyses

additionally assimilate sea-level anomaly data, the large

divergences between 3DVAR and OI may, in principle,

reflect differences both in the applied assimilation meth-

odology and in the amount of assimilated data. However,

specifically for the Atlantic MOC, some indications have

been found of a minor influence of SLA assimilation, with

respect to the use of OI versus a 3DVAR assimilation

technique. On the methodological side, the vertically

increasing background error horizontal correlation lenght-

scale featured by 3DVAR, against a constant one in OI,

might improve the representation of deep ocean circulation

features (and therefore, of the MOC) by extending the

radius of influence of the observations in the deeper

oceanic layers.

Viewing this study in a wider perspective, the large

uncertainties affecting the currently available oceanic rea-

nalyses (Carton and Santorelli 2008; Munoz et al. 2011)

are likely to produce a similarly large spread in climate

predictions (Kröger et al. 2012). While observable fields

such as SST and SLA are well constrained through syn-

optic satellite-based observing systems, the severe under-

sampling, in space and time, of sub-surface ocean (which

has only recently started to be alleviated by the ARGO

profiling floats programme) may be a major reason for the

large spread affecting dynamically connected fields such as

MOC, ocean heat transport and heat content in ocean
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reanalyses. In particular, the scarcity of ocean observa-

tional data may strengthen the dependency of oceanic

reanalyses on the adopted dynamical model and the details

of the data assimilation method.

In order to provide skilful near-term climate predictions

in the foreseeable future, a substantial reduction of the

uncertainties that currently impoverish our knowledge of

the oceanic state is mandatory. This requires a major effort

involving a wide range of expertise, including ocean data

assimilation and observational communities.
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